PUMPKIN | AN-29

Application Note

750 Naples Street ¢ San Francisco, CA 94112 < (415) 584-6360 < http://www.pumpkininc.com

Building a Salvo Application with
IAR's AVR C Compiler and
Embedded Workbench IDE

Introduction

Before You Begin

This Application Note explans how to use IAR's
(http://www.iar.com/) AVR C compiler and Embedded Workbench
IDE to create a multitasking Salvo application for Atme's
(http://www.atmel.com/) AVR and MegaAVR 8-bit
microcontrollers.

We will show you how to build the Salvo application contained in
\'sal vo\ ex\ ex1\ mai n. ¢ for an AT90S8515 using IAR Embedded
Workbench for Atmel AVR.

Note IAR Embedded Workbench for Atmel AVR underwent
changes between v2 (e.g. EW 2.31E, with the last version of the
compiler being v2.28A) and v3 (eg. EW 3.3A, with v3.x
compilers, e.g. v3.10A). The procedures and illustrations in this
document are from IAR Embedded Workbench for Atmel AVR
v2.31E and the associated IAR AVR C compiler v2.28A. Where
substantive differences exist, they will be noted as such.

For more information on how to write a Salvo application, please
see the Salvo User Manual.

If you have not aready done so, install the IAR Embedded
Workbench for Atmel AVR. You may aso install the latest version
of Atmel's AVR Studio, available at http://www.avrfreaks.comy/.

created by Andrew E. Kalman on Feb 21, 2004 updated on Feb 21, 2004
All trademarks mentioned herein are properties of their respective companies.

http://www.iar.com/
http://www.atmel.com/
http://www.avrfreaks.com/

PUMPKIN

Application Note

Related Documents

The following Salvo documents should be used in conjunction
with this manua when building Salvo applications with IAR's
AVR C compiler:

Salvo User Manual
Salvo Compiler Reference Manual RM-IARAVR

Creating and Configuring a New Project

Create a new Embedded Workbench project under File — New —
Project — OK. Select AVR as the Target CPU Family, navigate
to your working directory (in this case we've chosen c: \ t enp) and
create aproject named nmyex1. prj :

New Project 2
Target CPU Family:
) =l
savein | S ternp N H
File name: Imyex1 Rl Create |
Save as fype: IPrDjedFiIes) j Cancel |

Figure 1: Creating the New Project

Click Create to continue. Choose File — Save to save the
project.

Note In Embedded Workbench for Atmel AVR v3, first you
create a workspace, and then you create one or more projects
within that workspace.

In order to manage your project effectively, we recommend that
you create a set of groups for your project. They are:

Listings

Salvo Configuration File
Salvo Help Files

Salvo Libraries

Salvo Sources

Sources

AN-29 Building a Salvo Application with IAR's AVR C Compiler and Embedded Workbench IDE

PUMPKIN

Application Note

For each group, choose Project — New Group, add in the Group
Name and select OK.

Grougp Marme: ok |
ILlstmgs
Add to Targets Cancel

Figure 2: Creating a Group

When finished, your project window should look like this:

B myex1.pr o]
Targets: IDebug j ﬂl
=43 Debug

[Listings

-1 Sako Configuration File
1 Sahlo Help Files

; Sakvo Libraries

.17 Sako Sources

(1 Sources

Figure 3: Project Window with Groups

Now let's setup the project's options for processor type, Salvo's
pathnames, etc. for your particular Atmel AVR microcontroller.

Select — Options — General — Target, and under Processor
configuration and Memory model make the appropriate
selections for your project.

Note Wherever possible, you should always choose a Processor
configuration that matches your target processor as closely as
possible. Avoid using the generic (-vN) options unless your
particular configuration requires them.

Your choice of Memory model will dictate which Salvo library
you usein this project.

AN-29 Building a Salvo Application with IAR's AVR C Compiler and Embedded Workbench IDE

Application Note

General

Figure 4: General Settings — Processor Configuration
and Memory Model

Select Project — Options — ICCAVR — Preprocessor and
define any symbols you may need for your project’, and add the
include paths $PROJ_DI R$\ and c: \ sal vo\i nc\ :

$TOOLKIT_DIR$ASRCYCLIBANCY
$PROJ_DIRS,
Chsakohing

Figure 5: ICCAVR Settings — Project Include Paths and
Defined Symbols

Next, select XLINK — List — Generate Linker listing. This will
create a useful . map file with the application's ROM and RAM
requirements, etc. Under XLINK — Include, ensure that the
automatically selected . xcl linker filename matches your target
processor.”

