

AN-21
Application Note

750 Naples Street • San Francisco, CA 94112 • (415) 584-6360 • http://www.pumpkininc.com

created by Andrew E. Kalman on Jan 22, 2003 updated on Jul 23, 2003
All trademarks mentioned herein are properties of their respective companies.

Building a Salvo Application with
TI's Code Composer Studio
'C2000

Introduction
This Application Note explains how to use TI's
(http://www.ti.com/) Code Composer (CC) and Code Composer
Studio (CCS) Development Tools to create a multitasking Salvo
application for TI's TMS320C2000 DSPs.

We will show you how to build the Salvo application contained in
\salvo\ex\ex1\main.c for a TMS320C2812 using CCS 'C2000
v2.0. For more information on how to write a Salvo application,
please see the Salvo User Manual.

Note Since the two compilers and their IDEs are essentially
identical, Code Composer Studio will be used throughout this
manual to refer to both products. Where necessary, differences will
be identified.

Before You Begin
If you have not already done so, install CCS 'C2000. You will need
to run the CCS Setup program to properly set the System
Configuration.1 Familiarize yourself with CCS. More information
on TI's TMS320C2000 family of DSPs and the associated tools is
available at http://www.ti.com/.

Related Documents
The following Salvo documents should be used in conjunction
with this manual when building Salvo applications with TI's Code
Composer Studio Development Tools:

http://www.ti.com/
http://www.ti.com/

 Application Note

2 AN-21 Building a Salvo Application with TI's Code Composer Studio 'C2000

Salvo User Manual
Salvo Compiler Reference Manual RM-CCS2000

Creating and Configuring a New Project
Create a new CCS project under Project → New. Navigate to
your working directory (in this case we've chosen c:\temp) and
create a project named myex1.pjt:

Figure 1: Creating the New Project

Choose the appropriate Project Type and Target and click Finish
to continue. Your project window should look like this:

Figure 2: Project Window with Folders

Now let's setup the project's options for Salvo's pathnames, etc.
Access the project's compiler options by selecting Project →
Build Options� and the Compiler tab. Under Category select
Preprocessor and add the project's own include path and
\salvo\inc\ to Include Search Path. Also, define any symbols2
you may need for your project in Define Symbols. Use
semicolons to separate entries.

 Application Note

AN-21 Building a Salvo Application with TI's Code Composer Studio 'C2000

3

Figure 3: CCS 'C2000 Build Options – Include Search

Path and Define Symbols

If you wish to generate a map file, select the Linker tab, select
Basic under Category and enter the map file name in Map
Filename:

Figure 4: CCS 'C2000 Build Options – Map Filename

Click OK to finish setting your project's options.

 Application Note

4 AN-21 Building a Salvo Application with TI's Code Composer Studio 'C2000

Adding your Source File(s) to the Project
Now it's time to add files to your project. Select Project → Add
Files to Project, choose Files of type: C Source Files (*.c,
*.cc), navigate to your project's directory and select your main.c.
Your Add Files to Project window should look like this:

Figure 5: Add Files to Project Window

When finished, click Open, and your project window should look
like this after expanding the project's folders:

Figure 6: Project Manager Window with Project-Specific

Source Files

Adding Salvo-specific Files to the Project
Now it's time to add the Salvo files your project needs. Salvo
applications can be built by linking to precompiled Salvo libraries,
or with the Salvo source code files as nodes in your project.

 Application Note

AN-21 Building a Salvo Application with TI's Code Composer Studio 'C2000

5

Adding a Library
For a library build, a fully-featured Salvo freeware library for the
TMS320C2812 for use with CCS 'C2000 is sftic28xl-a.lib.3
Select Project → Add Files to Project, choose Files of type:
Object and Library Files (*.o*, *.l*), navigate to \salvo\lib and
select the library:

Figure 7: Adding the Library to the Project

Click Open when you are finished. You can find more information
on Salvo libraries in the Salvo User Manual and in the Salvo
Compiler Reference Manual RM-CCS2000.

