

AN-24
Application Note

750 Naples Street • San Francisco, CA 94112 • (415) 584-6360 • http://www.pumpkininc.com

created by Andrew E. Kalman on Apr 14, 2003 updated on Jul 23, 2003
All trademarks mentioned herein are properties of their respective companies.

Building a Salvo Application with
ImageCraft's ICCAVR
Development Tools

Introduction
This Application Note explains how to use ImageCraft's
(http://www.imagecraft.com/) ICCAVR Development Tools to
create a multitasking Salvo application for Atmel's
(http://www.atmel.com/) AVR and MegaAVR MCUs.

We will show you how to build the Salvo application contained in
\salvo\ex\ex1\main.c for an AT90S8515 using ICCAVR v6.28c
and AVRStudio® v4.06. For more information on how to write a
Salvo application, please see the Salvo User Manual.

Before You Begin
If you have not already done so, install the ImageCraft ICCAVR
Embedded Tools. Familiarize yourself with the ICCAVR IDE.

Related Documents
The following Salvo documents should be used in conjunction
with this manual when building Salvo applications with
ImageCraft's ICCAVR Development Tools:

Salvo User Manual
Salvo Compiler Reference Manual RM-ICCAVR

Creating and Configuring a New Project
Create a new ICCAVR project under Project → New. Navigate to
your working directory (in this case we've chosen c:\temp) and
create a project named myex1.prj:

http://www.imagecraft.com/
http://www.atmel.com/

 Application Note

2 AN-24 Building a Salvo Application with ImageCraft's ICCAVR Development Tools

Figure 1: Creating the New Project

Click Save to continue. The ICCAVR IDE will automatically save
the project whenever you close it.

In order to manage your project effectively, we recommend that
you create a set of folders for your project. They are:

Listings
Salvo Configuration File
Salvo Help Files
Salvo Libraries
Salvo Source Files
Sources

For each folder,1 choose Add Folder… by right-clicking in the
Project window, enter the desired name under Folder Name and
click OK.

Figure 2: Creating a Group

When finished, your Project Manager window should look like
this:

Figure 3: Project Manager Window with Folders

 Application Note

AN-24 Building a Salvo Application with ImageCraft's ICCAVR Development Tools

3

Now let's setup the project's options for Salvo's pathnames, etc.
Open the Compiler Options window by selecting Project →
Options� → Paths. Add the project's own include path and
\salvo\inc\,2 separated by semicolons:

Figure 4: ICCAVR Settings – Project Include Paths

Next, define any symbols3 you may need for your project in the
Compiler Options window by selecting Compiler and entering
the symbols under Macro Define(s):

Figure 5: ICCAVR Options – Project Compiler Settings

 Application Note

4 AN-24 Building a Salvo Application with ImageCraft's ICCAVR Development Tools

Be sure to select the COFF format that's appropriate for your
version of AVRStudio as shown in Figure 5. If you have ICCAVR
Professional, you can select Optimizations → Enable Code
Compression.

Lastly, in the Compiler Options window under Target, select the
appropriate Device Configuration:

Figure 6: ICCAVR Options – Project Target Settings

Depending on the complexity of your application, you may need to
increase the Return Stack Size under Advanced. You can select
Do NOT use R20.R23 or leave it unselected – Salvo is
compatible with both settings.

Click OK to finish setting your project's options.

Adding your Source File(s) to the Project
Now it's time to add files to your project. In the Project Manager
window, select the Sources folder, right-click to choose Add
Files�, choose Files of type: Source Files (*.c, *.s, *.h),
navigate to your project's directory, select your main.c and click
Open. Your Add Files� window should look like this:

 Application Note

AN-24 Building a Salvo Application with ImageCraft's ICCAVR Development Tools

5

Figure 7: Project Files Window

When finished, your Project Manager window should look like
this:

Figure 8: Project Manager Window with Project-Specific

Source Files

Adding Salvo-specific Files to the Project
Now it's time to add the Salvo files your project needs. Salvo
applications can be built by linking to precompiled Salvo libraries,
or with the Salvo source code files as nodes in your project.