AN-29 Building a Salvo Application with IAR's AVR C Compiler and Embedded Workbench IDE

Application Note

FTOOLKIT_DIR$YLIBY,

Figure 6: XLINK Settings

Lastly, under C-SPY — Setup, select the Driver (ICE200
emulator, JTAG emulator Tool, ROM-monitor CC or
Simulator) and ensure that the Device description file is the
appropriate one for your AVR:

(T

Figure 7: C-SPY Settings — Project Chip Description File

Select OK to finish configuring your project.

AN-29 Building a Salvo Application with IAR's AVR C Compiler and Embedded Workbench IDE

PUMPKIN Application Note

Adding your Source File(s) to the Project

Now it's timeto add files to your project. Choose Project — Files,
C/C++ Source Files (*.c,*.cpp,*.cc) under Files of type, select
Sources under Add to Group, navigate to your project's
directory, select your main.c and Add. Your Project Files
window should look like this:

Project Files 2

Lookin: | terp e 5| =il

File name: |main.c

Files of type: IC:’C++ Source Files (*c*cpp*co) j

Add to Group:

ISDurces j

Files in Graup:

Cihitempimain.c Add
Addd All
Bemove

Femove All
Done | Cancel |

Figure 8: Project Files Window

When finished, select Done, and your project window should look

likethis:
Targets: IDebug j ﬂl

=23 Debug
a Listings
/32 Salvo Configuration File
Sako Help Files
; Sakvo Libraries
a Sahko Sources
=23 Sources
=-[F mainc

Figure 9: Project Window with Project-Specific Source
Files

6 AN-29 Building a Salvo Application with IAR's AVR C Compiler and Embedded Workbench IDE

PUMPKIN

Application Note

Adding Salvo-specific Files to the Project

Adding a Library

Now it's time to add the Salvo files your project needs. Salvo
applications can be built by linking to precompiled Salvo libraries,
or with the Salvo source code files as nodes in your project.

For a library build, a fully-featured Salvo freeware library for the
AT90S8515 when wusing the tiny memory model is
sfiaravrit-a.r90.> Seect Project — Files, Library/Object
Files (*.r*) under Files of type, Salvo Libraries under Add to
Group, navigate to the \'sal vo\li b\i aravr-v2 directory, select
sfiaravrit-a. r90 and Add:

Project Files

Look jn: I aliaravvg

= &l ol ol B

] sfiarawrlt-a.ril
[sfiarasalt-c ra0
[sfiarasalt-e ra0
=] sfigrawrOt-r.r0
=] sfiarawr0t-La0
=] sfiaraw1s-a.r90
] sfiara1s-d.r90

sfiarant! s-rm.ra0
sfigrant! 54690
sfirant! ta.r90
sfigrawrit-d.rao
sfiaravrit-e.rii
sfigrawrlt-m.rio
sfiarawrt-tri0

sfiarawretd.ra0
sfiaranrete.r90
sfiarawret-m.ra0
sfiarawrzi-t.rad
sfiaravris-a.ril
sfiarawris-d.ril
sfiarawris-e.ril

sfiaranris-tral st
sfiaranritardo st
sfiaranritd.ran st
sfigrawrite.ril st
sfigrawrit-m.rid st
sfigranrit-tral st
sfiarawrdl-a.ril st

] sfiaranr1s-e.0 sfiaranvr2t-a.rdl sfiarawrds-m.ra0 sfiaranrdl-cl.ril st
4| | i
File pame: |afiaravr1 ta.ral
Files of type: |Library/Object Files () =l
Add to Group:
ISa\vo Libraries j
Files in Group:
Chsaleolibyiarawe-w 2y sfiarawe a0 Add
Al All
Eemove
Eemowve All
Dione | Cancel |

Figure 10: Adding the Library to the Project

Note Salvo librariesfor IAR'sv2.x AVR C compilers are located
in \'salvo\lib\iaravr-v2. Libraries for v3.x compilers are
located in \salvo\lib\iaravr-v3. The libraries are not
interchangeable.

Select Done when you are finished. You can find more
information on Salvo libraries in the Salvo User Manual and in the
Salvo Compiler Reference Manual RM-IARAVR.

