

AN-6
Application Note

750 Naples Street • San Francisco, CA 94112 • (415) 584-6360 • http://www.pumpkininc.com

created by Andrew E. Kalman on Mar 25, 2001 updated on Feb 20, 2002
All trademarks mentioned herein are properties of their respective companies.

Designing a Low-Cost
Multifunction PIC12C509A-based
Remote Fan Controller with
Salvo

Introduction
Salvo�, The RTOS that runs in tiny places�, is small enough to
fit inside the 8-pin Microchip PIC12C509A1 PICmicro® MCU
with its 41 bytes of RAM and up to 1024 instructions in ROM and
still leave plenty of room for a full-featured application.

This Application Note provides a detailed explanation of the entire
hardware and software design for a multitasking Fan Controller
application that
controls and
displays fan speed
and provides user
and remote inter-
faces, all on a
PIC12C509A
running Salvo.
The limited
resources
available required
some creative
solutions while
staying within a
conventional
multitasking
framework. How and why they were implemented is presented in
detail, with particular attention paid to timing issues.

The Fan Controller's application software (see Listing 6 below)
was written entirely in C in under two hours. A portable, battery-
powered demonstration version of the Fan Controller is shown in
Figure 1 above.

Figure 1: 8-pin PIC12C509A Fan Controller
running Salvo RTOS

 Application Note

2 AN-6 Designing a Low-Cost Multifunction PIC12C509A-based Remote Fan Controller with Salvo

Functional Description
The Fan Controller runs from a DC power source or, optionally,
three AA batteries for demonstration purposes. It accepts user
input in the form of up- and down-button keypresses. To increase
or decrease the fan speed, press the Up or Down keys, respectively.
Nine possible fan speed settings are available, indicated on an LED
bargraph as no segments lit (fan is OFF) to all eight segments2 are
lit (fan is at full speed). A beep tone is generated with each
keypress for user feedback.

Remote communications are provided over an RS-232 link.3 The
Fan Controller reports speed changes due to keypresses via the RS-
232 link. It also accepts various commands (see Command Set
below) and supports software flow control (XON/XOFF). The Fan
Controller is connected to a PC / terminal via a null-modem cable.

Several measures are taken to ensure long battery life. After thirty
seconds of inactivity the bargraph display is converted to a 1Hz
metronome with tick sound. After a total of two minutes of
inactivity the Fan Controller automatically shuts off the fan and
bargraph and goes to sleep. Either keypress will wake the fan
controller, as will activity on the RS-232 receive line. When it
wakes up, the Fan Controller restores the fan speed and bargraph
display.

Software Organization
The Fan Controller's software must perform the actions listed
below, some repetitively. The minimum number of I/O pins
required for each action is listed in ().

● Initialization and startup code (0)
● Sleep and wake-up properly (0)
● Detect and debounce keypresses (2)
● Change and maintain fan speed accordingly (1)
● Display fan speed on bargraph (up to 8)
● Beep on keypress (1)
● Transmit characters over RS-232 (1)
● Receive characters over RS-232 (1)

Listing 1: Fan Controller Actions

The ability to create separate tasks in Salvo to perform many of the
items above greatly facilitates writing the Fan Controller's
software. Normally one would create six tasks to handle the last six
actions above and also use Salvo's event services for semaphores
and intertask communications4 to control program flow. However,

 Application Note

AN-6 Designing a Low-Cost Multifunction PIC12C509A-based Remote Fan Controller with Salvo

3

the severely limited RAM of the PIC12C509A requires us to group
these items to fit into just three tasks and do without events
altogether. Despite these restrictions, it's quite easy to create a full-
featured application that uses multitasking to its advantage.

Each software component of the Fan Controller application is
described in detail below. We will take advantage of Salvo's
multitasking abilities as well as its delay services in writing this
application.

Note Listing 6 contains the source code described in the sections
below. Please see Design Challenges below for application-
specific information relating to the software and/or hardware.

Variables
Most compilers will automatically initialize variables to 0 at the
start of program execution with a small piece of code that executes
immediately after reset but before main(). Since we would like the
Fan Controller to remember the fan speed setting (and a few other
items) when it sleeps, it's necessary to qualify those variables as
persistent. Since some variables (e.g. sysStat.xmitOK) require
non-zero initial values anyway, we might as well initialize all of
them explicitly, and thereby do away with the variable
initialization routine that is transparently provided by the compiler
� this will save us a few instructions in ROM.

The lack of event services requires that various global flags and
semaphores be used. Semaphores like sysStat.beep are set in one
place (TaskReadKeys()) and cleared in another (TaskBeep()).
The lack of interrupts makes semaphore management very simple.
Flags like sysStat.xmitOK are set or cleared in one place
(RcvCmds()) and are read in other places (e.g. OutRS232()). speed
and sleepTimer are globally visible and are used in various
places.

