

AN-26
Application Note

750 Naples Street � San Francisco, CA 94112 � (415) 584-6360 � http://www.pumpkininc.com

created by Andrew E. Kalman on Jul 22, 2003 updated on Jan 6, 2004
All trademarks mentioned herein are properties of their respective companies.

Building a Salvo Application with
HI-TECH's PICC and PICC-18 C
Compilers and Microchip's
MPLAB IDE v6

Introduction
This Application Note explains how to use HI-TECH's
(http://www.htsoft.com/) PICC and PICC-18 C compilers and
MPLAB IDE v6 together in an integrated environment to create a
multitasking Salvo application on PIC18 PICmicro devices.

We will show you how to build the example program located in
\salvo\ex\ex1\main.c for a PIC18C452 PICmicro using PICC-
18 and MPLAB v6.30. For more information on how to write a
Salvo application, please see the Salvo User Manual.

Before You Begin
If you have not already done so, install PICC and/or PICC-18, as
well as MPLAB IDE v6. Familiarize yourself with the MPLAB
IDE.

Related Documents
The following Salvo documents should be used in conjunction
with this manual when building Salvo applications with HI-
TECH's PICC and PICC-18 C compilers and MPLAB-IDE v6:

Salvo User Manual
Salvo Compiler Reference Manual RM-PICC
Salvo Compiler Reference Manual RM-PICC18

http://www.htsoft.com/

 Application Note

2 AN-26 Building a Salvo Application with HI-TECH's PICC and PICC-18 C Compilers and Microchip's MPLAB
IDE v6

Creating and Configuring a New Project

Creating the Project
Create a new MPLAB project under Project → Project Wizard.
Select the device (18C452):

Figure 1: Selecting the Device in the Project Wizard

Click Next. Select the HI-TECH PICC-18 Toolsuite:

Figure 2: Selecting the ToolSuite in the Project Wizard

Click Next. Enter a Project Name (myex1) and Project Directory
(c:\temp):

 Application Note

AN-26 Building a Salvo Application with HI-TECH's PICC and PICC-18 C Compilers and Microchip's MPLAB
IDE v6

3

Figure 3: Selecting the ToolSuite in the Project Wizard

Click Next. Add \salvo\src\mem.c1 and your project's main.c
(and any other user source files, if present) to your project:

Figure 4: Adding Existing Files in the Project Wizard

Click Next, then Finish to create the project. The project window
will look like this:

Figure 5: Project Window after Adding Source Files

 Application Note

4 AN-26 Building a Salvo Application with HI-TECH's PICC and PICC-18 C Compilers and Microchip's MPLAB
IDE v6

Setting the Build Options
Now let's setup the project's options for Salvo's pathnames, etc.
Choose Project → Build Options� → Project. Under the
General tab, set the Output Directory to be the project directory.
Set the Include Path to the project directory and to \salvo\inc:

Figure 6: General Build Options

Note The screens below are for the PICC-18 compiler. Build
Options for the PICC compiler will be similar.

Under the PICC-18 General tab, select (All Options) under
Categories and make the appropriate selections for your project.

Tip For the PICC-18 compiler, Use 24-bit pointers to program
space and Memory Model must be set to match the Salvo library
used when building this application. See Salvo Compiler
Reference Manual RM-PICC18 for more information.

Select OK to continue:

 Application Note

AN-26 Building a Salvo Application with HI-TECH's PICC and PICC-18 C Compilers and Microchip's MPLAB
IDE v6

5

Figure 7: PICC-18 Compiler General Build Options

Under the PICC-18 Compiler tab, select General under
Categories and define any symbols2 you may need for your
project in the Macro Definitions window by selecting Add and
entering the symbol(s), followed by OK. Also, set the desired
Global optimization level, and select Enable assembler
optimization:

 Application Note

6 AN-26 Building a Salvo Application with HI-TECH's PICC and PICC-18 C Compilers and Microchip's MPLAB
IDE v6

Figure 8: PICC-18 Compiler General Build Options

Under the PICC-18 Assembler tab, select Enable optimization:

Figure 9: PICC-18 Assembler Build Options

 Application Note

AN-26 Building a Salvo Application with HI-TECH's PICC and PICC-18 C Compilers and Microchip's MPLAB
IDE v6

7

Under the PICC-18 Linker tab, select Generate map file:

Figure 10: PICC-18 Linker Build Options

Click OK to finish setting your project's options.