AN-29 Building a Salvo Application with IAR's AVR C Compiler and Embedded Workbench IDE

PUMPKIN

Application Note

Adding Salvo's mem.c

Salvo library builds also require Salvo's mem ¢ source file as part
of each project. Choose Project — Files, C/C++ Source Files
(*.c,*.cpp,*.cc) under Files of type, select Salvo Sources under
Add to Group, navigate to \ sal vo\src, select mem ¢ and Add.
Y our Project Files window should look like this:

Project Files 2
Lookin: | i s i & ekl
array.c cyclich.c eflag.c inittch.c 8] i
[E] binsem.c B cyclich.c [®] eflag2.c [®]license.c Gt
[E] hinsem?2.c B cyclic?.c [®]id.c [®]merm.c [®
& chk.c E]debug.c [®]eventc [®]mso.c [®
& cyclic.c E]delay.c [®idlec [msg2c [®] o
& cyclic2.c E]delay?.c [®]initc [®]msgo.c [®] i
& cyclicic E]delaydc [®]initech.c [®msgg2.c [®] e
& cyclicd.c B destroy.c [®]initask c msggd.c EE
< | i
File name: |mem.c
Files of type: IC:’C++ Source Files (*c*cpp*co) j
Add to Group:
ISaIVU Sources j
Files in Graup:
Cihsalvo\srcimem.c Add

Acld All
Bemaove
Femove All
Done | Cancel |

Figure 11: Project Files Window

When finished, select Done, and your project window should look
likethis:

{13 Salvo Configuration File

{1 Salvo Help Files
=123 Salvo Libraries

L@ sfiaravritardn
3 Salvo Sources

@ memc
B3 Sources

L@ mainc

il myex] prj —[O]]
Targets: IDebug j ﬂl
=23 Debug

- Listings

Figure 12: Project Window with

Library, mem.c and User

Source File(s)

8 AN-29 Building a Salvo Application with IAR's AVR C Compiler and Embedded Workbench IDE

PUMPKIN Application Note

The salvocfg.h Header File

You will also need a sal vocf g. h file for this project. To use the
library selected in Figure 10, your sal vocfg. h should contain

only:
#def i ne OSUSE_LI BRARY TRUE
#defi ne OSLI BRARY_TYPE OSF
#def i ne OSLI BRARY_CONFI G CsA

Listing 1: salvocfg.h for a Library Build

Select Project — Files, All Files (*.*) under Files of type, Salvo
Configuration File under Add to Group, navigate to your
project's directory, select sal vocf g. h and Add:

Project Files x|

Loak in: |ﬁtemp |- ﬁl

HE main.c

H sahvocto b
ryex] dip
myex] pr

File narme: Isalvoc‘fg.h
Files aftype: |4l Files (4 =l
Add to Group:

ISa\vo Caonfiguration File j

Files in Group:

Cihternphsabaocfgh Add
Add Al
EBemowve

Eemove All

Daone | Cancel |

Figure 13: Adding the Configuration File to the Project
Y our project window should now look like this:

PImyex].prj =(0] x|
Targets: IDebug j ﬁl

=3 Debug
~{20 Listings
=3 Salvo Configuration File
B sahlvocfoh
{1 Salvo Help Files
43 Salva Libraries
[sfiaravetardn
£33 Salvo Sources
LB merm.c
=43 Sources
LB maine

Figure 14: Project Window for a Library Build

AN-29 Building a Salvo Application with IAR's AVR C Compiler and Embedded Workbench IDE 9

SUINY Application Note

Tip The advantage of placing the various project files in the
groups shown above is that you can quickly navigate to them and
open them for editing, etc.

Proceed to Building the Project, below.

Adding Salvo Source Files

If you have a Salvo Pro distribution, you can do a source code
build instead of a library build. The application in
\ sal vo\ ex\ ex1\ mai n. ¢ contains calls to the following Salvo user

services:
OS_Del ay() Oslnit()
OS Wi t Bi nSem() GSSi gnal Bi nSem()
OSCr eat eBi nSem() OSSched()
OSCr eat eTask() OSTi ner ()
CSEi ()

You must add the Salvo source files that contain these user
services, as well as those that contain internal Salvo services, to
your project. The Reference chapter of the Salvo User Manual lists
the source file for each user service. Internal services are in other
Salvo source files. For this project, the completelistis:

bi nsem ¢ mem ¢

del ay. c portiaravr.c
event. c gins.c
idle.c sched. c
init.c timer.c
inittask.c

To add these files to your project, select Project — Files, All
Files (*.*) under Files of type, Salvo Sources under Add to
Group:, navigate to the \'sal vo\src directory, select® the files
listed above and Add:

