

AN-11
Application Note

750 Naples Street • San Francisco, CA 94112 • (415) 584-6360 • http://www.pumpkininc.com

created by Andrew E. Kalman on Jan 9, 2002 updated on Jan 9, 2002
All trademarks mentioned herein are properties of their respective companies.

Optimizing Salvo for Use with the
HI-TECH PICC-18 C Compiler

Introduction
Through judicious use of Salvo's configuration options, substantial
memory savings and performance improvements can be realized
when compiling Salvo applications with the HI-TECH PICC-18 C
compiler.

Where To Make Changes
All of Salvo's configurability is driven by the configuration options
that appear as defined symbols in your project's salvocfg.h. You
will not need to modify any other Salvo source files.

Note If you are upgrading from an existing PICC (PIC16 MCU)
application, you must ensure that certain, PICC-specific symbols
(e.g. bank1) do not appear in your salvocfg.h file when compiled
under PICC-18. Failure to remove such symbols may result in
compiler errors.

How to Optimize
You should always use obvious techniques like applying local and
global compiler optimizations and using the smallest variable type
possible. See the PICC-18 documentation for more information.

To optimize an application further, it's instructive to identify which
parts of the application will benefit most from optimization, and
where further optimization is actually possible. For example, all
Salvo libraries are supplied with the most up-to-date configurations
to minimize Salvo's ROM and RAM footprints and maximize
performance. But since the libraries are precompiled, they cannot
be optimized further. In a situation like this, your only option may

 Application Note

2 AN-11 Optimizing Salvo for Use with the HI-TECH PICC-18 C Compiler

be to apply the techniques outlined below to your own source code,
and use the optimized Salvo libraries.

If you are building your application with the Salvo source code,
then you have much more flexibility, as you can define the various
Salvo configuration parameters as befits your application.

Control Object Placement and Type
Salvo uses static global variables for pointers, task control blocks,
semaphore values, timers, etc. Every Salvo object has an
OSLOC_XYZ configuration option that can be used to specify the
object's memory type. The greatest improvements to run-time
performance and code size will come from careful selection of
special type qualifiers for Salvo objects. You can control where
these variables are placed in memory – and in some instances,
what their types will be – by defining the configuration options
with appropriate type qualifiers in salvocfg.h.

Salvo also has some other configuration options (e.g.
OSOPTIMIZE_FOR_SPEED, etc.) that may have beneficial effects on
run-time performance. Their effect is usually minor, and can only
be determined by before-and-after comparisons.

Finally, functions may have parameters and / or local auto
variables. The memory allocation of these variables is under direct
control of the compiler and cannot be influenced by the user.

Use the Access Bank
Perhaps the greatest improvement to both program ROM size and
RAM utilization is the use of PICC-18's near memory type
qualifier. By declaring a variable as near, the code to access it is
smaller and faster because near objects are represented by 8-bit
pointers, and the access bank is always accessible.

The total RAM used is smaller, too, since Salvo makes extensive
use of pointers to manage tasks and events. To qualify all of
Salvo's objects as near, add this line to your salvocfg.h:

#define OSLOC_ALL near

Avoid Redundant Initialization Code
PICC-18 provides the persistent memory type qualifier. This is
useful in Salvo applications that need not preserve RAM contents

 Application Note

AN-11 Optimizing Salvo for Use with the HI-TECH PICC-18 C Compiler

3

between successive power-ups, resets, wakes-from-sleep, etc.
When used on Salvo objects, it reduces ROM slightly because the
Salvo objects no longer need be initialized by the PICC-18 startup
code. To qualify all of Salvo's objects as near and persistent,
add this line to your salvocfg.h:

#define OSLOC_ALL near persistent

Qualify Variables Intelligently
In larger applications, it may not be possible to apply the same
optimizations to all of the variables because of the limited size of
the access bank. You should qualify objects that are accessed most
often as near, and leave those that are rarely accessed in other
banks.

You can do this with Salvo objects, too, by qualifying certain ones
individually. For instance, to place Salvo's event control blocks
and counters in normal memory and leave the rest in the access
bank, add this to your salvocfg.h:

#define OSLOC_ALL near persistent
#define OSLOC_ECB persistent
#define OSLOC_COUNT persistent

This way you can selectively place Salvo's objects in RAM and
still have room left over in the access bank for critical variables in
your own source code.

Results
As an example that illustrates these optimizations, Salvo demo
program d1 (salvo\demo\d1\sysf) was compiled with different
configuration options. This is a complex application with an 80x25
terminal screen interface, eight tasks and five semaphores,
interrupts, a system timer, sampled keys, etc. It displays the run-
time behavior of two distinctly different operating modes on the
LEDs of the Microchip PICDEM™-2 Demonstration Board. The
results are shown below.

ROM and RAM Utilization
Table 1 illustrates the dramatic improvement to code size that
occurs when Salvo objects are declared with the near type
qualifier.

 Application Note

4 AN-11 Optimizing Salvo for Use with the HI-TECH PICC-18 C Compiler

OSLOC_ALL
Program

ROM
RAM
data

Common
RAM

ROM
data

(undefined) 10,394 184 62 2136
near 8548 50 157 2128
near persistent 8528 50 157 2128

Table 1: ROM and RAM Utilization of Salvo Demo d1 for
different values of OSLOC_ALL (all data in bytes)

Note that the use of the persistent memory type qualifier only
affects program ROM size. Since d1 calls OSInit(), all Salvo
objects are explicitly initialized in the application, and the
compiler's startup initialization code for Salvo objects only is
therefore unnecessary.

The overall compile- and run-time improvements from the
methods described above are shown in Table 2, again for d1
(4MHz). The performance parameter is a measure the application's
context-switching rate.

parameter PIC18C452
(unoptimized)

PIC18C452
(optimized)

PIC16C77
(optimized)

total ROM 6,256 words
(12,530 bytes)

5,328 words
(10,656 bytes) 7049 words

total RAM 246 207 194
performance,

mode 1 2,018/s 2,462/s 2,644/s

performance,
mode 2 2,989/s 3,715/s 3,401/s

Table 2: Results of Optimizations on Salvo Demo d1

Of particular interest are the reduced ROM size (-15%), the
reduced RAM size (-16%) and the improved run-time performance
(+22% and +24%) by declaring OSLOC_ALL to be near
persistent.

For comparative purposes, the results of d1 compiled under PICC
for a PIC16 target are also shown. The PIC18 application is much
smaller, ROM-wise (-24%), the RAM usage is nearly identical,
and the difference in performance is clearly application-dependent.

Conclusion
Substantial performance gains and code size reductions can be
achieved through PICC-18's special type qualifiers when applied to
a Salvo application via the OSLOC_XYZ configuration options.

	Optimizing Salvo for Use with the HI-TECH PICC-18 C Compiler
	Introduction
	Where To Make Changes
	How to Optimize
	Control Object Placement and Type
	Use the Access Bank
	Avoid Redundant Initialization Code
	Qualify Variables Intelligently

	Results
	ROM and RAM Utilization

	Conclusion

