

AN-25
Application Note

750 Naples Street � San Francisco, CA 94112 � (415) 584-6360 � http://www.pumpkininc.com

created by Andrew E. Kalman on Jul 22, 2003 updated on Jan 6, 2004
All trademarks mentioned herein are properties of their respective companies.

Building a Salvo Application with
Microchip's MPLAB-C18 C
Compiler and MPLAB IDE v6

Introduction
This Application Note explains how to use Microchip's
(http://www.microchip.com/) MPLAB-C18 C compiler and
MPLAB IDE v6 together in an integrated environment to create a
multitasking Salvo application on PIC18 PICmicro devices.

We will show you how to build the example program located in
\salvo\ex\ex1\main.c for a PIC18C452 PICmicro using
MPLAB v6.30. For more information on how to write a Salvo
application, please see the Salvo User Manual.

Before You Begin
If you have not already done so, install MPLAB-C18 and MPLAB
IDE v6. Familiarize yourself with the MPLAB IDE.

Related Documents
The following Salvo documents should be used in conjunction
with this manual when building Salvo applications with
Microchip's MPLAB-C18 C compiler and MPLAB-IDE v6:

Salvo User Manual
Salvo Compiler Reference Manual RM-MCC18

http://www.microchip.com/

 Application Note

2 AN-25 Building a Salvo Application with Microchip's MPLAB-C18 C Compiler and MPLAB IDE v6

Creating and Configuring a New Project

Creating the Project
Create a new MPLAB project under Project → Project Wizard.
Select the device (18C452):

Figure 1: Selecting the Device in the Project Wizard

Click Next. Select the Microchip C18 Toolsuite:

Figure 2: Selecting the ToolSuite in the Project Wizard

Click Next. Enter a Project Name (myex1) and Project Directory
(c:\temp):

 Application Note

AN-25 Building a Salvo Application with Microchip's MPLAB-C18 C Compiler and MPLAB IDE v6

3

Figure 3: Selecting the ToolSuite in the Project Wizard

Click Next. Add \salvo\src\mem.c1 and your project's main.c
(and any other user source files, if present) to your project:

Figure 4: Adding Existing Files in the Project Wizard

Click Next, then Finish to create the project. The project window
will look like this:

Figure 5: Project Window after Adding Source Files

 Application Note

4 AN-25 Building a Salvo Application with Microchip's MPLAB-C18 C Compiler and MPLAB IDE v6

Setting the Build Options
Now let's setup the project's options for Salvo's pathnames, etc.
Choose Project → Build Options� → Project. Under the
General tab, set the Output Directory to be the project directory.
Set the Include Path to the project directory and to \salvo\inc.
Set the Library Path and Linker-Script Path to their defaults for
the MPLAB-C18 compiler:

Figure 6: General Build Options

Under the MPLINK Linker tab, select Generate map file:

 Application Note

AN-25 Building a Salvo Application with Microchip's MPLAB-C18 C Compiler and MPLAB IDE v6

5

Figure 7: MPLINK Linker Build Options

Under the MPLAB C18 tab, select General under Categories
and define any symbols2 you may need for your project in the
Macro Definitions window by selecting Add and entering the
symbol(s), followed by OK:

 Application Note

6 AN-25 Building a Salvo Application with Microchip's MPLAB-C18 C Compiler and MPLAB IDE v6

Figure 8: MPLAB C18 General Build Options

Select Optimization under Categories and select the level of
optimization you wish to apply to your application:

Figure 9: MPLAB C18 Optimization Build Options

 Application Note

AN-25 Building a Salvo Application with Microchip's MPLAB-C18 C Compiler and MPLAB IDE v6

7

Note MPLAB-C18's procedural abstraction optimization is
incompatible with Salvo's context switcher. Please refer to the
Salvo Compiler Reference Manual RM-MCC18 for more
information.

Click OK to finish setting your project's options.

Note This example project uses the default values for MPLAB-
C18's Code, Data and Stack Models under Categories: Memory
Model. Non-default values may be required when using certain
Salvo libraries, etc. Please refer to the Salvo Compiler Reference
Manual RM-MCC18 for more information.

Adding the Linker Script File
In the project window, left-click on Linker Scripts, choose Add
Files�, navigate to MPLAB-C18's linker script files folder
(usually c:\mcc18\lkr) and select the linker script appropriate for
your PIC18 PICmicro® MCU (18c452.lkr in this example):

Figure 10: Adding the Linker Script File

Click Open to add the library. The project window will look like
this:

Figure 11: Project Window after Adding Linker Script

File

Select Project → Save Project to save your project.