10 AN-29 Building a Salvo Application with IAR's AVR C Compiler and Embedded Workbench IDE

PUMPKIN

Application Note

Project Files 2] x|
Lookin: [s ~ & & e
make cyclic4.c destroy.c inittask.c

) array.c Povolicsc Pieflage Pinittch.c [2l
H binserm.c Povclichc Peflag2.c Plicensec [sl
R binsem?2.c Povclic?c Psid.c Pmem.c [sl
B chik o Pdebug.e Peventc Pimegc [sl
H covclic.c Poeleyc Pidlec Pimeg2.c [sl
B cyclicz.c Pdelay?c initc Primeggc [S
B cyclic3c Poelayic Binitechc Bimegg2c B
| | 3|
File name: I

Files of type: IC,-"C++ Source Files (*.c*.cpp*.co) j

Add to Group:

ISa\VD Sources j

Files in Group:

Chsalqosrchhinsem.c = Add
Cihsalvo\srchdelay.c M,
Chsalqaolsrcieventc Addd All

Chsaleohsrchidle o

Chgakalsrchinitc Bemove

Chsalvohsrchinittask.c —

Chsalvosrchmem.c LI Eemove All
Done | Cancel |

Figure 15: Adding Salvo Source Files to the Project

Select Done when finished. Y our project window should now |ook
likethis:

7l myex1 _prj —[O] %]
Targets: IDebug j ﬂl

Ea Debug
{:I Listings

=3 Salvo Configuration File

B sahwocigh
{11 Salvo Help Files
/4 Salva Librarias
=3 Salvo Sources
~[& hinsem.c
B delayc
~[@ eventc
~[@ idle.c
~[B initec
[inittask.c

B mem.c
~[@ potiaravr.c
~[@ gins.c
~[@ sched.c
~[@ timerc
=23 Sources

LB mainc

Figure 16: Project Window for a Source Code Build

The salvocfg.h Header File

You will also need a salvocfg.h file for this project.
Configuration files for source code builds are quite different from
those for library builds (see Listing 1, above). For a source code
build, the sal vocf g. h for this project contains only:

AN-29 Building a Salvo Application with IAR's AVR C Compiler and Embedded Workbench IDE 11

SUINY Application Note

#def i ne OSBYTES OF DELAYS 1
#def i ne OSENABLE_ | DLI NG_HOOK TRUE
#def i ne OSENABLE_BI NARY_SEMAPHORES TRUE
#def i ne OSEVENTS 1
#def i ne OSTASKS 3

Listing 2: salvocfg.h for a Source Code Build

Building the Project

For a successful compile, your project must also include a header
file (e.g. #i ncl ude <i 08515. h>) for the particular chip you are
using. Normally, this is included in each of your source files (e.g.
mai n. c), or in a header file that's included in each of your source
files (e.g. mai n. h).

With everything in place, you can now build the project using
Project — Make or Project — Build All. The build results can
be seen in the map file located in the project's Debug\ Li st
subdirectory:®

I AR Uni versal Linker V4.530 WN

Link tine = 21/ Feb/ 2004 16:03:32
Target CPU = A90
List file = C:\tenp\Debug\List\nyexl. nap

Qutput file 1 C:\ 't enp\ Debug\ Exe\ nyex1. d90
Format: debug
UBROF version 8.0.2
Using library nodules for G SPY (-rt)
Command line = C/\salvo\lib\iaravr-v2\sfiaravrilt-a.r90
C:\ t enp\ Debug\ Obj \ mem r 90
C:\ 't enp\ Debug\ Obj \ nmi n. r 90
C\IAR EW3\avr\lib\cl1t.r90 -o
C:\ t enp\ Debug\ Exe\ nyex1.d90 -rt -|
C:\tenp\ Debug\ Li st\ nyexl. map -xnms
-1 C\IAR EV3\avr\LIB\ -f
C:\ I AR\ EW23\ avr\src\tenpl at e\ cf g8515. xcl
(-D_..X_INTVEC_SI ZE=1A -D_.. X_FLASH END=1FFF
. X_SRAM BASE=60 - D ..X_ SRAM TEND=FF
. X_SRAM END=25F - D_. . X_EEPROM END=1FF)
. X_HEAP_SI ZE=10 -D_..X_CSTACK_SI ZE=20
. X_RSTACK_SI ZE=20
-e_small _wite=_formatted_wite
-e_nmediumread=_formatted_read -f
C:\I AR EW23\ avr\src\tenpl ate\cfglt.xcl (-ca90
-W29 - Z(CODE) | NTVEC=0- (_. . X_I NTVEC_SI ZE- 1)
- Z(CODE) TI NY_F=_. . X_FLASH_BASE- FF
- Z(CODE) NEAR_F=_. . X_FLASH BASE- _.. X_FLASH_END
- Z(CODE) SW TCH=_. . X_FLASH_BASE- _.. X_FLASH END
-Z(CODE) | NI TTAB=_. . X_FLASH_BASE- _. . X_FLASH_END
- Z(CODE) DI FUNCT=_. . X_FLASH BASE- _. . X_FLASH_END
- Z(CODE) CODE=_. . X_FLASH BASE- _.. X_FLASH END
- Z(CODE) TINY_I D=_. . X_FLASH_BASE- _. . X_FLASH_END
- Z(CODE) NEAR_| D=_. . X_FLASH BASE- _. . X_FLASH_END
- Z(CODE) CHECKSUM=_. . X_FLASH BASE- _.. X_FLASH END
-Z(DATA) TINY_I, TINY_Z, TINY_N=_. . X_SRAM BASE- _. . X_