Adding a Library
For a library build, a fully-featured Salvo freeware library for the
AT90S8515 for use with ICCAVR is libsficcavr-a.a.4 Select
Project → Options� → Target, and under Additional Lib. enter
sficcavr-a:

 Application Note

6 AN-24 Building a Salvo Application with ImageCraft's ICCAVR Development Tools

Figure 9: Adding the Library to the Project

Click OK when you are finished. You can find more information
on Salvo libraries in the Salvo User Manual and in the Salvo
Compiler Reference Manual RM-ICCAVR.

Adding Salvo's mem.c
Salvo library builds also require Salvo's mem.c source file as part
of each project. In the Project Manager window, select the Salvo
Sources folder, right-click to choose Add Files�, choose Files
of type: Source Files (*.c, *.s, *.h), navigate to \salvo\src,
select mem.c and click Open. Your Add Files� window should
look like this:

Figure 10: Add Files … Window

 Application Note

AN-24 Building a Salvo Application with ImageCraft's ICCAVR Development Tools

7

The salvocfg.h Header File
You will also need a salvocfg.h file for this project. To use the
library selected in Figure 9, your salvocfg.h should contain only:

#define OSUSE_LIBRARY TRUE
#define OSLIBRARY_TYPE OSF
#define OSLIBRARY_CONFIG OSA

Listing 1: salvocfg.h for a Library Build

Create this file and save it in your project directory, e.g.
c:\temp\salvocfg.h. For convenience, add it to your project's
Salvo Configuration File folder:

Figure 11: Project Manager Window for Library Build

Proceed to Building the Project, below.

Adding Salvo Source Files
If you have a Salvo distribution that contains source files, you can
do a source code build instead of a library build. The application in
\salvo\ex\ex1\main.c contains calls to the following Salvo user
services:

OS_Delay() OSInit()
OS_WaitBinSem() OSSignalBinSem()
OSCreateBinSem() OSSched()
OSCreateTask() OSTimer()
OSEi()

You must add the Salvo source files that contain these user
services, as well as those that contain internal Salvo services, to
your project. The Reference chapter of the Salvo User Manual lists
the source file for each user service. Internal services are in other
Salvo source files. For this project, the complete list is:

binsem.c mem.c
delay.c porticcavr.s
event.c qins.c
idle.c sched.c
init.c timer.c
inittask.c

 Application Note

8 AN-24 Building a Salvo Application with ImageCraft's ICCAVR Development Tools

In the Project Manager window, select the Salvo Sources
folder, right-click to choose Add Files�, choose Files of type:
Source Files (*.c, *.s, *.h), navigate to the \salvo\src directory
and select5 the *.c files listed above. Your Add Files� window
should look like this:

Figure 12: Adding Salvo Source Files to the Project

Click Open when finished.

The salvocfg.h Header File
You will also need a salvocfg.h file for this project.
Configuration files for source code builds are quite different from
those for library builds (see Listing 1, above). For a source code
build, the salvocfg.h for this project contains only:

#define OSBYTES_OF_DELAYS 1
#define OSENABLE_IDLING_HOOK TRUE
#define OSENABLE_BINARY_SEMAPHORES TRUE
#define OSEVENTS 1
#define OSTASKS 3

Listing 2: salvocfg.h for a Source Code Build

Create this file and save it in your project directory, e.g.
c:\temp\salvocfg.h. For convenience, add it to your project's
Salvo Configuration File folder:

 Application Note

AN-24 Building a Salvo Application with ImageCraft's ICCAVR Development Tools

9

Figure 13: Complete Project Manager Window for a

Source-Code Build

Tip The advantage of placing the various project files in the
groups shown above is that you can quickly navigate to them and
open them for viewing, editing, etc.

Building the Project
For a successful compile, your project must also include a header
file (e.g. #include <io8515v.h>) for the particular chip you are
using. Normally, this is included in each of your source files (e.g.
main.c), or in a header file that's included in each of your source
files (e.g. main.h).

