

AN-20
Application Note

750 Naples Street • San Francisco, CA 94112 • (415) 584-6360 • http://www.pumpkininc.com

created by Andrew E. Kalman on Oct 5, 2002 updated on Jul 23, 2003
All trademarks mentioned herein are properties of their respective companies.

Building a Salvo Application with
ImageCraft's ICC430
Development Tools

Introduction
This Application Note explains how to use ImageCraft's
(http://www.imagecraft.com/) ICC430 Development Tools to
create a multitasking Salvo application for TI's
(http://www.ti.com/) MSP430 ultra-low-power microcontrollers.

We will show you how to build the Salvo application contained in
\salvo\ex\ex1\main.c for an MSP430F149 using ICC430 v6.02.
For more information on how to write a Salvo application, please
see the Salvo User Manual.

Before You Begin
If you have not already done so, install the ImageCraft ICC430
Embedded Tools. Familiarize yourself with the ICC430 IDE. You
will also need an MSP430 Flash Emulation Tool (FET) for
debugging. More information is available at
http://www.ti.com/sc/msp430.

Related Documents
The following Salvo documents should be used in conjunction
with this manual when building Salvo applications with
ImageCraft's ICC430 Development Tools:

Salvo User Manual
Salvo Compiler Reference Manual RM-ICC430

http://www.imagecraft.com/
http://www.ti.com/
http://www.ti.com/sc/msp430

 Application Note

2 AN-20 Building a Salvo Application with ImageCraft's ICC430 Development Tools

Creating and Configuring a New Project
Create a new ICC430 project under Project → New. Navigate to
your working directory (in this case we've chosen c:\temp) and
create a project named myex1.prj:

Figure 1: Creating the New Project

Click Save to continue. The ICC430 IDE will automatically save
the project whenever you close it.

In order to manage your project effectively, we recommend that
you create a set of folders for your project. They are:

Listings
Salvo Configuration File
Salvo Help Files
Salvo Libraries
Salvo Sources
Sources

For each folder,1 choose Add Folder… by right-clicking in the
Project window, enter the desired name under Folder Name and
click OK.

Figure 2: Creating a Group

When finished, your Project Manager window should look like
this:

 Application Note

AN-20 Building a Salvo Application with ImageCraft's ICC430 Development Tools

3

Figure 3: Project Manager Window with Folders

Now let's setup the project's options for Salvo's pathnames, etc.
Open the Compiler Options window by selecting Project →
Options� → Paths. Add the project's own include path and
\salvo\inc\,2 separated by semicolons:

Figure 4: ICC430 Settings – Project Include Paths

Next, define any symbols3 you may need for your project in the
Compiler Options window by selecting Compiler and entering
the symbols under Macro Define(s):

 Application Note

4 AN-20 Building a Salvo Application with ImageCraft's ICC430 Development Tools

Figure 5: ICC430 Options – Project Compiler Settings

Lastly, in the Compiler Options window under Target, select the
appropriate Device Configuration:

Figure 6: ICC430 Options – Project Target Settings

Click OK to finish setting your project's options.

 Application Note

AN-20 Building a Salvo Application with ImageCraft's ICC430 Development Tools

5

Adding your Source File(s) to the Project
Now it's time to add files to your project. In the Project Manager
window, select the Sources folder, right-click to choose Add
Files�, choose Files of type: Source Files (*.c, *.s, *.h),
navigate to your project's directory, select your main.c and click
Open. Your Add Files� window should look like this:

Figure 7: Add Files … Window

When finished, your Project Manager window should look like
this:

Figure 8: Project Manager Window with Project-Specific

Source Files

Adding Salvo-specific Files to the Project
Now it's time to add the Salvo files your project needs. Salvo
applications can be built by linking to precompiled Salvo libraries,
or with the Salvo source code files as nodes in your project.

