

GSG-STELLARIS-
GCC-CM3

Getting Started Guide
750 Naples Street • San Francisco, CA 94112 • (415) 584-6360 • http://www.pumpkininc.com

created by Andrew E. Kalman on May 16, 2006 updated on May 17, 2006
All trademarks mentioned herein are properties of their respective companies.

Building a Salvo Application for
Stellaris™ Microcontrollers using
GCC for Cortex-M3

Introduction
This Getting Started Guide gives a brief overview of how to create
a multitasking Salvo application for Luminary Micro’s Stellaris™
Cortex-M3-based microcontrollers using GNU ARM tools for
Cortex-M3.

We will show you how to build the standard Salvo demo
application tut5. A complete project to build tut5 is included in
every Salvo distribution.

Building your own applications will be substantially similar.

For more information on how to write a Salvo application, please
see the Salvo User Manual.

Before You Begin
The examples provided with the Salvo for Stellaris distribution are
meant to run on a Luminary Micro Stellaris Development Board.
Therefore, this guide will be most useful if are using a Stellaris
Development Kit.

In order to build with the GNU toolchain, you must install the
CodeSourcery Sourcery G++ for Stellaris Family tools.
Furthermore, if you are using a Stellaris Development Board, then
you must also install the software library, DriverLib, and the FTDI
USB drivers which allows direct JTAG debug via a USB cable.
All of the steps necessary for this are contained in the “GNU Tools
QUICKSTART” guide, found on the CD included with the
Stellaris Development Kit.

 Getting Started Guide

2 GSG-STELLARIS-GCC-CM3 Building a Salvo Application for Stellaris™ Microcontrollers using GCC
for Cortex-M3

Related Documents
The following Salvo documents should be used in conjunction
with this manual when building Salvo applications for Stellaris™
MCUs using GCC ARM tools for Cortex-M3:

Salvo User Manual
Salvo Compiler Reference Manual

RM-STELLARIS-GCCARM

The following documents found on the Luminary Micro
Development Kit CD provide useful information:

GNU Tools QUICKSTART

Creating and Configuring a New Project
The build environment is driven by a Makefile. The Salvo
distribution contains an example project with a Makefile, and you
should start with the example Makefile for your own project. In
the Salvo distribution, you can find the example Makefile here:

C:\Pumpkin\Salvo\Examples\ARM\Luminary_LM3S1XX\
Luminary_DK-LM3S1XX\GCCARM\Tut\Tut5\Lite

To start, create your own project directory. In this guide, we will
use a project directory called MyProj, as shown below:

C:\Pumpkin\Salvo\Examples\ARM\Luminary_LM3S1XX\
Luminary_DK-LM3S1XX\GCCARM\Tut\Tut5\MyProj

Copy the Makefile from the Lite directory into this directory, then
view the Makefile with an editor. Look at the following macros
defined in the Makefile:

Define locations where the DriverLib headers and library can be found
Change this as needed on your system.

DRIVERLIB_ROOT=C:/DriverLib
DRIVERLIB_HWINC=${DRIVERLIB_ROOT}
DRIVERLIB_INC=${DRIVERLIB_ROOT}/src
DRIVERLIB_LIB=${DRIVERLIB_ROOT}/src/gcc/libdriver.a

salvo library
SALVOLIB=../../../../../../../../Lib/GCCARM/libsalvofgccarmcm3t.a

The macro DRIVERLIB_ROOT points to the location where the
Stellaris software driver library, DriverLib, was installed and built.
If it is in another location other than that shown in the Makefile,
then edit the Makefile and change the path to DriverLib. The
remaining DRIVERLIB_... macros do not need to be changed unless
you rearranged the tree.

 Getting Started Guide

GSG-STELLARIS-GCC-CM3 Building a Salvo Application for Stellaris™ Microcontrollers using GCC for
Cortex-M3

3

If you do not want to use DriverLib at all, then set all the
DRIVERLIB_ macros to be empty (ex: DRIVERLIB_ROOT=)
The macro SALVOLIB points to the location of the Salvo library that
will be linked with the application. If you are using a different
Salvo library, then this macro should be edited.

Adding your Source File(s) to the Project
Refer to the following macros in the Makefile:

VPATH=${RTOS_SOURCE_DIR}:${RTOS_SOURCE_DIR}/GCCARM:${COMPILER_SOURCE_DIR
}:${DEMO_SOURCE_DIR}:${PLATFORM_SRC_DIR}

OBJ= startup.o \
 tut5.o \
 timer.o \
 pdc.o \
 salvohook_interrupt_cm3.o \
 salvomem.o

The VPATH macro lists all the locations where source files may be
found. Change this if you locate your source files in different
locations from the example.

The OBJ macro lists all the object files that are to be generated
from source files. Add or remove files as appropriate for your
project. In this example, the files listed are the following:

tut5, timer, pdc, startup – these are part of the
 application
salvomem – required for a Salvo project
salvohook_interrupt_cm3 – target specific code

The following line in the Makefile provides the name of the
application executable. It can be changed to the name of your
application.

tut5.axf: ${OBJ}

The salvocfg.h Header File
A salvocfg.h header file is required for every Salvo project. You
can create your own salvocfg.h or copy an existing one and
modify it accordingly. Place it in the project's directory.

