

AN-22
Application Note

750 Naples Street • San Francisco, CA 94112 • (415) 584-6360 • http://www.pumpkininc.com

created by Andrew E. Kalman on Feb 13, 2003 updated on Feb 13, 2003
All trademarks mentioned herein are properties of their respective companies.

General Instructions for
Configuring Salvo Projects

Introduction
Each Salvo distribution is accompanied by Application Notes that
explain in detail how to create working Salvo applications with the
development tools that Salvo supports for a given target.

This Application Note is intended to aid users in configuring
development tools — especially Integrated Development
Environments (IDEs) — that are not yet formally certified for use
with Salvo.

Before You Begin
This Application Note assumes that Salvo is installed in its default
location (c:\salvo). Other locations are permitted, but may
require changes to the instructions below.

Furthermore, it assumes that you have organized your work on a
project basis, either implicitly (in the case where the development
tools are project-based) or explicitly (e.g. via a Makefile).

You will need to refer to the documentation for your development
tools in order to implement the items below. In many cases, IDEs
will already have support for these items. If not, you may have to
use command-line arguments to the various toolset components
(e.g. compiler, linker, etc.).

 Application Note

2 AN-22 General Instructions for Configuring Salvo Projects

Required Items

Additional Include Paths
Every file that uses Salvo's API must include the Salvo header file,
e.g.:

#include "salvo.h"

This applies to all of Salvo's source files, as well as any user files
that reference the Salvo API. Including the Salvo header file
salvo.h will cause a variety of additional Salvo header files – as
well as the Salvo configuration file – to be included in the source
file. You must take steps to ensure that the compiler can find these
header files. This is usually accomplished either through the IDE
or explicitly as command-line arguments to the compiler.

Salvo Header Files
All of Salvo's header files are located in c:\salvo\inc. Therefore
every source file (*.c)1 must have c:\salvo\inc specified as an
additional include path.

Tip If your development tools support it, you can usually apply
this additional include path to all of your source files. For example,
some IDEs allow you to specify additional include paths project-
wide.

Salvo Configuration File
We recommend that you place your project-specific Salvo
configuration file salvocfg.h in the same directory as your own
source files (and project files, if using IDE-based tools). Some
development tools will automatically search this directory (because
it's where the project file resides). Others will not.

You must ensure that the compiler can find your project's
salvocfg.h file. If you get build errors saying that salvocfg.h
cannot be found, then you will have to explicitly add an
appropriate additional include path to every source file.

Salvo Source Files
Occasionally, Salvo Pro users may wish to include Salvo source
files in other files instead of linking to Salvo libraries or Salvo

 Application Note

AN-22 General Instructions for Configuring Salvo Projects

3

object files. When you do this, you must specify c:\salvo\src as
an additional include path for any file that includes a Salvo source
file, e.g. via:

#include "timer.c"

Building on Pre-existing Salvo Projects
Each Salvo distribution comes with ready-to-build tutorial and
example projects. Many Salvo beginners will start with these
projects and develop them into their own. To build them
successfully with tools that are not yet certified will require a few,
non-obvious extra steps.

Defining the Project's SYS Symbol
Each project in a Salvo distribution is built for a particular
development tool and target. In order to build these projects
successfully, a compiler- and target-specific symbol must be
defined for each preexisting Salvo project source (*.c) file. The
SYS symbol codes (e.g. SYSF, for the HI-TECH PICC-18 compiler)
are listed in the Salvo User Manual. Their use is limited to
compiler- and implementation-specific issues (e.g. the declaration
of interrupt service routines) in project source files (e.g. main.c,
isr.c).2

If your unsupported tool is an IDE, but the compiler you are using
is certified for use with Salvo, then refer to the User Manual and
define the appropriate SYS symbol for every project source file.

If your unsupported tool is a compiler, then you must review the
use of the SYS symbol in the project's source files. If your
compiler's syntax matches another one exactly, defining the
symbol for that compiler may suffice. Otherwise you will have to
create additional source code to implement the function(s) that the
defined symbols enable in the project's source code.

Tip Some development tools will allow you to simply define a
symbol without specifying its value. Others require that you assign
a defined symbol a value. When in doubt, assign the defined
symbol the value of 1.