Select Project → Save Project to save your project.

Adding Salvo-specific Files to the Project
Now it's time to add any additional Salvo files your project needs.
Salvo applications can be built by linking to precompiled Salvo
libraries, or with the Salvo source code files as nodes in your
project.

Adding a Library
For a library build, a freeware library that's appropriate for the
PIC18C452 is sfp80lab.lib. In the project window, left-click on
Library Files, choose Add Files�, choose Files of type: Library
Files (*.lib), navigate to \salvo\lib\htpicc18 and select the
Salvo library sfp80lab.lib:

 Application Note

8 AN-26 Building a Salvo Application with HI-TECH's PICC and PICC-18 C Compilers and Microchip's MPLAB
IDE v6

Figure 11: Adding the Salvo Library

Click Open to add the library to the project. The project window
will look like this:

Figure 12: Project Window after Adding Salvo library

You can find more information on Salvo libraries in the Salvo
User Manual and in the Salvo Compiler Reference Manual RM-
PICC18.

The salvocfg.h Header File
You will also need a salvocfg.h file for this project. To use the
library selected in Figure 11, your salvocfg.h should contain
only:

#define OSUSE_LIBRARY TRUE
#define OSLIBRARY_TYPE OSF
#define OSLIBRARY_CONFIG OSA
#define OSLIBRARY_VARIANT OSB

Listing 1: salvocfg.h for a Library Build

Create this file and save it in your project directory, e.g.
c:\temp\salvocfg.h. For convenience, add it to your project's by
right-clicking on the Header Files folder, choosing Add Files�,
and selecting the salvocfg.h in your project directory. The
project window will now look like this:

 Application Note

AN-26 Building a Salvo Application with HI-TECH's PICC and PICC-18 C Compilers and Microchip's MPLAB
IDE v6

9

Figure 13: Project Window after Adding salvocfg.h

Header File

Select Project → Save Project and proceed to
Select Project → Save Project.
Building the Project, below.

Adding Salvo Source Files
If you have a Salvo distribution that contains source files, you can
do a source code build instead of a library build. The application in
\salvo\ex\ex1\main.c contains calls to the following Salvo user
services:

OS_Delay() OSInit()
OS_WaitBinSem() OSSignalBinSem()
OSCreateBinSem() OSSched()
OSCreateTask() OSTimer()
OSEi()

You must add the Salvo source files that contain these user
services, as well as those that contain internal Salvo services, to
your project. The Reference chapter of the Salvo User Manual lists
the source file for each user service. Internal services are in other
Salvo source files. For this project, the complete list is:

binsem.c inittask.c
delay.c mem.c
event.c qins.c
idle.c sched.c
init.c timer.c

In the project window, left-click on Library Files, choose Add
Files�, choose Files of type: All Source Files (*.asm, *.c),
navigate to \salvo\src and select the Salvo source files listed
above:

 Application Note

10 AN-26 Building a Salvo Application with HI-TECH's PICC and PICC-18 C Compilers and Microchip's MPLAB
IDE v6

Figure 14: Adding the Salvo Source Files

Click Open to add the Salvo source files to the project. The
project window will look like this:

Figure 15: Project Window after Adding Salvo Source

Files

The salvocfg.h Header File
You will also need a salvocfg.h file for this project.
Configuration files for source code builds are quite different from
those for library builds (see Listing 1, above). For a source code
build, the salvocfg.h for this project contains only:

#define OSBYTES_OF_DELAYS 1
#define OSENABLE_IDLING_HOOK TRUE
#define OSENABLE_BINARY_SEMAPHORES TRUE
#define OSEVENTS 1
#define OSTASKS 3

Listing 2: salvocfg.h for a Source Code Build

Create this file and save it in your project directory, e.g.
c:\temp\salvocfg.h. For convenience, add it to your project's by
right-clicking on the Header Files folder, choosing Add Files�,

 Application Note

AN-26 Building a Salvo Application with HI-TECH's PICC and PICC-18 C Compilers and Microchip's MPLAB
IDE v6

11

and selecting the salvocfg.h in your project directory. The
project window will now look like this:

Figure 16: Project Window after Adding salvocfg.h

Header File

Tip The advantage of placing the various project files in the
groups shown above is that you can quickly navigate to them and
open them for viewing, editing, etc.