Task Priorities
This application is not hard-real-time, and so task priorities are
more a luxury than a necessity. Since there are some ROM savings
to be realized when running without priorities, the
OSDISABLE_TASK_PRIORITIES configuration options was used.
See Source Code Listings below for the complete set of
configuration options used in this application.

 Application Note

4 AN-6 Designing a Low-Cost Multifunction PIC12C509A-based Remote Fan Controller with Salvo

main()
The application's main() is straightforward, with reset detection
and initialization happening before a main loop that calls the
scheduler and manages sleep. Of note are the means by which a
timer is employed, despite the lack of interrupts (see What? No
Interrupts! below), and the fact that Salvo is initialized and tasks
are created only once, immediately before power-on reset (POR).
Subsequent wake-on-pin-change resets bypass the initialization
and task-creation code. This was done to minimize the system's
startup time from sleep.

Locating the Software UART
Since the PIC12C509A has no hardware UART, RS-232
communications must be implemented in software. The lack of
interrupts means that the RS-232 receiver must poll the receive
data line on a regular basis and analyze the bitstream to decide if it
contains valid incoming data. The more often the line can be
sampled, and the slower the baud rate, the better the odds of
catching the complete transmission. Therefore InRS232() should
be called as often as possible. By ensuring that all of the tasks are
normally delayed, the odds at any time of one or more tasks
needing to be dispatched by the Salvo scheduler OSSched() are
very low. By calling InRS232() from within the same loop that
holds OSSched(), the time between successive calls to InRS232()
will usually be very short, maximizing its chances of "catching" an
incoming RS-232 transmission.

The software transmitter OutRS232() does not require any special
considerations.

TaskReadKeys()
Since key-reading is a periodic event, this task will use
OS_Delay(). TaskReadKeys() performs three major functions � i)
detecting keypresses and changing the speed setting accordingly,
ii) running the metronome when the Fan Controller naps, and iii)
implementing the fan speed changes by updating the bargraph and
transmitting a character via RS-232.

Each of the three functions runs, one after the other, every
SAMPLE_PERIOD ticks, unless a keypress has been detected, in
which case the delay will be DEBOUNCE_PERIOD. The metronome
runs independently of the other two tasks, i.e. it is not affected by
keypresses, etc. Placing it in TaskReadKeys() enables it to run
periodically. By reading sysStat.change outside of the keypress-

 Application Note

AN-6 Designing a Low-Cost Multifunction PIC12C509A-based Remote Fan Controller with Salvo

5

detecting algorithm, it's possible to force an update to the bargraph
and a beep by simply setting this semaphore elsewhere in the
program.

TaskSpinFan()
TaskSpinFan() implements a command-driven 8-step software
PWM in just 17 lines of C.5 Since the fan must spin continuously,
TaskSpinFan() monitors the global variable speed and sets the
PWM output pin accordingly. Changes to the fan speed take effect
in either one tick (if the fan is OFF or fully ON), or as soon as the
current PWM period ends if the fan is currently at an intermediate
speed.

TaskBeep()
TaskBeep() checks the semaphore sysStat.beep periodically and
if set, clears the semaphore and generates a beep tone.

Other Functions
The remaining functions are straightforward. Care was taken to
construct program statements (e.g. while() loops) so as to yield
the smallest possible code size. InRS232() and OutRS232() have
bit-period delays that are optimized for the chosen baud rate.

A Snapshot in Time
Since all three tasks are usually delayed by some number of system
ticks, and run for short periods when they're eligible, at any
particular instant in time all three tasks are likely to be delayed.
This leaves the scheduler with nothing to do. The timer counts
down the tasks' delays and makes each one eligible when its delay
expires. Therefore most of the time spent in main()'s loop is spent
in some very quick trips through OSTimer(), RcvCmd() and
OSSched(), with the additional overhead imposed by our Timer0
scheme and the need to monitor for going to sleep.

Command Set
The Fan Controller's commands, and its response to each one, are
shown in Listing 2 below.

'?': return current fan speed setting

 Application Note

6 AN-6 Designing a Low-Cost Multifunction PIC12C509A-based Remote Fan Controller with Salvo

'0': turn fan off
'1'-'8': set fan speed (8 is maximum speed)
'S', 's': sleep
'T', 't': sleep in two minutes
'W', 'w': stay awake indefinitely
XOFF: stops sending characters
XON: resumes sending characters

Listing 2: Command Set

Design Challenges
Packing all of the Fan Controller's desired functionality into an 8-
pin, 1K ROM PICmicro can be challenging. The sections below
highlight some of the difficulties (mainly hardware issues)
encountered and explain how they were solved through hardware
and/or software.

Just Six I/O Pins
The PIC12C509A has only five general-purpose I/O pins and one
general-purpose input pin. In order to use all six, the internal
oscillator (INTRC) with its fixed 4MHz frequency must be used.
Additionally, the six-GPIO-pins configuration precludes the use of
an external RESET signal, as well as the Timer0 counter mode.