Adding a Library
For a library build, a fully-featured Salvo freeware library for the
MSP430 for use with ICC430 is libsficc430-a.a.4 Select
Project → Options� → Target, and under Additional Lib. enter
sficc430-a:

 Application Note

6 AN-20 Building a Salvo Application with ImageCraft's ICC430 Development Tools

Figure 9: Adding the Library to the Project

Click OK when you are finished. You can find more information
on Salvo libraries in the Salvo User Manual and in the Salvo
Compiler Reference Manual RM-ICC430.

Adding Salvo's mem.c
Salvo library builds also require Salvo's mem.c source file as part
of each project. In the Project Manager window, select the Salvo
Sources folder, right-click to choose Add Files�, choose Files
of type: Source Files (*.c, *.s, *.h), navigate to \salvo\src,
select mem.c and click Open. Your Add Files� window should
look like this:

Figure 10: Add Files … Window

 Application Note

AN-20 Building a Salvo Application with ImageCraft's ICC430 Development Tools

7

The salvocfg.h Header File
You will also need a salvocfg.h file for this project. To use the
library selected in Figure 9, your salvocfg.h should contain only:

#define OSUSE_LIBRARY TRUE
#define OSLIBRARY_TYPE OSF
#define OSLIBRARY_CONFIG OSA

Listing 1: salvocfg.h for a Library Build

Create this file and save it in your project directory, e.g.
c:\temp\salvocfg.h. For convenience, add it to your project's
Salvo Configuration File folder:

Figure 11: Project Manager Window for Library Build

Proceed to Building the Project, below.

Adding Salvo Source Files
If you have a Salvo distribution that contains source files, you can
do a source code build instead of a library build. The application in
\salvo\ex\ex1\main.c contains calls to the following Salvo user
services:

OS_Delay() OSInit()
OS_WaitBinSem() OSSignalBinSem()
OSCreateBinSem() OSSched()
OSCreateTask() OSTimer()
OSEi()

You must add the Salvo source files that contain these user
services, as well as those that contain internal Salvo services, to
your project. The Reference chapter of the Salvo User Manual lists
the source file for each user service. Internal services are in other
Salvo source files. For this project, the complete list is:

binsem.c mem.c
delay.c porticc430.s
event.c qins.c
idle.c sched.c
init.c timer.c
inittask.c

 Application Note

8 AN-20 Building a Salvo Application with ImageCraft's ICC430 Development Tools

In the Project Manager window, select the Salvo Sources
folder, right-click to choose Add Files�, choose Files of type:
Source Files (*.c, *.s, *.h), navigate to the \salvo\src directory
and select5 the *.c files listed above. Your Add Files� window
should look like this:

Figure 12: Adding Salvo Source Files to the Project

Click Open when finished.

The salvocfg.h Header File
You will also need a salvocfg.h file for this project.
Configuration files for source code builds are quite different from
those for library builds (see Listing 1, above). For a source code
build, the salvocfg.h for this project contains only:

#define OSBYTES_OF_DELAYS 1
#define OSENABLE_IDLING_HOOK TRUE
#define OSENABLE_BINARY_SEMAPHORES TRUE
#define OSEVENTS 1
#define OSTASKS 3

Listing 2: salvocfg.h for a Source Code Build

Create this file and save it in your project directory, e.g.
c:\temp\salvocfg.h. For convenience, add it to your project's
Salvo Configuration File folder:

 Application Note

AN-20 Building a Salvo Application with ImageCraft's ICC430 Development Tools

9

Figure 13: Project Manager Window for a Source-Code

Build

Tip The advantage of placing the various project files in the
groups shown above is that you can quickly navigate to them and
open them for viewing, editing, etc.

Building the Project
For a successful compile, your project must also include a header
file (e.g. #include <msp430x14x.h>) for the particular chip you
are using. Normally, this is included in each of your source files
(e.g. main.c), or in a header file that's included in each of your
source files (e.g. main.h).