Select Project → Save Project.

Building the Project
For a successful compile, your project must also include a header
file (e.g. #include <pic18.h>) for the particular chip you are
using. Normally, this is included in each of your source files (e.g.
main.c), or in a header file that's included in each of your source
files (e.g. main.h).

With everything in place, you can now build the project using
Project → Build All. The Output window will reflect the PICC-18
command lines:

 Application Note

12 AN-26 Building a Salvo Application with HI-TECH's PICC and PICC-18 C Compilers and Microchip's MPLAB
IDE v6

Deleting intermediary files... done.
Executing: "C:\HTSOFT\PIC18\BIN\PICC18.EXE" -C -E"mem.cce" "mem.c" -O"mem.obj"
-I"c:\TEMP" -I"c:\salvo\inc" -Q -MPLAB -18C452 -Zg9 -O
Executing: "C:\HTSOFT\PIC18\BIN\PICC18.EXE" -C -E"main.cce" "main.c" -O"main.obj"
-I"c:\TEMP" -I"c:\salvo\inc" -Q -MPLAB -18C452 -Zg9 -O
Executing: "C:\HTSOFT\PIC18\BIN\PICC18.EXE" -C -E"timer.cce" "timer.c" -O"timer.obj"
-I"c:\TEMP" -I"c:\salvo\inc" -Q -MPLAB -18C452 -Zg9 -O
Executing: "C:\HTSOFT\PIC18\BIN\PICC18.EXE" -C -E"delay.cce" "delay.c" -O"delay.obj"
-I"c:\TEMP" -I"c:\salvo\inc" -Q -MPLAB -18C452 -Zg9 -O
Executing: "C:\HTSOFT\PIC18\BIN\PICC18.EXE" -C -E"event.cce" "event.c" -O"event.obj"
-I"c:\TEMP" -I"c:\salvo\inc" -Q -MPLAB -18C452 -Zg9 -O
Executing: "C:\HTSOFT\PIC18\BIN\PICC18.EXE" -C -E"idle.cce" "idle.c" -O"idle.obj"
-I"c:\TEMP" -I"c:\salvo\inc" -Q -MPLAB -18C452 -Zg9 -O
Executing: "C:\HTSOFT\PIC18\BIN\PICC18.EXE" -C -E"init.cce" "init.c" -O"init.obj"
-I"c:\TEMP" -I"c:\salvo\inc" -Q -MPLAB -18C452 -Zg9 -O
Executing: "C:\HTSOFT\PIC18\BIN\PICC18.EXE" -C -E"inittask.cce" "inittask.c"
-O"inittask.obj" -I"c:\TEMP" -I"c:\salvo\inc" -Q -MPLAB -18C452 -Zg9 -O
Executing: "C:\HTSOFT\PIC18\BIN\PICC18.EXE" -C -E"qins.cce" "qins.c" -O"qins.obj"
-I"c:\TEMP" -I"c:\salvo\inc" -Q -MPLAB -18C452 -Zg9 -O
Executing: "C:\HTSOFT\PIC18\BIN\PICC18.EXE" -C -E"sched.cce" "sched.c" -O"sched.obj"
-I"c:\TEMP" -I"c:\salvo\inc" -Q -MPLAB -18C452 -Zg9 -O
Executing: "C:\HTSOFT\PIC18\BIN\PICC18.EXE" -C -E"binsem.cce" "binsem.c"
-O"binsem.obj" -I"c:\TEMP" -I"c:\salvo\inc" -Q -MPLAB -18C452 -Zg9 -O
Executing: "C:\HTSOFT\PIC18\BIN\PICC18.EXE" -C -E"util.cce" "util.c" -O"util.obj"
-I"c:\TEMP" -I"c:\salvo\inc" -Q -MPLAB -18C452 -Zg9 -O
Executing: "C:\HTSOFT\PIC18\BIN\PICC18.EXE" -E"myex1.lde" "C:\salvo\src\mem.obj"
"C:\temp\main.obj" "C:\salvo\src\timer.obj" "C:\salvo\src\delay.obj"
"C:\salvo\src\event.obj" "C:\salvo\src\idle.obj" "C:\salvo\src\init.obj"
"C:\salvo\src\inittask.obj" "C:\salvo\src\qins.obj" "C:\salvo\src\sched.obj"
"C:\salvo\src\binsem.obj" "C:\salvo\src\util.obj" -Q -MPLAB -18C452 -M"myex1.map"
-W-9 -O"myex1.cof"