Six I/O pins are not enough to satisfy the Fan Controller
requirement for an eight-segment LED bargraph display. One
solution is to add an external serial-to-parallel interface to
accommodate the bargraph. Serial-to-parallel interfaces require a
minimum of two or three output lines. Thus the Fan Controller
requires five output pins (two for bargraph, one for beeper, one for
fan and one for RS-232 Tx data) and three input pins (two for keys
and one for RS-232 Rx data). Clearly some pins will have to do
double-duty as both inputs and outputs.

Not Much Stack
Salvo requires a minimum of four levels of call�return stack. The
PIC12C509A has only a two-level call�return stack, which would
normally be a problem. Happily, the compiler used6 is able to
circumvent this limitation and support Salvo by intelligent use of
jump tables. This is transparent to the user and does not require
any special application coding.

 Application Note

AN-6 Designing a Low-Cost Multifunction PIC12C509A-based Remote Fan Controller with Salvo

7

What? No Interrupts!
While it does have a single timer resource � Timer0 (TMR0) � the
PIC12C509A has no interrupts. Since it would be nice to take
advantage of Salvo's time-based services (delays specified in
system ticks, in this case), this means that Salvo's timer needs to be
called in an unusual manner. Recall that OSTimer() is normally
called every system tick interval � a range of 2-20ms is typical for
a 4MHz PICmicro application. Since a periodic interrupt is not
available, Timer0 must be used in such a way to call OSTimer() at
something approaching a constant system tick rate.

One possible solution would be to have the PIC12C509A sleep,
and wake up every system tick. With all six GPIO pins dedicated
to I/O and with no external clock source, the only way to achieve
this is to use the watchdog timer (WDT) to wake us from sleep.
Unfortunately, the WDT period can vary wildly, and perhaps more
importantly, is too long (nominally 18ms) to be of use to us � more
on why below.

An alternative is to let Timer0 free-run in timer mode, monitor it
for rollover and call OSTimer() when this occurs. Therefore the
rollover period becomes the system tick period. As long as this
period is relatively long compared to the time spent in any other
single part of the application, the system tick rate � i.e. the rate at
which the application calls OSTimer() � will be relatively
constant. This is achieved with the following code snippet, called
repeatedly in the infinite for() loop at the end of the Salvo
application's main():

 tmpTMR0 = TMR0;
 if (tmpTMR0 < oldTMR0)
 OSTimer();
 oldTMR0 = tmpTMR0;

Listing 3: Calling OSTimer() Periodically without
Interrupts

With the internal 4MHz oscillator and a 1:16 prescalar assigned to
TMR0, OSTimer() is called approximately every 256 * 16 = 4096
instruction cycles. So we have a system tick period of
approximately 4ms, or a rate of approximately 250Hz.

As long as successive calls to the snippet in Listing 3 are not more
than 4ms apart, the system timer will never lose a tick. Looking
through the code, the longest operations (once the application is
running) are sending and receiving RS-232 characters. See Impact
of Software UART below for more information.

 Application Note

8 AN-6 Designing a Low-Cost Multifunction PIC12C509A-based Remote Fan Controller with Salvo

Effective and Inexpensive Fan Speed Control

Variable Voltage Drive
At first glance it might seem reasonable to control a 5Vdc fan's
speed by varying the voltage applied across it. Since the
PIC12C509A has no analog outputs, some sort of digital-to-analog
conversion must be employed. The simplest form of D-to-A is a
pulse-width modulated (PWM) pulsetrain followed by a low-pass
filter. High-frequency PWM signals are preferred as the passive
components values (resistors and capacitors) in the low-pass filter
are small and therefore inexpensive.

In order for this to work properly, the low-pass filter's cutoff
frequency must be sufficiently far below the PWM's frequency to
remove high-frequency ripple. Also, we must be able to vary the
PWM's duty cycle with sufficient resolution for the number of fan
speeds desired. Finally, driving the fan with closed-loop control
ensures that the voltage applied across the fan does not vary with
power supply fluctuations. Figure 2 depicts an analog fan control
circuit with a second-order low-pass filter7 first stage followed by a
closed-loop fan control output stage. The first stage's output is the
weighted the sum of a DC setpoint voltage (3/4 x 5Vdc) and the
PWM signal converted to DC (1/4 x 0-5V).

+5V

3

1

 2

 3

 2
1

2M

 5

 6
7

150

100k

.01uF
+5V

1M 1M

2uF

470k

1uF

PWM Out

Figure 2: PWM-driven Analog Fan Speed Control Circuit

DC fans usually operate over a range of 75-100% of the design
voltage. At lower voltages, the fan may still turn, but it is unlikely
to start turning from a dead stop. And below 50% of the design
voltage it's unlikely to turn at all. Therefore the useful voltage
range is relatively small, and can only control the fan over a
limited speed range. Table 1 lists the filtered PWM output of the
first stage in Figure 2 for a 30Hz PWM signal as it varies from 0 to
100% duty cycle in 10% steps.