Adding Salvo's mem.c
Salvo library builds also require Salvo's mem.c source file as part
of each project. Select Project → Add Files to Project, choose
Files of type: C Source Files (*.c, *.cc), navigate to
\salvo\src and select mem.c. Your Add Files to Project window
should look like this:

Figure 8: Add Files to Project Window

 Application Note

6 AN-21 Building a Salvo Application with TI's Code Composer Studio 'C2000

The salvocfg.h Header File
You will also need a salvocfg.h file for this project. To use the
library selected in Figure 7, your salvocfg.h should contain only:

#define OSUSE_LIBRARY TRUE
#define OSLIBRARY_TYPE OSF
#define OSLIBRARY_CONFIG OSA

Listing 1: salvocfg.h for a Library Build

Create this file and save it in your project directory, e.g.
c:\temp\salvocfg.h.

Proceed to Building the Project, below.

Adding Salvo Source Files
If you have a Salvo distribution that contains source files, you can
do a source code build instead of a library build. The application in
\salvo\ex\ex1\main.c contains calls to the following Salvo user
services:

OS_Delay() OSInit()
OS_WaitBinSem() OSSignalBinSem()
OSCreateBinSem() OSSched()
OSCreateTask() OSTimer()
OSEi()

You must add the Salvo source files that contain these user
services, as well as those that contain internal Salvo services, to
your project. The Reference chapter of the Salvo User Manual lists
the source file for each user service. Internal services are in other
Salvo source files. For this project, the complete list is:

binsem.c mem.c
delay.c porttic28x.asm
event.c qins.c
idle.c sched.c
init.c timer.c
inittask.c

Select Project → Add Files to Project, choose Files of type: C
Source Files (*.c, *.cc), navigate to \salvo\src and select4 the
*.c files listed above. Your Add Files to Project window should
look like this:

 Application Note

AN-21 Building a Salvo Application with TI's Code Composer Studio 'C2000

7

Figure 9: Adding Salvo Source Files to the Project

Click Open when finished. Repeat with Files of type: set to Asm
Source Files (*.a*, *.s*) and add the *.asm files listed above to
your project.

Your project window should now look like this:

Figure 10: Project Window for a Source Code Build

The salvocfg.h Header File
You will also need a salvocfg.h file for this project.
Configuration files for source code builds are quite different from
those for library builds (see Listing 1, above). For a source code
build, the salvocfg.h for this project contains only:

 Application Note

8 AN-21 Building a Salvo Application with TI's Code Composer Studio 'C2000

#define OSBYTES_OF_DELAYS 1
#define OSENABLE_IDLING_HOOK TRUE
#define OSENABLE_BINARY_SEMAPHORES TRUE
#define OSEVENTS 1
#define OSTASKS 3

Listing 2: salvocfg.h for a Source Code Build

Create this file and save it in your project directory, e.g.
c:\temp\salvocfg.h.

Building the Project
Each CCS 'C2000 project requires a linker command file. Add it to
your project now using Project → Add Files to Project, choose
Files of type: Linker Command File (*.cmd)), navigate to and
then select the linker command file you've created for your project:

Figure 11: Adding the Configuration File to the Project

You will also need to add a runtime library (*.lib) and perhaps
also interrupt vectors (*.asm) to your project.5 Add them now.
Once you project has all its files, the project window will look like
this:

Figure 12: Complete Project Window for a Library Build

 Application Note

AN-21 Building a Salvo Application with TI's Code Composer Studio 'C2000

9

Save your project via Project → Save.6 With everything in place,
you can now build the project with Project → Make or Project
→ Rebuild All. The IDE's build results window will reflect the
cl2000 command lines:

----------------------------- myex1.pjt - Debug -------------

"C:\PROGRAM FILES\TIEVAL2\CC\BIN\cl2000" -g -q
-fr"c:/temp/myex1/Debug" -i"c:/temp" -i"c:/salvo/inc"
-d"_DEBUG" -d"LARGE_MODEL" -d"SYSW" -d"MAKE_WITH_FREE_LIB" -ml
-v28 -@"myex1/Debug.lkf" "main.c"
[main.c]

"C:\PROGRAM FILES\TIEVAL2\CC\BIN\cl2000" -g -q
-fr"c:/temp/myex1/Debug" -i"c:/temp" -i"c:/salvo/inc" -
d"_DEBUG" -d"LARGE_MODEL" -d"SYSW" -d"MAKE_WITH_FREE_LIB" -ml
-v28 -@"myex1/Debug.lkf" "vectors.asm"
<vectors.asm>

"C:\PROGRAM FILES\TIEVAL2\CC\BIN\cl2000" -@"Debug.lkf"
<Linking>

Build Complete,
 0 Errors, 0 Warnings, 0 Remarks.