With everything in place, you can now build the project using
Project → Make Project or Project → Rebuild All. The IDE's
status window will reflect the ICCAVR command lines:

 Application Note

10 AN-24 Building a Salvo Application with ImageCraft's ICCAVR Development Tools

C:\ICC\BIN\imakew -f myex1.mak
 iccavr -c -IC:\ICC\include\ -Ic:\temp\ -Ic:\salvo\inc\ -e
-DSYSV -l -g -Wa-W -Wf-r20_23 C:\salvo\src\binsem.c
 iccavr -c -IC:\ICC\include\ -Ic:\temp\ -Ic:\salvo\inc\ -e
-DSYSV -l -g -Wa-W -Wf-r20_23 C:\salvo\src\delay.c
 iccavr -c -IC:\ICC\include\ -Ic:\temp\ -Ic:\salvo\inc\ -e
-DSYSV -l -g -Wa-W -Wf-r20_23 C:\salvo\src\event.c
 iccavr -c -IC:\ICC\include\ -Ic:\temp\ -Ic:\salvo\inc\ -e
-DSYSV -l -g -Wa-W -Wf-r20_23 C:\salvo\src\init.c
 iccavr -c -IC:\ICC\include\ -Ic:\temp\ -Ic:\salvo\inc\ -e
-DSYSV -l -g -Wa-W -Wf-r20_23 C:\salvo\src\idle.c
 iccavr -c -IC:\ICC\include\ -Ic:\temp\ -Ic:\salvo\inc\ -e
-DSYSV -l -g -Wa-W -Wf-r20_23 C:\salvo\src\inittask.c
 iccavr -c -IC:\ICC\include\ -Ic:\temp\ -Ic:\salvo\inc\ -e
-DSYSV -l -g -Wa-W -Wf-r20_23 C:\salvo\src\mem.c
 iccavr -c -IC:\ICC\include\ -Ic:\temp\ -Ic:\salvo\inc\ -e
-DSYSV -l -g -Wa-W -Wf-r20_23 -Wa-g C:\salvo\src\porticcavr.s
 iccavr -c -IC:\ICC\include\ -Ic:\temp\ -Ic:\salvo\inc\ -e
-DSYSV -l -g -Wa-W -Wf-r20_23 C:\salvo\src\qins.c
 iccavr -c -IC:\ICC\include\ -Ic:\temp\ -Ic:\salvo\inc\ -e
-DSYSV -l -g -Wa-W -Wf-r20_23 C:\salvo\src\sched.c
 iccavr -c -IC:\ICC\include\ -Ic:\temp\ -Ic:\salvo\inc\ -e
-DSYSV -l -g -Wa-W -Wf-r20_23 C:\salvo\src\timer.c
 iccavr -c -IC:\ICC\include\ -Ic:\temp\ -Ic:\salvo\inc\ -e
-DSYSV -l -g -Wa-W -Wf-r20_23 C:\temp\main.c
 iccavr -o myex1 -LC:\ICC\lib\ -g -Wl-W
-bfunc_lit:0x1a.0x2000 -dram_end:0x25f -bdata:0x60.0x25f
-dhwstk_size:16 -beeprom:1.512 -fihx_coff -S2 @myex1.lk
-lsficcavr-a -lcavrgr
Device 22% full.
Done.

Listing 3: Build Results for A Successful Source-Code
Build

The map (*.mp) file located in the project's directory contains
address, symbol and other useful information:6

Area Addr Size Decimal Bytes (Attributes)
-------------------------------- ---- ---- ------- ----- ------------
 func_lit 001A 000C = 12. bytes (rel,con,rom)

 Addr Global Symbol
 ----- --------------------------------
 001A __func_lit_start
 0026 __func_lit_end

Area Addr Size Decimal Bytes (Attributes)
-------------------------------- ---- ---- ------- ----- ------------
 text 0026 070E = 1806. bytes (rel,con,rom)

 Addr Global Symbol
 ----- --------------------------------
 0013 __start
 0013 __text_start
 0032 _exit
 0033 _OSCreateBinSem
 0047 _OSWaitBinSem
 0063 _OSSignalBinSem
 00B5 _OSDelay
 00D7 _OSWaitEvent
 0110 _OSInit
 0129 _OSCreateTask
 015C _OSInitPrioTask
 0171 _OSDispatch
 0182 _OSCtxSw
 01A0 _OSInsPrioQ
 022B _OSSched
 02EA _OSTimer
 02F6 _Task1
 02FF _Task1a
 0301 _Task2
 0305 _Task2a
 0310 _Task3
 0315 _Task3a
 031E _main
 034B _IntVector
 034F pop_gset3x
 0350 popx
 035B pop_gset4x
 035D push_gset3x
 0360 push_gset4x
 0363 xicall