 Application Note

AN-6 Designing a Low-Cost Multifunction PIC12C509A-based Remote Fan Controller with Salvo

9

duty cycle
(%)

Vfiltered
(Vdc)

0 3.80
10 3.89
20 4.00
30 4.12
40 4.20
50 4.27
60 4.38
70 4.51
80 4.59
90 4.63
100 4.73

Table 1 : First Stage Output Voltages for Figure 2

The complexity of the driving circuitry, the extra cost of the
required passive and active components and the limited voltage
range over which the fan speed can be controlled suggest that this
is not the ideal way to build a fan controller.

Direct PWM Drive
Controlling fan speed via direct PWM has many advantages. First,
the design voltage is always applied in full across the fan. Second,
drive circuitry is considerably simplified. Third, as PWM
frequencies of around 30-100Hz are preferred,8 high-frequency or
hardware PWM is not required. Figure 3 illustrates how to drive a
fan directly via PWM.

PWM Out

+5V

3

1

 2

Figure 3: Direct-PWM-driven Fan Speed Control Circuit

No PWM Output Either?
Since the PIC12C509A has no hardware PWM, let's investigate
what it would take to drive a fan via direct PWM in software.
Recall that PWM frequencies of 30-100Hz are preferred. For ten
steps at 50Hz, we would need a timing resolution of 2ms in order
to be able to toggle the PWM output bit at any point (10%, 20%,
�, 90%) of the PWM's waveform, as shown in Figure 4.9

 Application Note

10 AN-6 Designing a Low-Cost Multifunction PIC12C509A-based Remote Fan Controller with Salvo

 0%

 10%

 20%

 90%

100%

 ...

5V

18.0

0V

20.0 22.0ms16.014.012.010.08.06.00.0 4.02.0
Figure 4: 10-step PWM Waveforms at 50Hz

By calling OSTimer() every 4.096ms and implementing an eight-
step PWM, we can achieve similar fan speed resolution at a PWM
frequency of 30.5Hz. This means that we can drive the fan speed
from within a Salvo task that delays itself by one or more system
ticks between writes to the PWM pin. The PWM waveform for a
fan speed setting of 6 (75% of full speed) is shown in Figure 5.

28.7 32.8ms

0V

5V

16.412.3 20.5 24.68.20.0

75%

4.1
Figure 5: 8-step PWM at 30.5Hz

It was determined that the fan did not turn reliably at the two
lowest fan speed settings (12% and 25% duty cycle). Since the
resolution is the system tick period of 4.096ms, the only solution is
to increase the minimum ON time by adding extra ON cycles at the
beginning of the PWM period. 1 extra cycle (22% duty cycle) was
found to be insufficient, but two extra cycles (30% duty cycle) was
found to work reliably. The lower PWM frequency of 24.4Hz does
not appear to be a problem. The PWM task's output for a fan speed
setting of 6 (80% of full speed) is shown in Figure 6 below.

0.0

75%

4.1 16.412.3 20.5 24.68.2 28.7

0V

5V

36.932.8 41.0us
Figure 6: 8-step PWM at 24.4Hz

The duty cycles for particular fan speed settings are shown in
Table 2 below. The duty cycle can be changed in 10% steps over
its useful range.

 Application Note

AN-6 Designing a Low-Cost Multifunction PIC12C509A-based Remote Fan Controller with Salvo

11

speed
duty cycle

(%)
0 0
1 30%
2 40%
3 50%
4 60%
5 70%
6 80%
7 90%
8 100%

Table 2 : Fan Speed Settings vs. Duty Cycle

The PWM signal's jitter depends on the accuracy of
TaskSpinFan()'s delays. Salvo specifies that the accuracy of
delays as +/- one system tick. This was observed to be true by
sending a continuous stream of '1' commands and observing
changes in the PWM period.

Driving the Beeper
Single-tone transducers (beepers) with built-in drive circuits are
very simple to use � just take the drive signal high and then take it
low the desired time period later. With a system tick every 4ms, a
task can easily drive the beeper by driving an output pin high,
delaying the desired time, and then driving the output pin low, as
shown in Figure 7.

0V

5V

250ms
Figure 7: Drive Signal for Beeper with Integrated Driver

Beepers with integrated drivers are noticeably more expensive10
than those without, so it behooves us to design-in the less
expensive variant. Single-tone transducers without integrated drive
electronics should be driven with a 50% duty-cycle square wave at
the specified frequency. The unit chosen has a frequency of
2048Hz, and the driving signal is shown in Figure 8.