Memory Usage Map:

Program ROM $000000 - $000003 $000004 (4) bytes
Program ROM $000006 - $00092B $000926 (2342) bytes
 $00092A (2346) bytes total Program ROM

RAM data $0000F6 - $0000FF $00000A (10) bytes
RAM data $0005BB - $0005FF $000045 (69) bytes
 $00004F (79) bytes total RAM data

Near RAM $000000 - $00000F $000010 (16) bytes total Near RAM
ROM data $000004 - $000004 $000001 (1) bytes total ROM data

Program statistics:

Total ROM used 2347 bytes (7.2%)
Total RAM used 95 bytes (6.2%)
Near RAM used 16 bytes (12.5%)

Loaded C:\temp\myex1.cof
BUILD SUCCEEDED: Tue Jul 22 22:27:30 2003

Listing 3: Build Results for A Successful Source-Code
Build

The map (*.map) file located in the project's directory contains
address, symbol and other useful information:

 Application Note

AN-26 Building a Salvo Application with HI-TECH's PICC and PICC-18 C Compilers and Microchip's MPLAB
IDE v6

13

HI-TECH Software PICC18 Compiler V8.20PL4

Linker command line:

-z -Mmyex1.map -ol.obj \
 -ppowerup=00h,intcode=08h,intcodelo=018h,init,end_init -ACOMRAM=00h-07Fh \
 -ptemp=COMRAM -ARAM=0-0FFhx6 -ABIGRAM=0-05FFh -pramtop=0600h \
 -ACODE=00h-07FFFh -pconfig=0300000h,idloc=0200000h,eeprom_data=0f00000h \
 -pconst=end_init+0600h \
 -prbss=COMRAM,rbit=COMRAM,rdata=COMRAM,nvrram=COMRAM,nvbit=COMRAM \
 -pstruct=COMRAM -pnvram=-600h \
 -pintsave_regs=BIGRAM,bigbss=BIGRAM,bigdata=BIGRAM -pdata=RAM,param \
 -pidata=CODE,irdata=CODE,ibigdata=CODE -Q18C452 -W-9 -h+myex1.sym -E \
 -EC:\WINDOWS\TEMP_3VV0OM1.AAA -ver=PICC18#V8.20PL4 \
 C:\HTSOFT\PIC18\LIB\picrt80l.obj C:\salvo\src\mem.obj C:\temp\main.obj \
 C:\salvo\src\timer.obj C:\salvo\src\delay.obj C:\salvo\src\event.obj \
 C:\salvo\src\idle.obj C:\salvo\src\init.obj C:\salvo\src\inittask.obj \
 C:\salvo\src\qins.obj C:\salvo\src\sched.obj C:\salvo\src\binsem.obj \
 C:\salvo\src\util.obj C:\HTSOFT\PIC18\LIB\pic80l-c.lib

Object code version is 3.7

Machine type is 18C452

Call graph:

*_main size 0,0 offset 0
 _OSInit
 _OSCreateTask size 5,0 offset 0
 _OSInitPrioTask size 3,0 offset 5
 _OSInsPrioQ size 4,0 offset 6
[SNIP]

 Name Link Load Length Selector Space Scale
C:\HTSOFT\PIC18\LIB\picrt80l.obj
 end_init 38 38 4 C 0
C:\salvo\src\mem.obj
 nvram 5DA 5DA 26 5DA 1
[SNIP]

SEGMENTS Name Load Length Top Selector Space Class

 temp 000000 000010 000010 0 1 COMRAM
 powerup 000000 000005 000005 0 0 CODE
[SNIP]

UNUSED ADDRESS RANGES

 BIGRAM 000010-0000F5
 000100-0005BA
[SNIP]

 Symbol Table

?_OSCreateBinSem param 0000F6 ?_OSCreateTask param 0000F6
?_OSDelay param 0000F6 ?_OSInitPrioTask param 0000FB
[SNIP]

Listing 4: Map File for a Source-Code Build

Note The projects supplied in the Salvo for PICmicro® MCUs
distributions contain additional help files – see the abstract.txt
file that accompanies each project or group of projects.