-D_.
-D_.
-D_.
-D_..

SRAM TEND

- Z(DATA) CSTACK+_. . X_CSTACK_SI ZE=_. . X_SRAM BASE- _.
. X_SRAM TEND

- Z(DATA) HEAP+_. . X_HEAP_SI ZE=_. . X_SRAM BASE- _.. X_S
RAM TEND

- Z(DATA) RSTACK+_. . X_RSTACK_SI ZE=_. . X_SRAM BASE- _.
. X_SRAM END, _. . X_EXT_RSTACK_BASE- _. . X_EXT_RSTACK_
END

- Z(DATA) NEAR |, NEAR Z=_. . X_SRAM BASE- _. . X_SRAM EN
D, _..X_EXT_SRAM BASE- _.. X_EXT_SRAM END

- Z(DATA) NEAR C=_. . X_EXT_ROM BASE- _. . X_EXT_ROM END
- Z(DATA) NEAR N=_. . X_EXT_NV_BASE- _. . X_EXT_NV_END

- Z(XDATA) EEPROM | , EEPROM N=1- _. . X_EEPROM_END)
-D_..X_FLASH BASE=_. . X_I NTVEC_SI ZE - H1895

- h(CODE) 0- (_. . X_I NTVEC_SI ZE- 1)

-D_.. X_EXT_SRAM BASE=_.. X_SRAM BASE

-D_. . X_EXT_SRAM END=_. . X_SRAM BASE

-D_. . X_EXT_ROM BASE=_. . X_SRAM BASE

-D_.. X_EXT_ROM END=_.. X_SRAM BASE

B R R T o o T e R R R I o o R I o o T o o o o
HHFHBHAFAF B FEFRFRH BRI EHRBRFEFRREEESF RS HH

12 AN-29 Building a Salvo Application with IAR's AVR C Compiler and Embedded Workbench IDE

PUMPKIN

Application Note

D_.. X_EXT_NV_BASE=_. . X_SRAM BASE
D .. X_EXT_NV_END=_..X_SRAM END
D_.. X_EXT_CSTACK_BASE=_. . X_SRAM BASE
D_.. X_EXT_CSTACK_END=_. . X_SRAM BASE
D .. X_EXT_RSTACK_BASE=_.. X_SRAM BASE
D_.. X_EXT_RSTACK_END=_. . X_SRAM BASE
#
Copyright 1987-2002 | AR Systens. All rights reserved.
[SNI P]
H KAk AR K KR KA K KRRk R K KKk
* SEGVENTS | N ADDRESS ORDER *
* *
SEGVENT SPACE START ADDRESS END ADDRESS SIZE TYPE ALIGN
I NTVEC CCDE 00000000 - 00000009 A com 1
?FI LL1 CODE 0000000A - 00000019 10 rel 0
I NI TTAB CODE 0000001A - 0000001F 6 rel 0
CCDE CCDE 00000020 - 000005FD 5DE rel 1
ABSOLUTE (ABS) DATA 0000001C rel 0
DATA 0000001D
DATA 0000001E
DATA 0000001F
DATA 00000037 - 00000037 1
DATA 00000038 - 00000038 1
DATA 0000004A - 0000004B 2
DATA 0000004C - 0000004D 2
DATA 0000004E - 0000004E 1
DATA 00000059 - 00000059 1
TINY_I DATA 00000060 dse 0
TINY_Z DATA 00000060 - 0000007F 20 rel 0
CSTACK DATA 00000080 - 0000009F 20 dse 0
RSTACK DATA 000000AO0 - 00000OBF 20 dse 0
B
* END OF CROSS REFERENCE *
* *

Kk kkkhhkkhkkkhhkhkhkkhhkhkhkkhkkhkkkhkkkk Kk k

1 518 bytes of CODE menory (16 range fill)
104 bytes of DATA nenory

Errors: none
War ni ngs: none

Listing 3: Library Build Results (Abbreviated)

Note The Embedded Workbench for Atmel AVR projects
supplied in the Salvo for Atmel AVR and MegaAVR distributions
contain additional help files in each project's Salvo Help Files

group.