Listing 3: Build Results for A Successful Library Build

The map (*.map) file located in the project's directory contains
address, symbol and other useful information:

**
 TMS320C2000 COFF Linker PC Version 3.01
**
>> Linked Wed Jan 22 15:49:54 2003

OUTPUT FILE NAME: <./Debug/myex1.out>
ENTRY POINT SYMBOL: "_c_int00" address: 003d8019

MEMORY CONFIGURATION

 name origin length used attr fill
 ---------------------- -------- --------- -------- ---- --------
PAGE 0: PROG 003d8000 00020000 0000033c R
 BOOT 003ff000 00000fc0 00000000 R
 RESET 003fffc0 00000002 00000002 R
 VECTORS 003fffc2 0000003e 0000001e R

PAGE 1: M0RAM 00000000 00000400 00000000 RW
 M1RAM 00000400 00000400 00000400 RW
 L0L1RAM 00008000 00002000 00000000 RW
 H0RAM 003f8000 00002000 000000e3 RW

SECTION ALLOCATION MAP

 output attributes/
section page origin length input sections
-------- ---- ---------- ---------- ----------------
.reset 0 003fffc0 00000002
 003fffc0 00000002 rts2800_ml.lib : boot.obj (.reset)

vectors 0 003fffc2 0000001e
 003fffc2 0000001e vectors.obj (vectors)

.pinit 0 003d8000 00000000

.cinit 0 003d8000 00000019
 003d8000 0000000e rts2800_ml.lib : exit.obj (.cinit)
 003d800e 0000000a : _lock.obj (.cinit)
 003d8018 00000001 --HOLE-- [fill = 0000]

.text 0 003d8019 00000323
 003d8019 00000044 rts2800_ml.lib : boot.obj (.text)
 003d805d 00000000 sftic28xl-a.lib : mem.obj (.text)
 003d805d 0000004a rts2800_ml.lib : exit.obj (.text)
 003d80a7 00000009 : _lock.obj (.text)
 003d80b0 0000005c main.obj (.text)
 003d810c 00000014 vectors.obj (.text)
 003d8120 00000067 sftic28xl-a.lib : binsem.obj (.text)
 003d8187 0000002e : delay.obj (.text)
 003d81b5 0000001e : event.obj (.text)

 Application Note

10 AN-21 Building a Salvo Application with TI's Code Composer Studio 'C2000

 003d81d3 00000018 : init.obj (.text)
 003d81eb 00000043 : inittask.obj (.text)
 003d822e 0000003e : qins.obj (.text)
 003d826c 00000084 : sched.obj (.text)
 003d82f0 0000000e : timer.obj (.text)
 003d82fe 0000003d : porttic28x.obj (.text)
 003d833b 00000001 : idle.obj (.text)

.const 1 00008000 00000000 UNINITIALIZED

.bss 1 00008000 00000000 UNINITIALIZED
 00008000 00000000 rts2800_ml.lib : boot.obj (.bss)
 00008000 00000000 sftic28xl-a.lib : idle.obj (.bss)
 00008000 00000000 : porttic28x.obj (.bss)
 00008000 00000000 : timer.obj (.bss)
 00008000 00000000 : sched.obj (.bss)
 00008000 00000000 : qins.obj (.bss)
 00008000 00000000 : mem.obj (.bss)
 00008000 00000000 : inittask.obj (.bss)
 00008000 00000000 : init.obj (.bss)
 00008000 00000000 : event.obj (.bss)
 00008000 00000000 : delay.obj (.bss)
 00008000 00000000 : binsem.obj (.bss)
 00008000 00000000 vectors.obj (.bss)
 00008000 00000000 main.obj (.bss)
 00008000 00000000 rts2800_ml.lib : _lock.obj (.bss)
 00008000 00000000 : exit.obj (.bss)

.stack 1 00000400 00000400 UNINITIALIZED
 00000400 00000000 rts2800_ml.lib : boot.obj (.stack)