Testing the Application
You can test and debug this application with full source code
integration in any of the MPLAB debugging environments. For
example, to use the simulator, choose Debugger → Select Tool
→ MPLAB SIM. Open the Stopwatch window via Debugger →
Stopwatch. After a successful build, open the project's main.c
(i.e. \salvo\ex\ex1\main.c), set a breakpoint on the PORTB ^=
0x08; line of Task3(), and select Debugger → Run. Program
execution will stop at the breakpoint in Task3(). Now zero the
stopwatch in the Stopwatch window, select Debug → Run again,
and wait until execution stops. The Stopwatch window now

 Application Note

14 AN-26 Building a Salvo Application with HI-TECH's PICC and PICC-18 C Compilers and Microchip's MPLAB
IDE v6

displays an elapsed time of 400ms (40 times 10ms, the TMR0-
driven system tick rate in this application for a 4MHz clock).

Figure 17: Measuring 400ms of Task Delay in the

Simulator via a Breakpoint

Note The 633 microseconds (400ms-399.367ms) that are "short"
in the Stopwatch window of Figure 17 are due to unavoidable
jitter in the system timer – well under the system tick interval of
10ms (10,000 instruction cycles in this example). See the Salvo
User Manual for more information on the system timer.

If you are doing a full source-code build, you can also trace
program execution through the Salvo source code. Select
Debugger → Reset → Processor Reset, Debugger →
Breakpoints → Remove All → OK, and set a breakpoint at the
first call to OSCreateTask() in main.c. Select Debugger →
Run. Execution will stop in main.c at the call to
OSCreateTask(). Now choose Debugger → Step Into. The
\salvo\src\inittask.c file window will open, and you can step
through and observe the operation of OSCreateTask().

Figure 18: Stepping Through Salvo Source Code

 Application Note

AN-26 Building a Salvo Application with HI-TECH's PICC and PICC-18 C Compilers and Microchip's MPLAB
IDE v6

15

Troubleshooting

Cannot find and/or read include file(s)
If you fail to add \salvo\inc to the project's include paths (see
Figure 6, above) the compiler will generate an error like this one:

Executing: "C:\HTSOFT\PIC18\BIN\PICC18.EXE" -C -E"mem.cce" "mem.c" -O"mem.obj"
-I"c:\TEMP" -Q -MPLAB -18C452 -Zg9 -O
Error[000] C:\salvo\src\mem.c 30 : Cannot open include file "salvo.h"
Halting build on first failure as requested.
BUILD FAILED: Tue Jul 22 22:42:32 2003

Figure 19: Compiler Error due to Missing \salvo\inc
Include Path

By adding \salvo\inc to the project's include path, you enable
the compiler to find the main Salvo header file salvo.h, as well as
other included Salvo header files.

If you fail to add the project's own directory to the project's
include paths (see Figure 6, above) the compiler will generate an
error like this one:

Executing: "C:\HTSOFT\PIC18\BIN\PICC18.EXE" -C -E"mem.cce" "mem.c" -O"mem.obj"
-I"c:\salvo\inc" -Q -MPLAB -18C452 -Zg9 -O
Error[000] c:\salvo\inc\salvo.h 343 : Cannot open include file "salvocfg.h"
Halting build on first failure as requested.
BUILD FAILED: Tue Jul 22 22:42:58 2003

Figure 20: Compiler Error due to Missing Project Include
Path

By adding the project's own directory to the project's include path,
you enable the compiler to find the project-specific header file
salvocfg.h.