In any case, there is no need to define SYS symbols for Salvo
source files like c:\salvo\src\mem.c.

 Application Note

4 AN-22 General Instructions for Configuring Salvo Projects

Symbols for Use with the Project's salvocfg.h
The following symbols are used in Salvo tutorial and example
projects to conditionally control compilation of the salvocfg.h
header file:

MAKE_WITH_FREE_LIB Salvo Lite library build
MAKE_WITH_TINY_LIB Salvo tiny library build
MAKE_WITH_SE_LIB Salvo SE library build
MAKE_WITH_STD_LIB Salvo LE, Pro library build
MAKE_WITH_SOURCE Salvo Pro source-code build

If you are using the project's salvocfg.h, you must define one of
these symbols3 for each preexisting Salvo project source (*.c) file,
e.g. a project's main.c. These symbols do not need to be defined
for Salvo source files (e.g. c:\salvo\src\mem.c).

If you create your own salvocfg.h that does not have these
symbols in it, then there is no need to define any of these symbols.

Setting Include Paths
Salvo tutorial and example projects often have their salvocfg.h
header file and project file in a subdirectory of that where the main
project source files (e.g. main.c, isr.c) reside. Therefore you may
need to add additional include paths to ensure that the compiler
can find all of the related files. Depending on the tools, this may
require additional include paths to the main directory, or to the
subdirectory, or both.

External Files
Salvo tutorial and example projects sometimes use files that are not
located in the project's directory or subdirectory. If you cannot
locate a particular function that is called from one of the project's
source files, check for it in the project source files of other, closely
related projects.

For example, some files in c:salvo\tut\tu1 and its
subdirectories are used in tutorials tu2-tu6.

 Application Note

AN-22 General Instructions for Configuring Salvo Projects

5

Optional Items

Group / Folder Names
We recommend that when creating a new project, you create new
Groups / Folders with the following self-explanatory names:

Listings for map files, etc.
Salvo Configuration File for salvocfg.h
Salvo Help Files for abstracts
Salvo Libraries for Salvo libraries
Salvo Sources for Salvo source files

and place the corresponding Salvo files within them.

Additional Issues

Absolute / Relative Pathnames
Support for relative pathnames varies among toolsets. Some do not
support them at all. Some support them fully with the implicit
concept of a "current project directory as home". Others support
paths relative to tool-specific environment variables (e.g.
$PROJ_DIR$, $TOOLS_DIR$).

Wherever possible, we recommend that you use relative pathnames
(e.g. ..\mydir) in include paths to enhance portability.

Drive Letters
The need for drive letters (e.g. c:, d:, etc.) in paths varies among
toolsets.

Wherever possible, we recommend that you avoid drive letters
(e.g. use \salvo\inc instead of c:\salvo\inc) in include paths to
enhance portability.

 Application Note

6 AN-22 General Instructions for Configuring Salvo Projects

Caveats

The PATH Environment Variable
We do not recommend that you add any paths to Salvo's directories
to your system's PATH environment variable. Keep the references to
Salvo's directories local to your projects.

Conclusion
Successfully building Salvo projects with as-yet-unsupported tools
generally requires just the addition of include paths to the source
files of a project. Additional symbols must be defined if the Salvo
tutorial and example projects are to be built successfully.

1 It is generally unnecessary to add a Salvo include path to Salvo assembly files.
2 Please note the distinction between project source files and Salvo source files.

Salvo source files are located in c:\salvo\src. Project source files may be part of a
Salvo installation, but they are located elsewhere and are not part of the core
Salvo source code.

3 Which one you use depends on the kind of Salvo distribution you have.

	General Instructions for Configuring Salvo Projects
	Introduction
	Before You Begin
	Required Items
	Additional Include Paths
	Salvo Header Files
	Salvo Configuration File
	Salvo Source Files

	Building on Pre-existing Salvo Projects
	Defining the Project's SYS Symbol
	Symbols for Use with the Project's salvocfg.h
	Setting Include Paths
	External Files

	Optional Items
	Group / Folder Names

	Additional Issues
	Absolute / Relative Pathnames
	Drive Letters

	Caveats
	The PATH Environment Variable

	Conclusion