 Application Note

8 AN-25 Building a Salvo Application with Microchip's MPLAB-C18 C Compiler and MPLAB IDE v6

Adding Salvo-specific Files to the Project
Now it's time to add any additional Salvo files your project needs.
Salvo applications can be built by linking to precompiled Salvo
libraries, or with the Salvo source code files as nodes in your
project.

Adding a Library
For a library build, a freeware library that's appropriate for the
PIC18C452 is sfc18sfa.lib.3 In the project window, left-click on
Library Files, choose Add Files�, choose Files of type: Library
Files (*.lib), navigate to \salvo\lib\mcc18 and select the Salvo
library sfc18sfa.lib:

Figure 12: Adding the Salvo Library

Click Open to add the linker script file to the project. The project
window will look like this:

Figure 13: Project Window after Adding Salvo library

You can find more information on Salvo libraries in the Salvo
User Manual and in the Salvo Compiler Reference Manual RM-
MCC18.

 Application Note

AN-25 Building a Salvo Application with Microchip's MPLAB-C18 C Compiler and MPLAB IDE v6

9

The salvocfg.h Header File
You will also need a salvocfg.h file for this project. To use the
library selected in Figure 12, your salvocfg.h should contain
only:

#define OSUSE_LIBRARY TRUE
#define OSLIBRARY_TYPE OSF
#define OSLIBRARY_GLOBALS OSF
#define OSLIBRARY_CONFIG OSA
#define OSLIBRARY_VARIANT OSNONE

Listing 1: salvocfg.h for a Library Build

Create this file and save it in your project directory, e.g.
c:\temp\salvocfg.h. For convenience, add it to your project's by
right-clicking on the Header Files folder, choosing Add Files�,
and selecting the salvocfg.h in your project directory. The
project window will now look like this:

Figure 14: Project Window after Adding salvocfg.h

Header File

Select Project → Save Project and proceed to
Select Project → Save Project.
Building the Project, below.

Adding Salvo Source Files
If you have a Salvo distribution that contains source files, you can
do a source code build instead of a library build. The application in
\salvo\ex\ex1\main.c contains calls to the following Salvo user
services:

OS_Delay() OSInit()
OS_WaitBinSem() OSSignalBinSem()
OSCreateBinSem() OSSched()
OSCreateTask() OSTimer()
OSEi()

You must add the Salvo source files that contain these user
services, as well as those that contain internal Salvo services, to

 Application Note

10 AN-25 Building a Salvo Application with Microchip's MPLAB-C18 C Compiler and MPLAB IDE v6

your project. The Reference chapter of the Salvo User Manual lists
the source file for each user service. Internal services are in other
Salvo source files. For this project, the complete list is:

binsem.c mem.c
delay.c portpic18.c
event.c qins.c
idle.c sched.c
init.c timer.c
inittask.c

In the project window, left-click on Library Files, choose Add
Files�, choose Files of type: All Source Files (*.asm, *.c),
navigate to \salvo\src and select the Salvo source files listed
above:

Figure 15: Adding the Salvo Source Files

Click Open to add the Salvo source files to the project. The
project window will look like this:

Figure 16: Project Window after Adding Salvo Source

Files

 Application Note

AN-25 Building a Salvo Application with Microchip's MPLAB-C18 C Compiler and MPLAB IDE v6

11

The salvocfg.h Header File
You will also need a salvocfg.h file for this project.
Configuration files for source code builds are quite different from
those for library builds (see Listing 1, above). For a source code
build, the salvocfg.h for this project contains only:

#define OSBYTES_OF_DELAYS 1
#define OSENABLE_IDLING_HOOK TRUE
#define OSENABLE_BINARY_SEMAPHORES TRUE
#define OSEVENTS 1
#define OSTASKS 3

Listing 2: salvocfg.h for a Source Code Build

Create this file and save it in your project directory, e.g.
c:\temp\salvocfg.h. For convenience, add it to your project's by
right-clicking on the Header Files folder, choosing Add Files�,
and selecting the salvocfg.h in your project directory. The
project window will now look like this:

Figure 17: Project Window after Adding salvocfg.h

Header File

Tip The advantage of placing the various project files in the
groups shown above is that you can quickly navigate to them and
open them for viewing, editing, etc.

Select Project → Save Project.

Building the Project
For a successful compile, your project must also include a header
file (e.g. #include <p18cxxx.h>) for the particular chip you are
using. Normally, this is included in each of your source files (e.g.

 Application Note

12 AN-25 Building a Salvo Application with Microchip's MPLAB-C18 C Compiler and MPLAB IDE v6

main.c), or in a header file that's included in each of your source
files (e.g. main.h).