Tip If you configure Embedded Workbench to display the
memory utilization for individual source files and the complete
application you won't have to look in the map file. Select Options
— Settings — Make Control — Message Filtering Level and
choose All.

AN-29 Building a Salvo Application with IAR's AVR C Compiler and Embedded Workbench IDE 13

PUMPKIN Application Note

Testing the Application

C-SPY

Y ou can test and debug this application using the C-SPY debugger
and either the simulator or other debugging hardware. To launch
C-SPY, choose Project — Debugger.

You can use al of C-SPY's supported features when debugging
and testing Salvo applications. This includes breakpoints, profiling,
intelligent watch window, cycle counting, etc.

4 CSPY - myex1.d90 15 [=] B
File Edit Yiew Execute Control AWFR Options ‘Window Help

Elezaczzzlzey ||«imelaoae(as0 2|

Expression “alue -
FORTE 2

EgStneel) oo -
Bl Source =10] %]
Imain.c j Imain j
void Task?(void) =]
i

fo é;:;eiay(40, Task3a); .J

PORT “~= 0Ox08;
0535ignalBinSem (EINSEML_F) ;

I Register
} CYCLES

} IU[MEEBUSH —

RO Rl R2
laa Inn Inn_ I

void main(void)

{

InitPORT() ; =
A
A Profiling)9] ES
|& =/ | @ |[6680311
Function | Count Flat Time (cyclas) | Flat Tirne (%3] | Accumulated Tim...l Accurmnulatad Tim..
main Taskl 1 425 46672560 |
mainTask? 1 113 46672135 I
main’ Task3 1 A6E72022 I, 15672022 I
i main 1 7154 46679714 |
mainylntvector 0 0 0
4| | ¥
Ready |Lr 88, Col 3 FIFARIENY 04:13:03 Phd

Figure 17: Testing a Salvo Application in C-SPY

Note C-SPY supports debugging at the source code level. Only
applications built from the Salvo source code or a Salvo Pro library
enable you to step through Savo services (eg.
OSCr eat eBi nSen()) at the source code level. Regardless of how
you build your Salvo application, you can aways step through
your own C and assembly code in C-SPY .

14 AN-29 Building a Salvo Application with IAR's AVR C Compiler and Embedded Workbench IDE

PUMPKIN

Application Note

AVR Studio

To test your Salvo application in AVR Studio,® under File —
Open File ..., navigate to your project's Debug\ Exe subdirectory
and open the object (*. d90) file:

Open . 2
Look jn: I@Exe | gl

myex].d30

File name Imyex] Reiali] Open |
Files oftype: |4l Files (%) =l Cancel |

Open as: IAuto j

Figure 18: Opening the Object File

Select Open. AVR Studio will load the object file, then present
another window wherein you can select a Debug Platform and a

Device:
Select device and debug platform ;
— Select debug platform and device
Debug Platorm: Device:
ICEZ00 ATEERFA01 B
AR Simulator ATI0S1200
ICEED ATADSZ313
ICE40 ATI0SZ323
JTAGICE ATINSZ343
ATIDS4414
ATI0S4433
ATINS4434
ATI0S8535
ATmegalld
ATmegal2d =
= Open Blatorm Cptisns
Help | << HEh | [Enti>> | Finish | Cancel | war. 4.08.310

Figure 19: Selecting the Debug Platform and Device

Select Finish. AVR Studio will configure the simulator, load the
object file, and setup for source-level debugging at the start of your
mai n():

AN-29 Building a Salvo Application with IAR's AVR C Compiler and Embedded Workbench IDE 15

PUMPKIN

Application Note

AVRStudio - c:\tempimain.c I =] B
: Ele Project Edit Yiew Tools Debug Window Help

DEEFG s BeSs cOEEH (FHEESE 2 B0k BBROOES R
 [race Disabled Tl W LT iMARAERES QM e e