Undefined Symbols
If you fail to add \salvo\src\mem.c to the project's source files
(see Creating the Project and Figure 4), the linker will be unable to
find one or more of Salvo's global objects, e.g.:

Executing: "C:\HTSOFT\PIC18\BIN\PICC18.EXE" -C -E"main.cce" "main.c" -O"main.obj"
-I"\SALVO\TUT\TU4\SYSF" -I"\SALVO\TUT\TU4\SYSF\..\..\tu1"
-I"\SALVO\TUT\TU4\SYSF\..\..\..\inc" -Q -MPLAB -18C452 -Zg9 -O -DSYSF
-DMAKE_WITH_FREE_LIB -ASMLIST
Executing: "C:\HTSOFT\PIC18\BIN\PICC18.EXE" -E"tu4lite.lde"
"C:\salvo\tut\tu4\main.obj" "C:\salvo\lib\htpicc18\sfp80leb.lib" -Q -MPLAB -18C452
-M"tu4lite.map" -FAKELOCAL -O"tu4lite.cof"
Error[000] : undefined symbols:
Error[000] : _OSsigQoutP (C:\salvo\lib\htpicc18\sfp80leb.lib: binsem.obj)
Error[000] : _OSecbArea (C:\salvo\tut\tu4\main.obj)
Error[000] : _OStcbArea (C:\salvo\tut\tu4\main.obj)
Error[000] : _OSeligQP (C:\salvo\lib\htpicc18\sfp80leb.lib: init.obj)
Error[000] : _OStimerTicks (C:\salvo\lib\htpicc18\sfp80leb.lib: init.obj)
Error[000] : _OScTcbP (C:\salvo\lib\htpicc18\sfp80leb.lib: event.obj)
Error[000] : _OSsigQinP (C:\salvo\lib\htpicc18\sfp80leb.lib: binsem.obj)
BUILD FAILED: Tue Jan 06 11:57:19 2004

Figure 21: Linker Error due to Missing Salvo mem.c

 Application Note

16 AN-26 Building a Salvo Application with HI-TECH's PICC and PICC-18 C Compilers and Microchip's MPLAB
IDE v6

The solution is to always have Salvo's mem.c in the list of the
project's Source Files (see Figure 5).

Similarly, if there is a mismatch between the OSLIBRARY_XYZ
configuration options in the project's salvocfg.h, and the Salvo
library chosen for the project, the linker may again be unable to
find the definitions for certain Salvo global objects, e.g.:

Executing: "C:\HTSOFT\PIC18\BIN\PICC18.EXE" -C -E"main.cce" "main.c" -O"main.obj"
-I"\SALVO\TUT\TU4\SYSF" -I"\SALVO\TUT\TU4\SYSF\..\..\tu1"
-I"\SALVO\TUT\TU4\SYSF\..\..\..\inc" -Q -MPLAB -18C452 -Zg9 -O -DSYSF
-DMAKE_WITH_FREE_LIB -ASMLIST
Executing: "C:\HTSOFT\PIC18\BIN\PICC18.EXE" -C -E"mem.cce" "mem.c" -O"mem.obj"
-I"\SALVO\TUT\TU4\SYSF" -I"\SALVO\TUT\TU4\SYSF\..\..\tu1"
-I"\SALVO\TUT\TU4\SYSF\..\..\..\inc" -Q -MPLAB -18C452 -Zg9 -O -DSYSF
-DMAKE_WITH_FREE_LIB -ASMLIST
Executing: "C:\HTSOFT\PIC18\BIN\PICC18.EXE" -E"tu4lite.lde"
"C:\salvo\tut\tu4\main.obj" "C:\salvo\src\mem.obj"
"C:\salvo\lib\htpicc18\sfp80lab.lib" -Q -MPLAB -18C452 -M"tu4lite.map" -FAKELOCAL
-O"tu4lite.cof"
Error[000] : undefined symbols:
Error[000] : _OSlostTicks (C:\salvo\lib\htpicc18\sfp80lab.lib: init.obj)
Error[000] : _OSdelayQP (C:\salvo\lib\htpicc18\sfp80lab.lib: init.obj)
BUILD FAILED: Tue Jan 06 11:59:19 2004

Figure 22: Linker Error due to Mismatch between
OSLIBRARY_CONFIG (OSE) and Selected library

(sfp80lab.lib)

This occurs because Salvo functions3 are attempting to initialize
objects that are not enabled by the OSLIBRARY_XYZ configuration
options in force. The solution is to ensure that the OSLIBRARY_XYZ
configuration options in the project's salvocfg.h are appropriate
for the selected Salvo library.