.sysmem 1 00000000 00000000 UNINITIALIZED

.ebss 1 003f8000 000000e3 UNINITIALIZED
 003f8000 00000080 rts2800_ml.lib : exit.obj (.ebss)
 003f8080 0000005e sftic28xl-a.lib : mem.obj (.ebss)
 003f80de 00000004 rts2800_ml.lib : _lock.obj (.ebss)
 003f80e2 00000001 main.obj (.ebss)

.econst 1 003f8000 00000000 UNINITIALIZED

.esysmem 1 003f8000 00000000 UNINITIALIZED

.data 1 00000000 00000000 UNINITIALIZED
 00000000 00000000 rts2800_ml.lib : boot.obj (.data)
 00000000 00000000 sftic28xl-a.lib : idle.obj (.data)
 00000000 00000000 : porttic28x.obj (.data)
 00000000 00000000 : timer.obj (.data)
 00000000 00000000 : sched.obj (.data)
 00000000 00000000 : qins.obj (.data)
 00000000 00000000 : mem.obj (.data)
 00000000 00000000 : inittask.obj (.data)
 00000000 00000000 : init.obj (.data)
 00000000 00000000 : event.obj (.data)
 00000000 00000000 : delay.obj (.data)
 00000000 00000000 : binsem.obj (.data)
 00000000 00000000 vectors.obj (.data)
 00000000 00000000 main.obj (.data)
 00000000 00000000 rts2800_ml.lib : _lock.obj (.data)
 00000000 00000000 : exit.obj (.data)

GLOBAL SYMBOLS: SORTED ALPHABETICALLY BY Name

[SNIP]

[65 symbols]

Listing 4: Map File for a Library Build

Note The CCS projects supplied in the Salvo for TI's
TMS320C2000 DSPs distributions contain additional help files
(*.txt.c) in each project's main directory.

Testing the Application
You can test and debug this application using the simulator or with
actual hardware. Load the program via File → Load Program.
The executable is normally a *.out file in the project's Debug
subdirectory:

 Application Note

AN-21 Building a Salvo Application with TI's Code Composer Studio 'C2000

11

Figure 13: Loading the Program into Memory

Once the program is loaded, you can view source code in the
integrated debugger, set breakpoints, run the profiler, watch
variables, select Mixed Mode for simultaneous C- and assembly-
language viewing, etc.

Figure 14: Testing a Salvo Application in the Simulator

Tip The project's map (*.map) file is very useful for debugging
because it lists the addresses of functions and variables in memory.
This information can be used in the monitor program to set
breakpoints, display memory, better understand trace results, etc.

Note cl2000 can create generate debugging info via the –g
command-line option. Only applications built from the Salvo
source code or a Salvo Pro library enable you to step through Salvo
services (e.g. OSCreateBinSem()) at the source code level when

 Application Note

12 AN-21 Building a Salvo Application with TI's Code Composer Studio 'C2000

using an external debugger. Regardless of how you build your
Salvo application, you can always step through your own C and
assembly code in CCS.

Troubleshooting

Cannot find and/or read include file(s)
If you fail to add \salvo\inc to the project's include paths (see
Figure 3) the compiler will generate an error like this one:

"main.c", line 15: fatal error: could not open
source file "salvo.h"
1 fatal error detected in the compilation of
"main.c".
Compilation terminated.

Figure 15: Compiler Error due to Missing \salvo\inc
Include Path

By adding \salvo\inc to the project's include path, you enable
the compiler to find the main Salvo header file salvo.h, as well as
other included Salvo header files.

If you fail to add the project's own directory to the project's
include paths (see Figure 3) the compiler will generate an error like
this one:

"c:/salvo/inc/salvo.h", line 320: fatal error:
could not open source file "salvocfg.h"
1 fatal error detected in the compilation of
"main.c".
Compilation terminated.

Figure 16: Compiler Error due to Missing Project Include
Path

By adding the project's own directory to the project's include path,
you enable the compiler to find the project-specific header file
salvocfg.h.

Application Crashes After Successful Build
CCS 'C2000 supports two memory models – small and large.
Ensure that when using the large model (the default), all libraries
in the project are compatible with the large model.