WA i - B c:\temp\main.c !E[E
Names [alus void Task3(wvoid) =
B Stack Monitor] {
= B8 110 AT30S8515 for (::) §
-1 ANALOG_COMPARATOR 05_Delay (40, Task3a): i
-8 cPU PORT ~= 0x08;
w3 EEPROM 02%ignal BinSem (ETHEEMI P);
-5 EXTERMAL INTERRUPT B ¥
-2 PORTA
-2 PORTE
= PORTE 0x02
DDRB 0xFF vaid main({ void)
= PINB 0x02 {
w22 PORTC InitPORT();
-2 PORTD | . .
22 5Pt Init(); =
- TIMER_COUNTER_O =l 4 AV
Srroject F1jo [@nfo | ::\temp\mam.:|
’f Loaded plugin STKE00 :‘ [Program =] 8ne ’f ’f Mare | Value | Ty
Loaded partfile: C:\Program Files\Atmel AVR T — 0O3tcbArea [...] str
g AWVR Simulator Please waitwhile configuring sin § gggggg ‘;‘g gg ig o i’ g;f § + [0] {...} str
£ | AVRSimulator AT30S8515 Configured OK & e R g l=] + 1) [str.
Loaded objectile: ChtermpiDebugExelmyex] . 00000C 18 95 20 + [2] {...} str)
000010 3F BY FO ..
W4 v Bl) Messagl] < E[(I 000014 °F0 83 21 .. & « 4 v »\Watch 1 AWWatch 2 A Wateh 3 £ ¥a

ATIN58515 AWR Simulator Auto Stopped 6 Ln&9, Col 1 CAP NUM SCRL 7

Figure 20: Source-Level Debugging in AVR Studio

In addition to debugging in the AVR Studio simulator, you can
also download your application to an Atmel STK500 development
board by selecting Tools — STK500/... — STK500/..., and then
programming the device by sdecting Use Current
Simulator/Emulator FLASH Memory,

Migrating to Embedded Workbench for Atmel AVR

v3

Existing Salvo applications built as projects (*. pj t) under IAR's
Embedded Workbench for Atmel AVR v2 can be migrated to v3
using the following steps.

* In Embedded Workbench for Atmel AVR v3, choose
File — New — Workspace to create a new
workspacefile (*. eww).

* Choose Project — Add Existing Project ..., select
Files of type: Old Project Files (*.prj, *.pew),
navigate to the old project and select Open, then OK.

* Under Project — Options, select the device (e.g.
AT90S8515) under General — Target —
Processor configuration, if necessary. Set the
desired optimizations under ICCAVR —
Optimizations.

* Remove the existing Salvo library from the project,
and replace it with a same-named one from
\salvo\lib\iaravr-v3.

16

AN-29 Building a Salvo Application with IAR's AVR C Compiler and Embedded Workbench IDE

PUMPKIN

Application Note

Troubleshooting

When finished, the new project window will look like this:

% myex1 = - myex] = =(0] x|
A A A ——ssss—— y_—_——
Debug vl
Files I=E
B Bmyex1 - Debug * v
=1 [Listings

L B rmyex1.map

=1 LA 3alvo Configuration File
L B satvocfg.h

— A 3alvo Help Files

Salvo Libraries
L [sfiargwrita.r@n
= A 3alvo Sources
A mem.c
= [AS0urces
[main.c

riyex]

Figure 21: Project Window for a Library Build in
Embedded Workbench for Atmel AVR v3

Linker Error: Incompatible runtime models

If you are doing alibrary build and your version of the IAR AVR
C Compiler is different from that used to build the Salvo library
you have added to your project, the linker will issue an error like
thisone:

A\ Messages 9 [u] S
Messages -l

-D_¥_EXT_ROM_BASE=_ X _SRAM_BASE -D_ x_EXT_ROM_END=_ x%_SRAM_BASE -D_.X_EXT_Nv_BASE=_.X_SRAM_BASE-D_
-D_%_EXT_CSTACK_BASE=_ %_SRAM_BASE -D_¥_EXT_CSTACK_END=_¥_SRAM_BASE -D_ %_EXT_RSTACK_BASE=_%_SRA
Files\lAR Systems\Embedded Warkbench 3.2%awrlibclibhcl1tra0

AR Universal Linker V4 56F /386
Copyright 1987-2003 IAR Systems. All rights reserved
Error[e117]: Incompatible runtime models. Module hinsem specifies that'__rt_wversion' must be '2.30', but module main has the value '3

Total number of errors: 1
Total number of warnings: 0 =
« | v

Build I Find in Files | Tool Oulpull

Figure 22: Linker Error due to Version Mismatch (EW v3)

This type of error occurs because the Salvo library — in this case,
sal vo\lib\iaravr-v2\sliaravrit-a.r90 — was built with v2
of the IAR AVR C Compiler, which defines a symbol called
__rt_version as 2.30, yet the project was built in EW v3, which
expects __rt_version to be 3. The solution is smply to use the
Salvo library appropriate for the version of the IAR AVR C
compiler you are using - in this case,
salvo\lib\iaravr-v3\sliaravrilt-a.r90.