With everything in place, you can now build the project using
Project → Build All. The Output window will reflect the MPLAB-
C18 command lines:

Deleting intermediary files... done.
Executing: "C:\mcc18\bin\mcc18.exe" -p=18C452 "mem.c"
-fo="mem.o" /i"c:\TEMP" /i"c:\salvo\inc" -Opa-
Executing: "C:\mcc18\bin\mcc18.exe" -p=18C452 "main.c"
-fo="main.o" /i"c:\TEMP" /i"c:\salvo\inc" -Opa-
Executing: "C:\mcc18\bin\mcc18.exe" -p=18C452 "timer.c"
-fo="timer.o" /i"c:\TEMP" /i"c:\salvo\inc" -Opa-
Executing: "C:\mcc18\bin\mcc18.exe" -p=18C452 "delay.c"
-fo="delay.o" /i"c:\TEMP" /i"c:\salvo\inc" -Opa-
Executing: "C:\mcc18\bin\mcc18.exe" -p=18C452 "event.c"
-fo="event.o" /i"c:\TEMP" /i"c:\salvo\inc" -Opa-
Executing: "C:\mcc18\bin\mcc18.exe" -p=18C452 "init.c"
-fo="init.o" /i"c:\TEMP" /i"c:\salvo\inc" -Opa-
Executing: "C:\mcc18\bin\mcc18.exe" -p=18C452 "inittask.c"
-fo="inittask.o" /i"c:\TEMP" /i"c:\salvo\inc" -Opa-
Executing: "C:\mcc18\bin\mcc18.exe" -p=18C452 "portpic18.c"
-fo="portpic18.o" /i"c:\TEMP" /i"c:\salvo\inc" -Opa-
Executing: "C:\mcc18\bin\mcc18.exe" -p=18C452 "qins.c"
-fo="qins.o" /i"c:\TEMP" /i"c:\salvo\inc" -Opa-
Executing: "C:\mcc18\bin\mcc18.exe" -p=18C452 "sched.c"
-fo="sched.o" /i"c:\TEMP" /i"c:\salvo\inc" -Opa-
Executing: "C:\mcc18\bin\mcc18.exe" -p=18C452 "binsem.c"
-fo="binsem.o" /i"c:\TEMP" /i"c:\salvo\inc" -Opa-
Executing: "C:\mcc18\bin\mcc18.exe" -p=18C452 "idle.c"
-fo="idle.o" /i"c:\TEMP" /i"c:\salvo\inc" -Opa-
Executing: "C:\Program Files\MPLAB IDE
v6\MCHIP_Tools\mplink.exe" /l"c:\mcc18\lib" /k"c:\mcc18\lkr"
"C:\mcc18\lkr\18c452.lkr" "C:\salvo\src\mem.o" "C:\temp\main.o"
"C:\salvo\src\timer.o" "C:\salvo\src\delay.o"
"C:\salvo\src\event.o" "C:\salvo\src\init.o"
"C:\salvo\src\inittask.o" "C:\salvo\src\portpic18.o"
"C:\salvo\src\qins.o" "C:\salvo\src\sched.o"
"C:\salvo\src\binsem.o" "C:\salvo\src\idle.o"
/m"c:\TEMP\myex1.map" /o"myex1.cof"
MPLINK 3.50, Linker
Copyright (c) 2003 Microchip Technology Inc.
Errors : 0

MP2COD 3.50, COFF to COD File Converter
Copyright (c) 2003 Microchip Technology Inc.
Errors : 0

MP2HEX 3.50, COFF to HEX File Converter
Copyright (c) 2003 Microchip Technology Inc.
Errors : 0

Loaded C:\temp\myex1.cof
BUILD SUCCEEDED: Tue Jul 22 20:33:02 2003

Listing 3: Build Results for A Successful Source-Code
Build

The map (*.map) file located in the project's directory contains
address, symbol and other useful information:

 Application Note

AN-25 Building a Salvo Application with Microchip's MPLAB-C18 C Compiler and MPLAB IDE v6

13

MPLINK 3.50, Linker
Linker Map File - Created Tue Jul 22 20:33:01 2003

 Section Info
 Section Type Address Location Size(Bytes)
 --------- --------- --------- --------- ---------
 _entry_scn code 0x000000 program 0x000006
 IntVectorHigh code 0x000008 program 0x000006
[SNIP]
 Program Memory Usage
 Start End
 --------- ---------
 0x000000 0x000005
 0x000008 0x00000d
 0x00002a 0x000037
 0x0000c8 0x000cfc
 3151 out of 32786 program addresses used, program memory utilization is
9%