With everything in place, you can now build the project using
Project → Make Project or Project → Rebuild All. The IDE's
status window will reflect the ICC430 command lines:

 Application Note

10 AN-20 Building a Salvo Application with ImageCraft's ICC430 Development Tools

C:\ICC\BIN\imakew -f myex1.mak
 icc430 -c -IC:\ICC\include\ -Ic:\temp\ –Ic:\salvo\inc\ -e
-DSYSS -l -g -Wf-hwmult C:\salvo\src\binsem.c
 icc430 -c -IC:\ICC\include\ -Ic:\temp\ –Ic:\salvo\inc\ -e
-DSYSS -l -g -Wf-hwmult C:\salvo\src\delay.c
 icc430 -c -IC:\ICC\include\ -Ic:\temp\ –Ic:\salvo\inc\ -e
-DSYSS -l -g -Wf-hwmult C:\salvo\src\event.c
 icc430 -c -IC:\ICC\include\ -Ic:\temp\ –Ic:\salvo\inc\ -e
-DSYSS -l -g -Wf-hwmult C:\salvo\src\init.c
 icc430 -c -IC:\ICC\include\ -Ic:\temp\ –Ic:\salvo\inc\ -e
-DSYSS -l -g -Wf-hwmult C:\salvo\src\inittask.c
 icc430 -c -IC:\ICC\include\ -Ic:\temp\ –Ic:\salvo\inc\ -e
-DSYSS -l -g -Wf-hwmult C:\salvo\src\mem.c
 icc430 -c -IC:\ICC\include\ -Ic:\temp\ –Ic:\salvo\inc\ -e
-DSYSS -l -g -Wf-hwmult C:\salvo\src\porticc430.s
 icc430 -c -IC:\ICC\include\ -Ic:\temp\ –Ic:\salvo\inc\ -e
-DSYSS -l -g -Wf-hwmult C:\salvo\src\qins.c
 icc430 -c -IC:\ICC\include\ -Ic:\temp\ –Ic:\salvo\inc\ -e
-DSYSS -l -g -Wf-hwmult C:\salvo\src\sched.c
 icc430 -c -IC:\ICC\include\ -Ic:\temp\ –Ic:\salvo\inc\ -e
-DSYSS -l -g -Wf-hwmult C:\salvo\src\timer.c
 icc430 -c -IC:\ICC\include\ -Ic:\temp\ –Ic:\salvo\inc\ -e
-DSYSS -l -g -Wf-hwmult C:\temp\main.c
 icc430 -o myex1 -LC:\ICC\lib\ -g -blit:0x1000.0xFFDF
-bdata:0x200.0x0A00 -dram_end:0x0A00 -fintelhex @myex1.lk
-lsficc430-a
Done.

Listing 3: Build Results for A Successful Source-Code
Build

The map (*.mp) file located in the project's directory contains
address, symbol and other useful information:6

 Application Note

AN-20 Building a Salvo Application with ImageCraft's ICC430 Development Tools

11

Area Addr Size Decimal Bytes (Attributes)
-------------------------------- ---- ---- ------- ----- ------------
 text 1000 0798 = 1944. bytes (rel,con,rom)

 Addr Global Symbol
 ----- --------------------------------
 1000 __text_start
 1000 __start
 104E _exit
 1050 _Task1
 1070 _Task2
 109A _Task3
 10C2 _OSIdlingHook
 10C4 _main
 114A _Timer_A
 117C _OSDispatch
 1192 _OSCtxSw
 11BC _OSTimer
 11EC _OSSched
 1324 _OSInsPrioQ
 142C _OSCreateTask
 14D2 _OSInitPrioTask
 1512 _OSInit
 1548 _OSWaitEvent
 15D4 _OSDelay
 167C _OSCreateBinSem
 169E _OSWaitBinSem
 16E0 _OSSignalBinSem
 176C asgnblk
 1796 __MSP430Setup
 1798 __text_end

Area Addr Size Decimal Bytes (Attributes)
-------------------------------- ---- ---- ------- ----- ------------
 bss 0200 0030 = 48. bytes (rel,con,ram)