 Application Note

AN-21 Building a Salvo Application with TI's Code Composer Studio 'C2000

13

Cannot Resolve Location of Salvo Source Files
The Salvo Pro libraries with embedded debug information (i-
option) reference the salvo source files in their default location,
\salvo\src. If you have placed these files in an alternate location
and you want to use debugging information, you can help CCS
locate these files to enable source-level debugging. Note that this
"corrective information" is not stored when the project is saved.

Example Projects

Code Composer 'C2000
Example projects for CC 'C2000 are found in the
\salvo\tut\tu1-6\sysaa directories. The include path for each
of these projects includes \salvo\tut\tu1\sysaa, and each
project defines the SYSAA symbol.

Complete projects using Salvo freeware libraries are contained in
the project files \salvo\tut\tu1-6\sysaa\tu1-6lite.pjt.
These projects also define the MAKE_WITH_FREE_LIB symbol.

Complete projects using Salvo standard libraries are contained in
the project files \salvo\tut\tu1-6\sysaa\tu1-6le.pjt. These
projects also define the MAKE_WITH_STD_LIB symbol.

Complete projects using Salvo standard libraries with embedded
debugging information are contained in the project files
\salvo\tut\tu1-6\sysaa\tu1-6prolib.pjt. These projects also
define the MAKE_WITH_STD_LIB symbol.

Complete projects using Salvo source code are contained in the
project files \salvo\tut\tu1-6\sysaa\tu1-6pro.pjt. These
projects also define the MAKE_WITH_SOURCE symbol.

Code Composer Studio 'C2000
Example projects for CCS 'C2000 are found in the
\salvo\tut\tu1-6\sysw directories. The include path for each of
these projects includes \salvo\tut\tu1\sysw, and each project
defines the SYSW symbol.

Complete projects using Salvo freeware libraries are contained in
the project files \salvo\tut\tu1-6\sysw\tu1-6lite.pjt. These
projects also define the MAKE_WITH_FREE_LIB symbol.

 Application Note

14 AN-21 Building a Salvo Application with TI's Code Composer Studio 'C2000

Complete projects using Salvo standard libraries are contained in
the project files \salvo\tut\tu1-6\sysw\tu1-6le.pjt. These
projects also define the MAKE_WITH_STD_LIB symbol.

Complete projects using Salvo standard libraries with embedded
debugging information are contained in the project files
\salvo\tut\tu1-6\sysw\tu1-6prolib.pjt. These projects also
define the MAKE_WITH_STD_LIB symbol.

Complete projects using Salvo source code are contained in the
project files \salvo\tut\tu1-6\sysw\tu1-6pro.pjt. These
projects also define the MAKE_WITH_SOURCE symbol.

1 Salvo's tutorial and example projects for CCS 'C2000 use the F28xx Simulator

Tutorial System Configuration because it simulates both the CPU core and
some peripherals, including interrupts and timers.

2 This Salvo project supports a wide variety of targets and compilers. For use
with CCS 'C2000, it requires the SYSW defined symbol, as well as the symbols
MAKE_WITH_FREE_LIB or MAKE_WITH_STD_LIB for library builds. When
you write your own projects, you may not require any symbols.

3 This Salvo Lite library contains all of Salvo's basic functionality. The
corresponding Salvo LE and Pro libraries are sltic28xl-a.lib and
sltic28xlia.a, respectively.

4 You can Ctrl-select multiple files at once.
5 Since the project was created with the default options, including the large

memory model, then a large-memory-model runtime library must be used.
6 CCS supports multiple projects in the project window, with just one active

project. Project → Save Project will save only the active project.

	Building a Salvo Application with TI's Code Composer Studio 'C2000
	Introduction
	Before You Begin
	Related Documents
	Creating and Configuring a New Project
	Adding your Source File(s) to the Project
	Adding Salvo-specific Files to the Project
	Adding a Library
	Adding Salvo's mem.c
	The salvocfg.h Header File
	Adding Salvo Source Files
	The salvocfg.h Header File

	Building the Project
	Testing the Application
	Troubleshooting
	Cannot find and/or read include file(s)
	Application Crashes After Successful Build
	Cannot Resolve Location of Salvo Source Files

	Example Projects
	Code Composer 'C2000
	Code Composer Studio 'C2000