The salvocfg.h for this project contains only:

 Getting Started Guide

4 GSG-STELLARIS-GCC-CM3 Building a Salvo Application for Stellaris™ Microcontrollers using GCC
for Cortex-M3

#define OSUSE_LIBRARY TRUE
#define OSLIBRARY_TYPE OSF
#define OSLIBRARY_CONFIG OST

#define OSEVENTS 1
#define OSEVENT_FLAGS 0
#define OSMESSAGE_QUEUES 0
#define OSTASKS 4

Listing 1: Example salvocfg.h for a Salvo Lite Library
Build

Note The settings above are for this particular example project.
The settings for your projects will vary depending on which
libraries you use, how many tasks and events are in your
application, etc.

Building the Project
In this example we will build from the command line using a shell.
It is possible to integrate Makefile building with an IDE such as
Eclipse, but that is not covered in this guide. The shell is a *nix-
style shell such as bash or sh. You should already have this
installed as part of the installation and building of DriverLib (see
Luminary Micro GNU Tools QUICKSTART).

Open a shell window and navigate to the project directory, in this
case:

C:\Pumpkin\Salvo\Examples\ARM\Luminary_LM3S1XX\
Luminary_DK-LM3S1XX\GCCARM\Tut\Tut5\MyProj

With everything in place, you can now build the project using

$ make clean

followed by

$ make

This will result in

$ make clean
$ make
 CC ../../../startup.c
 CC ../tut5.c
 CC ../timer.c
 CC ../../../../pdc.c
 CC ../../../../../../../../Src/GCCARM/salvohook_interrupt_cm3.c
 CC ../../../../../../../../Src/salvomem.c
 LD tut5.axf
$

Figure 1: Build Results

 Getting Started Guide

GSG-STELLARIS-GCC-CM3 Building a Salvo Application for Stellaris™ Microcontrollers using GCC for
Cortex-M3

5

Testing the Application
You can test and debug this application using the built-in FTDI-
based USB connection on the Stellaris demo boards. Consult the
Luminary Micro Development Kit CD, and tools documentation
for more information.

The following steps assume you have installed the FTDI USB
drivers and have the Development Board plugged in to a USB
cable from your computer (refer to the Luminary Micro GNU
Tools QUICKSTART for instructions on setting up the board).

Start the gdb debugger using the following command:

arm-stellaris-eabi-gdb tut5.axf

The debugger will start and show the following messages:

GNU gdb 6.4.50.20060226-cvs
Copyright (C) 2006 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License,
and you are welcome to change it and/or distribute copies of it under
certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for
details.
This GDB was configured as "--host=i686-mingw32
--target=arm-stellaris-eabi"...
(gdb)

Connect to the target with the following command:

(gdb) target extended-remote | armswd –s 2 –f lmi.dll
stdio

(note that the above command can be replaced with the shortcut
“connect-r” if you installed .gdbinit as mentioned in the Luminary
Micro GNU Tools QUICKSTART)

You should see a message about the target being halted. There
may be other messages as well.

To load the program into flash memory in the chip:

(gdb) load

You should see messages similar to the following:

(gdb) load
Loading section .text, size 0x1a98 lma 0x0
Loading section .data, size 0x4 lma 0x1a98
Start address 0x49, load size 6812
Transfer rate: 18165 bits/sec, 296 bytes/write.
(gdb)

 Getting Started Guide

6 GSG-STELLARIS-GCC-CM3 Building a Salvo Application for Stellaris™ Microcontrollers using GCC
for Cortex-M3

Once the program has been loaded into flash, you can start it from
the debugger by typing “run”. GDB will ask if you would like to
restart the application, answer ‘y’. The application will start and
then stop at the Reset entry point.

(gdb) run
The program being debugged has been started already.
Start it from the beginning? (y or n) y

Starting program: C:\Pumpkin\Salvo\Examples\ARM\Luminary_LM3S1XX\
Luminary_DK-LM3S1XX\GCCARM\Tut\Tut5\MyProj/tut5.axf
Peripherals in SoC have been reset
Processor was reset: PC/SP loaded from 0x0.
Stopped at entry point

Program received signal SIGTRAP, Trace/breakpoint trap.
0x00000048 in ResetISR ()
(gdb)

Type “continue” to start the program running. You should see the
application running on the Development Board. Messages should
appear on the LCD panel, and LEDs should be blinking.

Example Projects
Example Salvo projects for use with CodeSourcery Sourcery G++
for Stellaris Family tools can be found in the:

C:\Pumpkin\Salvo\Examples\ARM\Luminary_LM3S1XX\
 Luminary_DK-LM3S1XX\GCCARM

directories of every Salvo for Stellaris family distribution. Salvo
Lite and LE example projects are built using Salvo libraries. Salvo
Pro example projects are built using Salvo libraries and the Salvo
source code.

	Building a Salvo Application for Stellaris™ Microcontrollers using GCC for Cortex-M3
	Introduction

	For more information on how to write a Salvo application, please see the Salvo User Manual.
	Before You Begin
	Related Documents

	Salvo User Manual
	Salvo Compiler Reference Manual RM˚STELLARIS˚GCCARM
	GNU Tools QUICKSTART
	Creating and Configuring a New Project
	Adding your Source File(s) to the Project
	The salvocfg.h Header File

	Building the Project
	Testing the Application
	Example Projects