0V

5V

244us

50%

Figure 8: Square Wave for Beeper without Integrated

Driver

As with the fan speed control, driving the beeper with PWM in
hardware is trivial. But since there is none available on the
PIC12C509A, let's investigate how we can drive the beeper in

 Application Note

12 AN-6 Designing a Low-Cost Multifunction PIC12C509A-based Remote Fan Controller with Salvo

software. Looking at Figure 8, we would have to toggle an output
pin every 244µs, or every 244 instructions, to drive the beeper at
its design frequency. Since the system timer ticks every 4.096ms,
using a task to generate this signal via Salvo's delay services is out
of the question.

As there are no interrupts available, we would have to code this
waveform into the application's main loop. The overhead
associated with detecting the passage of 244µs via Timer0 and
whether or not the beeper should be beeping (based on the desired
duration of the beep after a key is pressed) would consume 20-30
instruction cycles in this 244µs period. With this scheme about ten
percent of the PIC12C509A's processing power will be spent
managing a relatively unimportant beeper and would prevent us
doing any operations that lasted longer than 244µs.

Perhaps more importantly, any scheme that introduces jitter into
the beeper's drive waveform around the beeper's design frequency
will result in a varying duty cycle. This produces undesirable
frequency components and a raspy and unpleasant audio output.

One interesting possibility is to drive the beeper with a single pulse
or group of pulses at the desired drive frequency and repeating at
the system tick interval of 4ms. This would completely remove
high-frequency jitter. It would allow us to place control of the
beeper in a task, and enable or disable beeping via a global flag or
semaphore. Since the pulse duration is much shorter than a system
tick, a conventional delay loop inside the task would be necessary.
The driving waveform for the beeper is shown in Figure 9.

0V

5V

3%

244us
4.1ms

Figure 9: Modified Pulsetrain for Single-Tone
Transducer

Even with additional drive current to make up for the lost energy
of this scheme, the resultant beeper output was deemed
unacceptable.

Ultimately we're left with no choice but to generate exactly the
waveform the beeper requires. In order to avoid jitter we must
remain in a tight loop within TaskBeep() while generating a
group of equally-spaced 122µs pulses. As we increase the number
of pulses, we increase the jitter of the fan PWM, since pulse
generation might start just before the Timer0 overflow that marks
the expiration of TaskSpinFan()'s delay. A waveform with ten
pulses was found to give a pleasant and recognizable "key click"

 Application Note

AN-6 Designing a Low-Cost Multifunction PIC12C509A-based Remote Fan Controller with Salvo

13

sound. The final output of the beeper task is shown in Figure 10
below.

5V

0V

4.1ms
200us

Figure 10 : Beeper Waveform as Implemented

Conveniently, the Fan Controller's time to write a new value to the
beeper (see Two Outputs and Two Inputs, One Three-Pin
Interface) is approximately 100µs. Therefore back-to-back writes
of 1 and 0 result in a waveform that's very close to ideal, but
consumes slightly less time. 11

Detecting Keypresses
Properly debouncing tact switch keypresses involves sampling and
resampling the state of each switch over a time period (e.g. 20ms)
that is large relative to a single instruction cycle. Naturally we'd
like to do other things while waiting to (re-)sample each switch.

Fortunately Salvo's ability to delay a task by a number of system
ticks makes this operation very easy to implement. In pseudocode,
the sample-and-debounce algorithm is shown in Listing 4.

test for keypress periodically
if key is pressed
 delay for the debounce period
 if key is still pressed
 do key action

Listing 4: Key Sample and Debounce Pseudocode

To implement this into a Salvo application the system timer tick
duration must be compatible with the delay(s) employed by the
algorithm. Testing for keypresses every 20ms works well.
Stretching the debounce period to a relatively long 75ms works to
our favor as it creates a pleasant key-repeat rate as a side effect.
Our choice of 4ms for the system tick fits nicely, as both of these
periods are near-integer multiples of the system tick.

Two Outputs and Two Inputs, One Three-Pin Interface
In order to prevent any flickering on the LED bargraph while a
new value is serially clocked into it, a latching shift register ('595)
was chosen to drive the bargraph. This requires three outputs from
the PIC � serial data out, serial clock and strobe. The beeper can be

 Application Note

14 AN-6 Designing a Low-Cost Multifunction PIC12C509A-based Remote Fan Controller with Salvo

connected to the shift register's serial output so as not to use
another PIC output pin.

+5V

IN 14 QA 15

QB 1

SCK 11 QC 2

-CL 10

QD 3

QE 4STB 12

QF 5

-OE 13

QG 6

QH 7

OUT 9

’595
->

->

->

Serial Data Out

Serial Clock

Strobe To Bargraph

Figure 11 : Parallel Expansion Circuit

Of this three-pin serial interface, the only pin that should be
dedicated to the interface at all times is the strobe pin. Therefore
the serial data out and serial clock pins on the PICCan also
function as inputs. After unwanted LOW-to-HIGH transitions on
the shift register's serial clock input, new data should be shifted
through the shift register in order to maintain the desired level
(LOW or HIGH) driving the beeper.