 Addr Global Symbol
 ----- --------------------------------
 0200 __bss_start
 0200 _OSframeP
 0202 _OSglStat
 0204 _OStimerTicks
 0208 _OSdelayQP
 020A _OSsigQoutP
 020C _OSsigQinP
 020E _OSecbArea
 0214 _OSeligQP
 0216 _OStcbArea
 022E _OScTcbP
 0230 __bss_end

Area Addr Size Decimal Bytes (Attributes)
-------------------------------- ---- ---- ------- ----- ------------
 vector 0000 10000 = 65536. bytes (abs,ovr,rom)

Files Linked [module(s)]

C:\ICC\lib\crt430.o [crt430.s]
mem.o [mem.c]
main.o [main.c]
<library> [porticc430.s, timer.s, sched.s, qins.s, inittask.s, init.s, event.s,
delay.s, binsem.s, asgnblk.s, setup.s]

User Global Definitions

ram_end = 0xa00

User Base Address Definitions

lit = 0x1000
data = 0x2000

Listing 4: Map File for a Source-Code Build

Note The ICC430 projects supplied in the Salvo for TI's MSP430
distributions contain additional help files in each project's Salvo
Help Files group.

Using the Browser
By selecting the Intel HEX w/DBG Debugging output format
(see Figure 5), ICC430 will build debug information for your
project that can be used by the IDE's Browser:

 Application Note

12 AN-20 Building a Salvo Application with ImageCraft's ICC430 Development Tools

Figure 14: Browsing at the Source-Code Level

By double-clicking in the Browser on the function of interest, the
source code that contains the function will be displayed in the
Editors window. This works with any source code (project- or
Salvo-specific), and also with the i-option Salvo libraries that
include debugging information.

Testing the Application
You can test and debug this application using the Flash Emulation
Tool. The NoICE 430 Remote Debugger
(http://www.noicedebugger.com) launches when you choose Tools
→ NoICE430 Debugger. The NoICE430 debugger supports
breakpoints, watch windows, mixed source/disassembly display,
etc.

Tip When using NoICE430, be sure to select Files of type:
ImageCraft DBG files when loading the application into your
target. This will ensure that debug info is available to the
debugger.

http://www.noicedebugger.com/

 Application Note

AN-20 Building a Salvo Application with ImageCraft's ICC430 Development Tools

13

Figure 15: Testing a Salvo Application in NoICE430

Tip When debugging with NoICE430, the project's map (*.mp)
file and listing (*.lst) files are very useful because they list the
addresses of functions and variables in ROM and RAM. This
information can be used in the monitor program to set breakpoints,
display memory, better understand trace results, etc.

Note ICC430 can create generate debugging info via the –g
command-line option. Only applications built from the Salvo
source code or a Salvo Pro library enable you to step through Salvo
services (e.g. OSCreateBinSem()) at the source code level when
using an external debugger. Regardless of how you build your
Salvo application, you can always step through your own C and
assembly code with ICC430's output.

Alternatively, you can download your project to the FET using
Tools → Flash Downloader, browsing for the hex file and then
clicking on Program FLASH. This will enable you to program
your target system and run your application, but no ICE-like
debugging facilities are provided.

 Application Note

14 AN-20 Building a Salvo Application with ImageCraft's ICC430 Development Tools

Figure 16: Programming via Flash Programmer

Troubleshooting

Cannot find and/or read include file(s)
If you fail to add \salvo\inc to the project's include paths (see
Figure 4) the compiler will generate an error like this one:

!E D:\salvo\src\event.c(30): Could not find
include file "salvo.h"

Figure 17: Compiler Error due to Missing \salvo\inc
Include Path

By adding \salvo\inc to the project's include path, you enable
the compiler to find the main Salvo header file salvo.h, as well as
other included Salvo header files.