 Symbols - Sorted by Name
 Name Address Location Storage File
 --------- --------- --------- --------- ---------
 IntVector 0x0009e6 program extern C:\temp\main.c
 IntVectorHigh 0x000008 program extern C:\temp\main.c
 OSCreateBinSem 0x000336 program extern C:\salvo\src\binsem.c
[SNIP]
 Symbols - Sorted by Address
 Name Address Location Storage File
 --------- --------- --------- --------- ---------
 _entry 0x000000 program extern
C:\mcc18\src\startup\c018i.c
 ___return_lbl00000 0x000004 program static
[SNIP]

Listing 4: Map File for a Source-Code Build

Note The projects supplied in the Salvo for PICmicro® MCUs
distributions contain additional help files – see the abstract.txt
file that accompanies each project or group of projects.

Testing the Application
You can test and debug this application with full source code
integration in any of the MPLAB debugging environments. For
example, to use the simulator, choose Debugger → Select Tool
→ MPLAB SIM. Open the Stopwatch window via Debugger →
Stopwatch. After a successful build, open the project's main.c
(i.e. \salvo\ex\ex1\main.c), set a breakpoint on the PORTB ^=
0x08; line of Task3(), and select Debugger → Run. Program
execution will stop at the breakpoint in Task3(). Now zero the
stopwatch in the Stopwatch window, select Debug → Run again,
and wait until execution stops. The Stopwatch window now
displays an elapsed time of 400ms (40 times 10ms, the TMR0-
driven system tick rate in this application for a 4MHz clock).

 Application Note

14 AN-25 Building a Salvo Application with Microchip's MPLAB-C18 C Compiler and MPLAB IDE v6

Figure 18: Measuring 400ms of Task Delay in the

Simulator via a Breakpoint

Note The 98 extra microseconds (400.098ms – 400ms) shown in
the Stopwatch window of Figure 18 are due to unavoidable jitter
in the system timer – well under the system tick interval of 10ms
(10,000 instruction cycles in this example). See the Salvo User
Manual for more information on the system timer.

If you are doing a full source-code build, you can also trace
program execution through the Salvo source code. Select
Debugger → Reset → Processor Reset, Debugger →
Breakpoints → Remove All → OK, and set a breakpoint at the
first call to OSCreateTask() in main.c. Select Debugger →
Run. Execution will stop in main.c at the call to
OSCreateTask(). Now choose Debugger → Step Into. The
\salvo\src\inittask.c file window will open, and you can step
through and observe the operation of OSCreateTask().

Figure 19: Stepping Through Salvo Source Code

 Application Note

AN-25 Building a Salvo Application with Microchip's MPLAB-C18 C Compiler and MPLAB IDE v6

15

Troubleshooting

Cannot Find and/or Read Include File(s)
If you fail to add \salvo\inc to the project's include paths (see
Figure 6, above) the compiler will generate an error like this one:

Deleting intermediary files... done.
Executing: "C:\mcc18\bin\mcc18.exe" -p=18C452
"mem.c" -fo="mem.o" /i"c:\TEMP" -Opa-
C:\salvo\src\mem.c:30: unable to locate 'salvo.h'
C:\salvo\src\mem.c:190: unable to locate
'salvoprg.h'
C:\salvo\src\mem.c:204: unable to locate
'salvoprg.h'
C:\salvo\src\mem.c:211: unable to locate
'salvoprg.h'
error 1 spawning C:\mcc18\bin\cpp18
Halting build on first failure as requested.
BUILD FAILED: Tue Jul 22 21:51:34 2003

Figure 20: Compiler Error due to Missing \salvo\inc
Include Path

By adding \salvo\inc to the project's include path, you enable
the compiler to find the main Salvo header file salvo.h, as well as
other included Salvo header files.

If you fail to add the project's own directory to the project's
include paths (see Figure 6, above) the compiler will generate an
error like this one:

Deleting intermediary files... done.
Executing: "C:\mcc18\bin\mcc18.exe" -p=18C452
"mem.c" -fo="mem.o" /i"c:\salvo\inc" -Opa-
c:\salvo\inc\salvo.h:343: unable to locate
'salvocfg.h'
error 1 spawning C:\mcc18\bin\cpp18
Halting build on first failure as requested.
BUILD FAILED: Tue Jul 22 21:52:23 2003

Figure 21: Compiler Error due to Missing Project Include
Path

By adding the project's own directory to the project's include path,
you enable the compiler to find the project-specific header file
salvocfg.h.