 Application Note

AN-24 Building a Salvo Application with ImageCraft's ICCAVR Development Tools

11

 036C push_lset
 0383 pop_lset
 039A __text_end

Area Addr Size Decimal Bytes (Attributes)
-------------------------------- ---- ---- ------- ----- ------------
 vector 0000 000A = 10. bytes (abs,ovr,rom)

Area Addr Size Decimal Bytes (Attributes)
-------------------------------- ---- ---- ------- ----- ------------
 salvoram 0060 0027 = 39. bytes (rel,con,ram)

 Addr Global Symbol
 ----- --------------------------------
 0060 _OScTcbP
 0062 _OStcbArea
 0077 _OSeligQP
 0079 _OSecbArea
 007E _OSsigQinP
 0080 _OSsigQoutP
 0082 _OSdelayQP
 0084 _OSlostTicks
 0085 _OSframeP
 0087 __salvoram_end

Files Linked [module(s)]

C:\ICC\lib\crtAVR.o [crtavr.s]
binsem.o [binsem.c]
delay.o [delay.c]
event.o [event.c]
idle.o [idle.c]
init.o [init.c]
inittask.o [inittask.c]
mem.o [mem.c]
porticcavr.o [porticcavr.s]
qins.o [qins.c]
sched.o [sched.c]
timer.o [timer.c]
main.o [main.c]
<library> [gpop3x.s, gpop4x.s, gpush3x.s, gpush4x.s, icall.s, lpush.s]

User Global Definitions

ram_end = 0x25f
hwstk_size = 0x10

User Base Address Definitions

func_lit = 0x1a
data = 0x60
eeprom:1.512

Listing 4: Map File for a Source-Code Build

Note The projects supplied in the Salvo for Atmel AVR and
MegaAVR distributions contain additional help files in each
project's Salvo Help Files group.

Using the Browser
By selecting the COFF/HEX output format (see Figure 5),
ICCAVR will build debug information for your project that can be
used by the IDE's Browser:

 Application Note

12 AN-24 Building a Salvo Application with ImageCraft's ICCAVR Development Tools

Figure 14: Browsing at the Source-Code Level

By double-clicking in the Browser on the function of interest, the
source code that contains the function will be displayed in the
Editors window. This works with any source code (project- or
Salvo-specific), and also with the i-option Salvo libraries that
include debugging information.

Testing the Application

AVRStudio Simulator
You can test and debug this application using the AVRStudio
simulator. Launch AVRStudio, then select File → Open File�,
navigate to your working directory, select the COFF output file
myex1.cof, and click on Open.

 Application Note

AN-24 Building a Salvo Application with ImageCraft's ICCAVR Development Tools

13

Figure 15: Opening the COFF File

You will then be asked to select a debug platform and device:

Figure 16: Selecting the Debug Platform and Device

After you've selected the appropriate device, click on Finish.
AVRStudio will configure and load the simulator with your Salvo
application.

 Application Note

14 AN-24 Building a Salvo Application with ImageCraft's ICCAVR Development Tools

Figure 17: Running Your Application in the AVRStudio

Simulator

Salvo applications are fully functional in the AVRStudio
simulator. You can set breakpoints at any place in your application,
watch variables, count instruction cycles, override register flags,
etc.

Tip When debugging with the AVRStudio simulator, the project's
map (*.mp) file and listing (*.lst) files are very useful because
they list the addresses of functions and variables in ROM and
RAM. This information can be used in the monitor program to set
breakpoints, display memory, better understand trace results, etc.

Note ICCAVR can create generate debugging info via the –g
command-line option. Only applications built from the Salvo
source code or a Salvo Pro library enable you to step through Salvo
services (e.g. OSCreateBinSem()) at the source code level when
using an external debugger. Regardless of how you build your
Salvo application, you can always step through your own C and
assembly code with ICCAVR's output.

STK500 Flash Microcontroller Starter Kit
Alternatively, you can download your project to the STK500 using
Tools → STK500/� → STK500/�, Select Program → Flash
→ Use Current Simulator/Emulator FLASH Memory and click
on Program.

 Application Note

AN-24 Building a Salvo Application with ImageCraft's ICCAVR Development Tools

15

Figure 18: Downloading the Application to STK500 in

AVRstudio

AVRStudio will first program the STK500's FLASH, then verify
it, and finally leave the programming mode, enabling the Salvo
application to run on the STK500.