AN-29 Building a Salvo Application with IAR's AVR C Compiler and Embedded Workbench IDE 17

PUMPKIN

Application Note

Note _rt _version is used by XLINK at link time to ensure
consistency between modules (C, Embedded C++ or assembler).
See the IAR AVR C/EC++ Compiler Reference Guide for more
information.

Note As long as the major version number of the IAR AVR C
Compiler you're using (and therefore _ rt_version's vaue)
matches that used to generate the Salvo libraries, you will be able
to link to the precompiled Salvo libraries that are supplied in each
Salvo for Atmel AVR and MegaAVR distribution. E.g. v3.x can be
used with Salvo libraries built with v3.10A."

__rt_versi on mismatches like this will occur whenever Salvo
users and the Salvo for Atmel AVR and MegaAV R distribution are
at substantialy different versions of the IAR AVR C compiler.
Therefore, we strongly recommend that Salvo users keep their IAR
AVR C compiler up-to-date to avoid any potential difficulties.
Salvo Pro users can avoid any potential problems by simply re-
building the Salvo libraries with their own version of the IAR
AVR C compiler.

This type of linker error will not happen with source code builds,
e.g. when using Salvo Pro to build an application using the Salvo
source files as project nodes instead of linking to a Salvo library.

Application Crashes After Changing Processor Type

Example Projects

Remember to #i ncl ude the appropriate header file for your AVR
variant (see Building the Project, above). A common cause for such
crashes is a difference in interrupt vector locations or definitions
between two members of a processor family. Mainline code may
work correctly, but the application will crash if interrupt vectors
are not in the right locations.

Example projects for IAR's AVR C compiler can be found in the
\'sal vo\tut\tul-6\sysac directories. The include path for each
of these projects includes \sal vo\tut\tul\sysac, and each
project defines the SYSAC symbol.

Complete Salvo Lite library-build projects are contained in the
project files \salvo\tut\tul-6\sysac\tul-6lite.*. These
projects also define the MAKE_W TH_FREE_LI B symbol.

18 AN-29 Building a Salvo Application with IAR's AVR C Compiler and Embedded Workbench IDE

PUMPKIN

Application Note

Complete Salvo LE library-build projects are contained in the
project files \salvo\tut\tul-6\sysac\tul-6le.*. These
projects also define the MAKE_W TH_STD LI B symbol.

Complete Salvo Pro library-build projects are contained in the
project files \'sal vo\tut\tul-6\sysac\tul-6prolib.*. These
projects also define the MAKE_W TH_STD_LI B symbol.

Complete Salvo Pro source-code-build projects are contained in
the project files \'sal vo\tut\tul-6\sysac\tul-6pro.*. These
projects aso define the MAKE_W TH_SOURCE symbol.

Note Tutorial and example projects are provided for IAR
Embedded Workbench for Atmel AVR v2 (. prj files) and IAR
Embedded Workbench for Atmel AVR v3 (*. ewp & *. ewwfiles).

This Salvo project supports a wide variety of targets and compilers. For use
with IAR's AVR C compiler, it requires the SYSAC defined symbol, as well as
the symbols MAKE_W TH FREE_LI B or MAKE_W TH_STD LI B for library
builds. When you write your own projects, you may not require any symbols.
We recommend using the Embedded Workbench's argument variables like
$PROJ DIR$ and $TOOLKIT_DIR$ whenever possible.

This Salvo Lite library contains al of Savo's basic functionality. The
corresponding Salvo LE and Pro libraries are diaravrit-ar90 and
dliaravrltiar90, respectively.

Y ou can Ctrl-select multiple files at once.

We recommend that you add the project's map file to your project's Listings
group.

6 AVRStudio v4.08 is shown.

In this example, the major version number is 3.

AN-29 Building a Salvo Application with IAR's AVR C Compiler and Embedded Workbench IDE 19

	Building a Salvo Application with IAR's AVR C Compiler and Embedded Workbench IDE
	Introduction
	Before You Begin
	Related Documents
	Creating and Configuring a New Project
	Adding your Source File(s) to the Project
	Adding Salvo-specific Files to the Project
	Adding a Library
	Adding Salvo's mem.c
	The salvocfg.h Header File
	Adding Salvo Source Files
	The salvocfg.h Header File

	Building the Project
	Testing the Application
	C-SPY
	AVR Studio

	Migrating to Embedded Workbench for Atmel AVR v3
	Troubleshooting
	Linker Error: Incompatible runtime models
	Application Crashes After Changing Processor Type

	Example Projects