 Application Note

16 AN-25 Building a Salvo Application with Microchip's MPLAB-C18 C Compiler and MPLAB IDE v6

Cannot Find Symbol Definitions
If you fail to add \salvo\src\mem.c to the project's source files
(see Creating the Project and Figure 4), the linker will be unable to
find one or more of Salvo's global objects, e.g.:

Executing: "C:\Program Files\MPLAB IDE v6\MCHIP_Tools\mplink.exe" /l"C:\mcc18\lib"
/k"c:\mcc18\lkr" "C:\mcc18\lkr\18c452.lkr" "C:\salvo\tut\tu4\main.o"
"C:\salvo\lib\mcc18\sfc18sfe.lib" /m"\SALVO\TUT\TU4\SYSE\tu4lite.map"
/o"tu4lite.cof"
MPLINK 3.60, Linker
Copyright (c) 2003 Microchip Technology Inc.
Error - could not find definition of symbol 'OSecbArea' in file
'C:\salvo\tut\tu4\main.o'.
Errors : 1

BUILD FAILED: Mon Jan 05 14:22:28 2004

Figure 22: Linker Error due to Missing Salvo mem.c

The solution is to always have Salvo's mem.c in the list of the
project's Source Files (see Figure 5).

Similarly, if there is a mismatch between the OSLIBRARY_XYZ
configuration options in the project's salvocfg.h, and the Salvo
library chosen for the project, the linker may again be unable to
find the definitions for certain Salvo global objects, e.g.:

Executing: "C:\Program Files\MPLAB IDE v6\MCHIP_Tools\mplink.exe" /l"C:\mcc18\lib"
/k"c:\mcc18\lkr" "C:\mcc18\lkr\18c452.lkr" "C:\salvo\tut\tu4\main.o"
"C:\salvo\src\mem.o" "C:\salvo\lib\mcc18\sfc18sfa.lib"
/m"\SALVO\TUT\TU4\SYSE\tu4lite.map" /o"tu4lite.cof"
MPLINK 3.60, Linker
Copyright (c) 2003 Microchip Technology Inc.
Error - could not find definition of symbol 'OSdelayQP' in file 'init.o'.
Errors : 1

BUILD FAILED: Mon Jan 05 14:33:33 2004

Figure 23: Linker Error due to Mismatch between
OSLIBRARY_CONFIG (OSE) and Selected library

(sfpc18sfa.lib)

This occurs because Salvo functions4 are attempting to initialize
objects that are not enabled by the OSLIBRARY_XYZ configuration
options in force. The solution is to ensure that the OSLIBRARY_XYZ
configuration options in the project's salvocfg.h are appropriate
for the selected Salvo library.

Example Projects
Example projects for MPLAB-C18 can be found in the
salvo\tut\tu1-6\syse directories The MPLAB Include Path
for each of these projects is set to salvo\tut\tu1\syse, and each
project defines the SYSE symbol.

Complete projects using Salvo freeware libraries are contained in
the MPLAB project file salvo\tut\tu1-6\syse\tu1-

6lite.mcp. These projects also define the MAKE_WITH_FREE_LIB
symbol.

 Application Note

AN-25 Building a Salvo Application with Microchip's MPLAB-C18 C Compiler and MPLAB IDE v6

17

Complete projects using Salvo standard libraries are contained in
the MPLAB project file salvo\tut\tu1-6\syse\tu1-6le.mcp.
These projects also define the MAKE_WITH_STD_LIB symbol.

Complete projects using Salvo source code are contained in the
MPLAB project file salvo\tut\tu1-6\syse\tu1-6pro.mcp.
These projects also define the MAKE_WITH_SOURCE symbol.

1 Do not copy \salvo\src\mem.c to your project directory!
2 The Salvo project upon which this Application Note is based (ex1lite.mcp)

supports a wide variety of targets and compilers. For use with MPLAB-C18, it
requires the SYSE defined symbol, as well as the symbols
MAKE_WITH_FREE_LIB for library builds. When you write your own projects,
you may not require any symbols.

3 This library was compiled using the small memory model, and matches the
node properties for main.c. The corresponding standard library is
slc18sfa.lib.

4 In this case, OSInit() in init.c.

	Building a Salvo Application with Microchip's MPLAB-C18 C Compiler and MPLAB IDE v6
	Introduction
	Before You Begin
	Related Documents
	Creating and Configuring a New Project
	Creating the Project
	Setting the Build Options
	Adding the Linker Script File

	Adding Salvo-specific Files to the Project
	Adding a Library
	The salvocfg.h Header File
	Adding Salvo Source Files
	The salvocfg.h Header File

	Building the Project
	Testing the Application
	Troubleshooting
	Cannot Find and/or Read Include File(s)
	Cannot Find Symbol Definitions

	Example Projects