MPLAB DLL-related Build Problems
As of MPLAB v6.3x, the HI-TECH PICC and PICC-18 compiler
are integrated into MPLAB via MPLAB DLLs supplied by HI-
TECH. If you encounter difficulty, especially while linking an
application built with Salvo libraries, ensure that the compiler
options required by the library are truly in effect. The simplest way
to do this is to examine the command lines in the project's Output
(i.e. build results) window. A mismatch between MPLAB and the
HI-TECH MPLAB suite DLL's (plug-ins) can result in odd
compiler and linker behavior, e.g. the application of incorrect link-
time command-line arguments.4

Always use the latest HI-TECH MPLAB suite DLL's with the
appropriate version of MPLAB. You can examine the module path
of each DLL that MPLAB is using via Help → About MPLAB
IDE, and selecting the module (e.g. Suite_HITECH18) from the
scrollable list. The About MPLAB IDE window will display the
path to the module – ensure that this is the module (i.e. DLL) that
MPLAB should be using.

 Application Note

AN-26 Building a Salvo Application with HI-TECH's PICC and PICC-18 C Compilers and Microchip's MPLAB
IDE v6

17

PICC
Example projects for PICC can be found in the
salvo\tut\tu1-6\sysa directories The MPLAB Include Path
for each of these projects is set to salvo\tut\tu1\syse, and each
project defines the SYSA symbol.

Complete projects using Salvo freeware libraries are contained in
the MPLAB project file salvo\tut\tu1-6\sysa\tu1-

6lite.mcp. These projects also define the MAKE_WITH_FREE_LIB
symbol.

Complete projects using Salvo standard libraries are contained in
the MPLAB project file salvo\tut\tu1-6\sysa\tu1-6le.mcp.
These projects also define the MAKE_WITH_STD_LIB symbol.

Complete projects using Salvo source code are contained in the
MPLAB project file salvo\tut\tu1-6\sysa\tu1-6pro.mcp.
These projects also define the MAKE_WITH_SOURCE symbol.

PICC-18
Example projects for PICC-18 can be found in the
salvo\tut\tu1-6\sysf directories The MPLAB Include Path
for each of these projects is set to salvo\tut\tu1\syse, and each
project defines the SYSF symbol.

Complete projects using Salvo freeware libraries are contained in
the MPLAB project file salvo\tut\tu1-6\sysf\tu1-

6lite.mcp. These projects also define the MAKE_WITH_FREE_LIB
symbol.

Complete projects using Salvo standard libraries are contained in
the MPLAB project file salvo\tut\tu1-6\sysf\tu1-6le.mcp.
These projects also define the MAKE_WITH_STD_LIB symbol.

Complete projects using Salvo source code are contained in the
MPLAB project file salvo\tut\tu1-6\sysf\tu1-6pro.mcp.
These projects also define the MAKE_WITH_SOURCE symbol.

1 Do not copy \salvo\src\mem.c to your project directory!
2 The Salvo project upon which this Application Note is based (ex1lite.mcp)

supports a wide variety of targets and compilers. For use with PICC-18, it
requires the SYSF defined symbol, as well as the symbols

 Application Note

18 AN-26 Building a Salvo Application with HI-TECH's PICC and PICC-18 C Compilers and Microchip's MPLAB
IDE v6

MAKE_WITH_FREE_LIB for library builds. When you write your own projects,
you may not require any symbols.

3 In this case, OSInit() in init.c.
4 For example, an out-of-date HI-TECH PICC-18 DLL, combined with

MPLAB v6.40, results in problems with the selection of the memory model
and the associated PICC-18 runtime library.

	Building a Salvo Application with HI-TECH's PICC and PICC-18 C Compilers and Microchip's MPLAB IDE v6
	Introduction
	Before You Begin
	Related Documents
	Creating and Configuring a New Project
	Creating the Project
	Setting the Build Options

	Adding Salvo-specific Files to the Project
	Adding a Library
	The salvocfg.h Header File
	Adding Salvo Source Files
	The salvocfg.h Header File

	Building the Project
	Testing the Application
	Troubleshooting
	Cannot find and/or read include file(s)
	Undefined Symbols
	MPLAB DLL-related Build Problems
	PICC
	PICC-18