If you fail to add the project's own directory to the project's
include paths (see Figure 4) the compiler will generate an error like
this one:

!E c:/salvo/inc/salvo.h(292):
D:\salvo\src\delay.c(27): Could not find
include file "salvocfg.h"

Figure 18: Compiler Error due to Missing Project Include
Path

By adding the project's own directory to the project's include path,
you enable the compiler to find the project-specific header file
salvocfg.h.

 Application Note

AN-20 Building a Salvo Application with ImageCraft's ICC430 Development Tools

15

Unable to Communicate with FET
Be sure to set7 the mode of your computer's parallel (LPT) port to
ECP (instead of bi-directional, SPP or EPP), or else NOICE430
and the FLASH Downloader are likely to fail.

Application Crashes After Changing Processor Type
Remember to #include the appropriate header file for your
MSP430 variant (see to Building the Project, above). While the
common SFR locations are consistent across the entire MSP430
family, the interrupt vectors are not. Therefore mainline code may
work correctly, but the application will crash if interrupt vectors
are not in the right locations.

Cannot Resolve Location of Salvo Source Files
The Salvo Pro libraries with embedded debug information (i-
option) reference the salvo source files in their default location,
\salvo\src. If you have placed these files in an alternate location
and you want to use debugging information, you can edit the
library files and change the pathnames that reference Salvo source
files. An automated method (e.g. a perl script) is recommended.

Example Projects
Example projects for the ICC430 Development Tools are found in
the \salvo\tut\tu1-6\syss directories. The include path for each
of these projects includes \salvo\tut\tu1\syss, and each project
defines the SYSS symbol.

Complete projects using Salvo freeware libraries are contained in
the project files \salvo\tut\tu1-6\syss\tu1-6lite.prj. These
projects also define the MAKE_WITH_FREE_LIB symbol.

Complete projects using Salvo standard libraries are contained in
the project files \salvo\tut\tu1-6\syss\tu1-6le.prj. These
projects also define the MAKE_WITH_STD_LIB symbol.

Complete projects using Salvo standard libraries with embedded
debugging information are contained in the project files
\salvo\tut\tu1-6\syss\tu1-6prolib.prj. These projects also
define the MAKE_WITH_STD_LIB symbol.

 Application Note

16 AN-20 Building a Salvo Application with ImageCraft's ICC430 Development Tools

Complete projects using Salvo source code are contained in the
project files \salvo\tut\tu1-6\syss\tu1-6pro.prj. These
projects also define the MAKE_WITH_SOURCE symbol.

1 Since folders cannot be deleted, you should rename the default Files,

Headers and Documents folders to Listings, Salvo Configuration
File and Salvo Help Files, respectively.

2 ICC430 also supports pathnames relative to the project's home directory.
Using relative pathnames is recommended, as it makes a project much more
portable.

3 This Salvo project supports a wide variety of targets and compilers. For use
with ICC430 Development Tools, it requires the SYST defined symbol, as well
as the symbols MAKE_WITH_FREE_LIB or MAKE_WITH_STD_LIB for library
builds. When you write your own projects, you may not require any symbols.

4 This Salvo Lite library contains all of Salvo's basic functionality. The
corresponding Salvo LE and Pro libraries are libslicc430-a.a and
libslicc430ia.a, respectively.

5 You can Ctrl-select multiple files at once.
6 We recommend that you add the project's map file to your project's Listings

group.
7 This is usually done in the computer's BIOS.

	Building a Salvo Application with ImageCraft's ICC430 Development Tools
	Introduction
	Before You Begin
	Related Documents
	Creating and Configuring a New Project
	Adding your Source File(s) to the Project
	Adding Salvo-specific Files to the Project
	Adding a Library
	Adding Salvo's mem.c
	The salvocfg.h Header File
	Adding Salvo Source Files
	The salvocfg.h Header File

	Building the Project
	Using the Browser
	Testing the Application
	Troubleshooting
	Cannot find and/or read include file(s)
	Unable to Communicate with FET
	Application Crashes After Changing Processor Type
	Cannot Resolve Location of Salvo Source Files

	Example Projects