By choosing a latched '595 shift register over an unlatched one
(e.g. '164) we can use two PIC12C509A pins as inputs without
affecting the bargraph at any time.

Taking Advantage of the Beeper's Slow Response
With a 1µs instruction cycle, a byte can be clocked through the
shift register in less than 100µs. Single updates to the bargraph
have little audible effect on the beeper. The beeper can also be set
LOW or HIGH without updating the bargraph. Data sent to the
beeper due to intentional (e.g. bargraph updates) or unintentional
(e.g. serial clock pin on PIC12C509A configured as input and
changing) clocking of data through the shift register can be
overwritten with a quick blast of serial data out.

Impact of Software UART
Because it is not interrupt-driven, the software UART can affect
system timing. Faster baud rates require slower bit-time delay
loops, and thereby have less adverse impact. But slower baud rates
enable the receiver to better detecting incoming characters. The
application is configured for a default baud rate of 2400bps, which

 Application Note

AN-6 Designing a Low-Cost Multifunction PIC12C509A-based Remote Fan Controller with Salvo

15

was chosen because of its performance in detecting incoming
commands.

Optional Baud Rates
The Fan Controller's default baud rate of 2400bps can be
overridden to 4800bps or 9600bps by holding the Down or Up
keys, respectively, when the unit is first powered on. The selected
baud rate will remain in effect until the power is removed.

Timing Issues
At this point it's instructive to take a closer look at some of the
timing issues involved, especially because of their impact on the
software UART's performance. The PIC12C509A's instruction
cycle is 1µs when running from its internal oscillator � this cannot
be changed. Most of the time � i.e. when no task delays have
expired and there are no eligible tasks to run � the incoming RS-
232 data is sampled (via RcvCmd()) every 123µs � this figure was
obtained through the MPLAB simulator. In these 123 instructions
Salvo manages time services and task scheduling (via OSTimer()
and OSSched(), respectively) and the application calls RcvCmd()
and handles the overhead associated with our Timer0 usage and the
need to monitor for going to sleep. One might refer to this as the
"idle condition". When delays expire and / or eligible tasks need to
run, the loop timing will increase significantly as tasks are
dispatched, run, and context-switch back to the scheduler. The loop
period will return to 123µs as soon as all tasks are again in the
delayed state.

This 123µs cycle time defines the upper limit of the responsiveness
of the system to incoming RS-232 characters, and its ability to
detect the start bit of an incoming RS-232 bitstream. 123µs is well
below the bit periods for 1200bps (833µs) and 2400bps (416µs)
communications. Since it's less than half their bit periods,
RcvCmd() should be able to detect incoming RS-232 data without
any difficulties when the system is idling. For 9600bps (104µs bit
period) odds are that RcvCmd() will have difficulty picking up the
start bit. The software transmitter is of course unaffected by these
issues.

While 2400bps and slower baud rates may be advantageous for
RS-232 reception, they have the opposite effect on the quality of
the PWM signal. Since bit period delays must be generated inside
of InRS232() and OutRS232() without the use of interrupts, these
delays may affect overall system timing by lasting longer than the

 Application Note

16 AN-6 Designing a Low-Cost Multifunction PIC12C509A-based Remote Fan Controller with Salvo

Timer0 overflow period. When this happens, system ticks are lost,
and task delays no longer meet Salvo's +/- 1 system tick timer
accuracy. Decreasing the system tick period (by changing Timer0's
prescalar) only makes this worse, but lengthening the period (say,
to 8.192ms) would halve the PWM frequency.

Note that a tight delay loop also occurs within TaskBeep(). It has
been configured to be substantially less than a system tick, and
hence will not affect system timing.

An instruction cycle of much less than 1µs used in conjunction
with the existing baud rates and PWM frequency would be an ideal
solution to the problems above. Since we're stuck with it, we must
make choose timing-related parameters wisely.

Circuit Description
The schematic diagram for the PIC12C509A Demo Board is
shown in Figure 12. The circuitry is described below.

Battery B1 with three AA cells (nominally +4.5V) supply battery
power to the Demo Board. Diode D1 prevents excessive quiescent
current draw by regulator U4 when running under battery power.
Plugging a DC power source into J1 disconnects B1 and feeds the
demo board with regulated DC at one diode drop below +5V, or
roughly +4.5V. The Demo Board's can function with the positive
supply as high as +5.5V or as low as +3.5V, ensuring long life
from a set of three alkaline batteries.

U1 PIC12C509A runs from its internal 4MHz oscillator, thus
making all six pins GP[5..0] available for input and/or output. U1
uses its internal reset circuitry (INTERNAL MLCR).

GP[2..0], when configured as outputs, function as serial data,
serial clock and strobe to 74HC595 shift register U2. U2's latched
outputs feed the upper eight segments of ten-segment LED
bargraph D2. U2's serial output (BEEP) is used to directly drive
inexpensive single-tone magnetic transducer (beeper) SP1. Diode
D3 reduces ground bounce on SP1.

