

AN-2
Application Note

750 Naples Street • San Francisco, CA 94112 • (415) 584-6360 • http://www.pumpkininc.com

created by Andrew E. Kalman on May 4, 2000 updated on May 19, 2001
All trademarks mentioned herein are properties of their respective companies.

Understanding Changes in Salvo
Code Size for Different PICmicro
Devices

Introduction
When compiling a Salvo™ multitasking application for different
Microchip PICmicro devices, you may notice a sizeable difference
in the code size (ROM). This Application Note lends some insight
into this matter.

Same Program, Different ROM Requirements
Below are the results of compiling the same Salvo multitasking
application1 on a range of similar PICmicro devices using the HI-
TECH PICC compiler:

device library used2 ROM (words) RAM (bytes)
PIC16F84 FPI400.lib 372 33
PIC16C64 FPI401.lib 367 33
PIC16C717 FPI402.lib 404 33
PIC16C65 FPI411.lib 401 33
PIC16C773 FPI412.lib 438 33
PIC16C77 FPI422.lib 472 33

The devices range from the PIC16F84, with only 1K instruction
words of program memory (ROM) and 68 bytes of RAM in 1
bank, to the PIC16C77, with 8K of ROM and 368 bytes of RAM in
4 banks. It's immediately apparent that as the number of ROM and
RAM banks per PICmicro device rises, so does the code size.3

Why the Variation?
PICmicro devices are RISC-based, Harvard architecture
microcontrollers with short instruction word lengths. In order to

 Application Note

2 AN-2 Understanding Changes in Salvo Code Size for Different PICmicro Devices

explicitly change the program counter or access file registers, the
desired ROM or RAM address must be contained within the
instruction word. Since the instruction word length is relatively
small (14 bits for the mid-range PIC16 devices and 16 bits for the
high-end PIC17 devices), and since several bits must be reserved
for the opcode itself, there isn't much room left over for explicit
address bits.

Consequently, the PICmicro devices employ a means of page and
bank switching to access memory over an address range beyond
what a single instruction can hold. In the PIC16 devices, up to 11
bits of the 14-bit instruction word can be dedicated to an absolute
code address (say, for a GOTO instruction), and up to 7 bits can be
dedicated when operating on file registers in RAM. That means
that in order to access more than 2K of ROM, or more than 128
bytes of RAM, a scheme involving "some extra bits" is required.

The PICmicro devices employ a PCLATH (Program Counter Latch
High) register which, when combined with 11 dedicated
instruction address bits, allow a CALL or GOTO anywhere in the
available address space. They also employ register page bits (RPn)
to select a particular RAM bank to operate on.

PICC (and other compilers) manage memory accesses behind the
scenes and make it transparent to the programmer. It may be
possible to control some memory issues (e.g. in which RAM bank
variables should be located), but others (e.g. where a particular
function is located in ROM) are often handled automatically by the
compiler.

The Role of the Compiler
While it is beyond the scope of this Application Note to discuss the
code generated by the compiler for the figures above, suffice it to
say that with a larger code and data space, additional instructions
are required to manage paged or banked access to ROM and RAM.
For example, a PIC16C77, with 4 banks of RAM, has two register
page bits RP1:RP0 which must be set or cleared prior to each
register file access.4 An optimizing compiler like PICC can remove
redundant page register bit manipulation instructions in a particular
function, but each function still needs to define the page bits so
that the function's parameters and variables are accessed correctly.

Below are the memory requirements for the same program as
above, but this time the Salvo variables are located in the
uppermost RAM bank of each PICmicro device:

 Application Note

AN-2 Understanding Changes in Salvo Code Size for Different PICmicro Devices

3

device library used ROM (words) RAM (bytes)
PIC16F84 FPI400.lib 372 33
PIC16C64 FPI401.lib 374 33
PIC16C717 FPI402.lib 411 33
PIC16C65 FPI411.lib 408 33
PIC16C773 FPI412.lib 445 33
PIC16C77 FPI422.lib 479 33

Since PICC places all auto variables and parameters in RAM bank
0, bank switching is guaranteed to occur within nearly all of the
Salvo functions contained in the freeware libraries. The very minor
growth in code size demonstrates that the compiler will implement
full register page bit control in each Salvo function regardless of
where the Salvo variables are located in memory. That's because
other functions (e.g. your own) might access variables in yet
another bank, thereby changing the register page bits.

The compiler guarantees that every access to a variable will occur
with the correct register page bits set. As the numbers of RAM
banks and variable accesses increase, the number of instructions
that will be required to set the register page bits correctly will rise
accordingly.

What Can I do?
The reality is that with more RAM banks, more bank switching is
required when accessing variables. Thankfully a compiler handles
this for you automatically. Also, PICmicro devices with multiple
RAM banks usually have more ROM than those with just one or
two banks.

Ideally you should try to fit your application into the smallest
possible PICmicro device, as that will usually reduce overall
system cost. If you find yourself in a situation where you have
exhausted the PICmicro's ROM space, yet you still have a lot of
RAM available, you can configure the compiler to treat the device
as if it had fewer RAM banks. Switching from 4 to 2 banks and
recompiling should remove half of the bank-switching instructions
in your code, which may result in the savings you're looking for.

Further Reading
For a further understanding of memory issues in the PICmicro
devices, please consult:

 Application Note

4 AN-2 Understanding Changes in Salvo Code Size for Different PICmicro Devices

HI-TECH Software, PICC Lite ANSI C Compiler User's Guide,
2000.5

Microchip Corporation, PICmicro™ Mid-Range MCU Family
Reference Manua, 1997.6

1 Salvo\Freeware\Lib\HI-TECH\FPI4xx\main.prj, with changes to

salvocfg.h to ensure that the program is identical for all tested devices. All
Salvo variables are located in Bank 0.

2 Pre-v2.2 Salvo freeware libraries. The v2.2 and later Salvo libraries employ a
different nomenclature.

3 The growth in code size of the PIC16C77 application over that of the
PIC16C773 is primarily due to the former having 4 2K code pages, while the
latter has only 2.

4 PICC does this with explicit bsf and bcf instructions, respectively. Each
instruction occupies one instruction word in ROM and takes one instruction
cycle to complete.

5 Available at HI-TECH's web site http://www.htsoft.com.
6 Available in hardcopy (if you can find it), on CD-ROM and at Microchip's web

site http://www.microchip.com.

	Understanding Changes in Salvo Code Size for Different PICmicro Devices
	Introduction
	Same Program, Different ROM Requirements
	Why the Variation?
	The Role of the Compiler
	What Can I do?
	Further Reading

