

AN-3
Application Note

750 Naples Street • San Francisco, CA 94112 • (415) 584-6360 • http://www.pumpkininc.com

created by Andrew E. Kalman on May 11, 2000 updated on May 20, 2001
All trademarks mentioned herein are properties of their respective companies.

Salvo, Banked Objects and the HI-
TECH PICC Compiler

Introduction
One of the many attractions of Salvo, The RTOS that runs in tiny
places™, is how easy it makes intertask communications, e.g. by
enabling you to pass messages between tasks.

Instead of contiguous RAM, some processors have banks of RAM
due to addressing restrictions or a small opcode size. Salvo
messages use message pointers, which can point to anywhere in
RAM or ROM.1 To use messages, you need to be comfortable with
pointers and banked objects.

This Application Note explains how to use Salvo message pointers
with banked objects and the HI-TECH PICC compiler.

Note This Application Note references the Microchip PIC16C77
one-chip microcontroller. It has 4 banks of RAM, Bank 0 (0h-7Fh)
through Bank 3 (180h-1FFh), each with up to2 80 bytes of RAM.
Other banked processors may be similar.

PICC and the bankn Special Type Qualifier
With the exception of auto variables and parameters, you can place
any object into any bank, assuming it will fit there. PICC's special
type qualifiers for locating objects in a particular bank are of the
form

bank1
bank2
bank3

for the desired RAM bank. Bank 0 is the default RAM bank, so to
place something in Bank 0, no type qualifier is used.

 Application Note

2 AN-3 Salvo, Banked Objects and the HI-TECH PICC Compiler

Simple Banked Objects
Below are some simple declarations in C. First, here's a long int
in Bank 0:

long int pos;

Here's an int in Bank 1:

bank1 int mem;

Here's an array of static chars (a string) in Bank 2:

static bank2 char strRc[SIZEOF_STR_RESP+1] = "\0";

And here are some const chars in ROM:

const char row30[6] = { 14, 13, 11, 7, 15, 15 };

These examples are easily understood, and once declared with the
proper type qualifiers, you can access an object without worrying
which RAM bank it's located in.

You can use C's typedef to make your code easier to read and
more robust. For example,

typedef bank1 char bank1char;

defines a type bank1char of char objects in Bank 1. Declaring

bank1char temp1, temp2, temp3, temp4;

will place four char variables named temp1-temp4 in Bank 1. You
can now use bank1char throughout your code when declaring
char variables in Bank 1. If you choose to move all of those
variables to another bank, then changing the bank1 type qualifier
in the typedef is all that is necessary.

Pointers, Banked Pointers and Pointers to Banked
Objects

Learning to use pointers with banked RAM may take a bit longer.
Here's a banked pointer to a char, i.e. the pointer is located in
Bank 2, but the char it points to is located in Bank 0:

char * bank2 charP;

Here's a (unbanked) pointer to a banked char, i.e. the pointer is
located in Bank 0, but the char it points to is in Bank 1:

 Application Note

AN-3 Salvo, Banked Objects and the HI-TECH PICC Compiler

3

bank1 char * charP;

This is the same thing:

char bank1 * charP;

Here's a banked pointer to a banked char, i.e. the pointer is in Bank
1 and the char is in Bank 2:

bank2 char * bank1 charP;

Lastly, here's a pointer to a pointer to a char, all in separate banks:

bank2 char * bank1 charP * bank3 charPP;

Passing Banked Objects as Parameters
You can always pass a banked object by value, e.g.:

void MyFunction(int parm1)
{
 parm1++;
}

and

MyFunction(mem);

where mem is as declared as a bank1 int will work correctly.3 But
if you want to pass the object by reference, and the object is
banked, you must declare the pointer parameter with the proper
special type qualifier, e.g.:

void MyFunction(bank1 int * parm1)
{
 *parm1++;
}

and

MyFunction(&mem);

If you fail to declare the pointer parameter properly, your function
will operate on an object with the same address (modulo 80h) but
in a different bank – Bank 0 if no type qualifier is present. In the
above example, if the linker places mem at B1h and bank1 is left
out of MyFunction()'s parameter declaration, then the function
will increment the two-byte value starting at (B1h-80h) in RAM

 Application Note

4 AN-3 Salvo, Banked Objects and the HI-TECH PICC Compiler

Bank 0, or 31h. A mistake like this will cause unpredictable
behavior in your program and must be avoided.

Salvo's Message Pointers
Suppose you're using a Salvo message queue to communicate
between two tasks. You have an array in memory, e.g.:

bank1 char myArray[6];

that contains one-character commands. You pass those commands,
one at a time, via a message queue, to another task:

OSSignalMsgQ(MSGQ1, (OStypeMsgP) &myArray[i]);

Each element of the message queue is a Salvo message pointer of
type OStypeMsgP, usually predefined as void *, i.e. a pointer to
anything. The power of using message pointers becomes apparent
when you realize that there are no restrictions on what a message
pointer can point to. It can point to a char, an int, a const, a
structure, another pointer, a function, etc. As long as both parties
agree on what a particular message points to, the information will
pass correctly from sender to receiver.

In the example above, the messages in the message queue are
pointers to an array of char in Bank 1. The (OStypeMsgP)
typecast is used in OSSignalMsgQ() to convert &myArray[i],
which is a pointer to a char in Bank 1, into a message pointer.
When another task receives the message, it will have to convert
(via another typecast4) the pointer back to the appropriate type
before dereferencing it:

void TaskRcv (void)
{
 char cmd;
 OStypeMsgP msgP;

 for (;;)
 {
 OS_WaitMsgQ(MSGQ1, &msgP, TaskRcv2);
 cmd = * (char *) msgP; /* wrong! */
…

Sadly, the typecast above is not entirely correct. That's because
we're asking the PICC compiler to convert a message pointer to a
char pointer (i.e. a pointer to a char in Bank 0), when what we
really want is a bank1 char pointer! The correct line is:

 Application Note

AN-3 Salvo, Banked Objects and the HI-TECH PICC Compiler

5

 cmd = * (bank1 char *) msgP;

We could have avoided this confusion by defining:

typedef bank1 char myBank1Array;

by declaring:

myBank1Array myArray[6];

and by writing:

cmd = * (myBank1Array *) msgP;

Conclusion
If you run out of Bank 0 RAM in your application you'll need
PICC's special type qualifiers to locate objects in other RAM
banks. If you use pointers to access those objects, you need to pay
close attention to declarations and typecasts to ensure that your
pointers are pointing to what you think they're pointing to. Using
typedef can help you avoid certain common mistakes.

1 On some processors a Salvo configuration option may need to be used for

message pointers to point to RAM and ROM. On these processors, the default is
to point to RAM only.

2 Some locations are dedicated file registers, mirrored in other banks or simply not
available.

3 bank1 does not appear in the parameter declaration because PICC places all
parameters are in Bank 0.

4 Typecasting is a compile-time, not a real-time operation. Therefore it has no
effect on run-time performance per se.

	Salvo, Banked Objects and the HI-TECH PICC Compiler
	Introduction
	PICC and the bankn Special Type Qualifier
	Simple Banked Objects
	Pointers, Banked Pointers and Pointers to Banked Objects

	Passing Banked Objects as Parameters
	Salvo's Message Pointers
	Conclusion