GP4, always configured as an output, drives 5V fan M1 via PNP
transistor Q1, necessary because M1's current requirements
(130mA) far exceed the output drive of the PICmicro. GP4 is
forced LOW (0V) to turn on M1. Since Q1 functions as a saturated
transistor switch, nearly the entire +5V supply is available to drive

 Application Note

AN-6 Designing a Low-Cost Multifunction PIC12C509A-based Remote Fan Controller with Salvo

17

the fan. Diode D4 protects Q1 from inductive load M1. To turn the
fan completely off, GP4 must be taken HIGH (+5V).

GP5, always configured as an output, drives level transceiver U3
with RS-232 transmit data.

GP0, when configured as an input, has weak pull-ups enabled and
can wake U1 from sleep when a change occurs. The application
can read incoming RS-232 data on this pin. Resistor R2 is provided
to isolate U3.1 from GP0 when GP0 is configured as an output.

GP1, when as an input, has weak pull-ups enabled and can wake U1
from sleep when a change occurs. The application can poll the Up
key SW1 on this pin. Resistor N2A is provided to isolate SW1
from GP1 when GP1 is configured as an output and SW1 is pressed.

GP3, always configured as an input, has weak pull-ups enabled and
can wake U1 from sleep when a change occurs. The application
can poll the Down key SW2 on this pin.

RS-232 driver U3 gets logic-side power from +5V, and "steals" �
12V power from the RS-232 receive data line, which is normally
idle at �12V. Capacitor C3 serves as a reservoir for U3's V-
supply. R4 and C4 form a noise filter to shunt noise on the RS-232
cable's shield to local ground.

5Vdc fan M1 is mounted on standoffs above regulator U4 and
other components.

Decoupling capacitors C5-C7, test points TP1-TP11 and mounting
holes ZH1-ZH4 are provided. Additional pads Z19-Z20 are
provided in case one wants to hook up the remaining LEDs to an
on-board signal (e.g. Tx and Rx).

Performance
The Fan Controller software, with various extra bells and whistles
like the metronome and the ability to accept upper- and lower-case
commands, fits in the PIC12C509A with little room to spare � see
Build Results below. The Fan Controller itself fits on a 2.400" x
2.400" printed circuit board (PCB) with mixed through-hole and
surface-mount components � see Assembly Drawing (Component
Side) below. It draws a maximum of 160mA12 (fan at full speed,
all bargraph segments lit, RS-232 active), and a minimum of less
than 1µA when sleeping.

 Application Note

18 AN-6 Designing a Low-Cost Multifunction PIC12C509A-based Remote Fan Controller with Salvo

Commands are received, echoed and processed without errors.13
Fan speed can be varied over the entire range in less than a second
via the Up and Down keys. Beeper volume is adequate,
approximating the "click" sound of a tactile keyboard.

Despite being initialized only at Power-On Reset, Salvo manages
its three tasks through sleep and wake-on-pin-change without
difficulty.

Enhancements
The size of the application can be reduced somewhat by in-lining
Salvo's scheduler and timer � this may also reduce RAM usage.
Additionally, Salvo can be configured to use priority arrays instead
of priority queues at a substantial savings in ROM size. With
priority arrays, the tasks will be prioritized as per the arguments to
OSCreateTask() (see main() in Listing 6).

Conclusion
The Fan Controller is a bulletproof, relatively sophisticated
application with several time-critical operations. PWM drive, RS-
232 transmission and reception, keypress scanning and beeping all
occur essentially independent of one another. This is demonstrated
by noting that the disabling of any one of these activities has no
affect on the others.

Additional embedded programming issue like eliminating
unnecessary startup overhead, maximizing RAM utility, using a
system timer, software-driven serial communications and PWM,
minimizing power consumption and performing multiple functions
with single I/O pins are all easily accomplished within Salvo
without having to resort to source code changes, assembly
language coding or processor-specific extensions.

The clearly-defined behavior of multiple tasks running under the
Salvo RTOS makes writing the Fan Controller and similar
applications easy. Salvo's scalability enables it to be used in a
microcontroller with only 41 bytes of RAM and 1024 program
instructions.

 Application Note

AN-6 Designing a Low-Cost Multifunction PIC12C509A-based Remote Fan Controller with Salvo

19

Source Code Listings

salvocfg.h
Listing 5 below displays the contents of the salvocfg.h
configuration file used to build this project.
OSDISABLE_TASK_PRIORITIES is set to TRUE to reduce ROM
requirements, and OSLOC_ALL has the added persistent type
qualifier in order to avoid re-initializing the Salvo variables after
each reset. The other configuration options are set to typical
values.