Troubleshooting

Cannot find and/or read include file(s)
If you fail to add \salvo\inc to the project's include paths (see
Figure 4) the compiler will generate an error like this one:

!E D:\salvo\src\event.c(30): Could not find
include file "salvo.h"

Figure 19: Compiler Error due to Missing \salvo\inc
Include Path

By adding \salvo\inc to the project's include path, you enable
the compiler to find the main Salvo header file salvo.h, as well as
other included Salvo header files.

If you fail to add the project's own directory to the project's
include paths (see Figure 4) the compiler will generate an error like
this one:

!E c:/salvo/inc/salvo.h(292):
D:\salvo\src\delay.c(27): Could not find
include file "salvocfg.h"

 Application Note

16 AN-24 Building a Salvo Application with ImageCraft's ICCAVR Development Tools

Figure 20: Compiler Error due to Missing Project Include
Path

By adding the project's own directory to the project's include path,
you enable the compiler to find the project-specific header file
salvocfg.h.

Odd Behavior After Changing Processor Type
Whenever you select or change the processor type in ICCAVR,
you must ensure that you've made the corresponding changes in
AVRStudio. Additionally, your Salvo build configuration must be
appropriate for the AVR or MegaAVR target you've chosen.

Cannot Resolve Location of Salvo Source Files
The Salvo Pro libraries with embedded debug information (i-
option) reference the salvo source files in their default location,
\salvo\src. If you have placed these files in an alternate location
and you want to use debugging information, you can edit the
library files and change the pathnames that reference Salvo source
files. An automated method (e.g. a perl script) is recommended.

Example Projects
Example projects for the ICCAVR Development Tools are found
in the \salvo\tut\tu1-6\sysv directories. The include path for
each of these projects includes \salvo\tut\tu1\sysv, and each
project defines the SYSV symbol.

Complete projects using Salvo freeware libraries are contained in
the project files \salvo\tut\tu1-6\sysv\tu1-6lite.prj. These
projects also define the MAKE_WITH_FREE_LIB symbol.

Complete projects using Salvo standard libraries are contained in
the project files \salvo\tut\tu1-6\sysv\tu1-6le.prj. These
projects also define the MAKE_WITH_STD_LIB symbol.

Complete projects using Salvo standard libraries with embedded
debugging information are contained in the project files
\salvo\tut\tu1-6\sysv\tu1-6prolib.prj. These projects also
define the MAKE_WITH_STD_LIB symbol.

Complete projects using Salvo source code are contained in the
project files \salvo\tut\tu1-6\sysv\tu1-6pro.prj. These
projects also define the MAKE_WITH_SOURCE symbol.

 Application Note

AN-24 Building a Salvo Application with ImageCraft's ICCAVR Development Tools

17

1 Since folders cannot be deleted, you should rename the default Files,

Headers and Documents folders to Listings, Salvo Configuration
File and Salvo Help Files, respectively.

2 ICCAVR also supports pathnames relative to the project's home directory.
Using relative pathnames is recommended, as it makes a project much more
portable.

3 This Salvo project supports a wide variety of targets and compilers. For use
with ICCAVR Development Tools, it requires the SYSV defined symbol, as
well as the symbols MAKE_WITH_???_LIB for library builds. When you write
your own projects, you may not require any symbols.

4 This Salvo Lite library contains all of Salvo's basic functionality. The
corresponding Salvo LE and Pro libraries are libsliccavr-a.a and
libsliccavria.a, respectively.

5 You can Ctrl-select multiple files at once.
6 We recommend that you add the project's map file to your project's Listings

group.

	Building a Salvo Application with ImageCraft's ICCAVR Development Tools
	Introduction
	Before You Begin
	Related Documents
	Creating and Configuring a New Project
	Adding your Source File(s) to the Project
	Adding Salvo-specific Files to the Project
	Adding a Library
	Adding Salvo's mem.c
	The salvocfg.h Header File
	Adding Salvo Source Files
	The salvocfg.h Header File

	Building the Project
	Using the Browser
	Testing the Application
	AVRStudio Simulator
	STK500 Flash Microcontroller Starter Kit

	Troubleshooting
	Cannot find and/or read include file(s)
	Odd Behavior After Changing Processor Type
	Cannot Resolve Location of Salvo Source Files

	Example Projects