#define OSBYTES_OF_DELAYS 1
#define OSCOMPILER OSHT_PICC
#define OSDISABLE_TASK_PRIORITIES TRUE
#define OSEVENTS 0
#define OSLOC_ALL bank1 persistent
#define OSTARGET OSPIC12
#define OSTASKS 3

Listing 5 : salvocfg.h Configuration File

main.c
Listing 6 below displays the entire Fan Controller application's C
source code. Comments have been added to aid in understanding.

/**
Copyright (C) 1995-2001 Pumpkin, Inc. and its
Licensor(s). Freely distributable.

$Source: C:\\RCS\\D\\salvo\\demo\\d3\\main.c,v $
$Author: aek $
$Revision: 1.3 $
$Date: 2001-07-28 16:53:16-07 $

Multitasking Salvo-based application using delay
services but no event services due to the limited amount of
ROM and RAM in the host Microchip PIC12C509A PICmicro.

For use on Pumpkin's Salvo PIC12 Demo Board, assembly P/N
710-00197.

See "AN-6 Multitasking PIC12C509A-based Remote Fan
Controller" for more information.

 v1.1 aek updated to reflect v2.2 library scheme
 v1.2 aek minor edits
 v1.3 aek v2.3 used less ROM, now all builds
 have optional baud rates.

**/

#include "salvo.h"

/* detect which target we're compiling for. */
#if defined (_12C509) || defined (_12C509A) || defined (_12CR509A)
#define USING_12C50X TRUE
#define BATTERY_OPERATION TRUE
__CONFIG(INTRC | UNPROTECT);
#else

 Application Note

20 AN-6 Designing a Low-Cost Multifunction PIC12C509A-based Remote Fan Controller with Salvo

#undef USING_12C50X
#define BATTERY_OPERATION FALSE
#endif

/* port pin defs for different targets. Alternate target */
/* is PIC16C77 or equivalent. */
#ifdef USING_12C50X
#define PORT GPIO
#define outDATA GP0
#define inRX GP0
#define outCLK GP1
#define keyUP GP1
#define outSTB GP2
#define keyDN GP3
#define outPWM GP4
#define outTX GP5
#define OPTION_CONFIG 0x03
#else
#define PORT PORTB
#define TRIS TRISB
#define outDATA RB0
#define inRX RB0
#define outCLK RB1
#define keyUP RB1
#define outSTB RB2
#define keyDN RB3
#define outPWM RB4
#define outTX RB5
#define OPTION_CONFIG 0x03
#endif

/* I/O port configurations for different modes. */
#define GPIO_NORMAL_CONFIG 0x0B /* normal operation */
#define GPIO_SERIAL_CONFIG 0x08 /* serial writes */

/* I/O port default values. */
#define GP0_NO_SERIAL_DATA 0x00
#define GP1_NO_SERIAL_CLK 0x00
#define GP2_NO_SERIAL_STB 0x00
#define GP3_NO_KEY_DOWN 0x08
#define GP4_NO_PWM 0x10
#define GP5_RS232_IDLE 0x20

/* Salvo task pointers. */
#define TASK_READ_KEYS_P OSTCBP(1)
#define TASK_SPIN_FAN_P OSTCBP(2)
#define TASK_BEEP_P OSTCBP(3)

/* delays based on system tick of 4.096ms. Times are */
/* approximate. */
#define FOUR_MS 1
#define TWENTY_MS 5
#define FIFTY_MS 12
#define SEVENTY_FIVE_MS 18
#define HUNDRED_MS 24
#define HUNDRED_FIFTY_MS 36
#define ONE_S 244
#define TWENTY_S 4883
#define THIRTY_S 7324
#define ONE_MIN 14648
#define TWO_MIN 29297
#define ONE_TICK FOUR_MS
#define TIME_TO_NAP THIRTY_S
#define TIME_TO_SLEEP TWO_MIN
#define SAMPLE_PERIOD TWENTY_MS
#define DEBOUNCE_PERIOD SEVENTY_FIVE_MS
#define MINIMUM_PERIOD FOUR_MS
#define NAP_TOCK_PERIOD ONE_S / SAMPLE_PERIOD

/* PWM output is active-low. */
#define PWM_ON 0
#define PWM_OFF 1

/* PWM steps and extra periods to ensure that fan spins at */
/* all settings. Extra periods are determined empirically.*/
#define PWM_STEPS 8
#define PWM_EXTRA_PERIODS 2

 Application Note

AN-6 Designing a Low-Cost Multifunction PIC12C509A-based Remote Fan Controller with Salvo

21

#define PWM_PERIOD PWM_STEPS + PWM_EXTRA_PERIODS

/* duration of pulse train to beeper. */
#define BEEP_PULSES 10 /* pulses */

/* values for the serial data stream to be shifted through */
/* U2 in order to disable or enable the beeper. Since each*/
/* bit affects the beeper, it's imperative to use full-0's*/
/* and full-1's as the patterns, as other patterns will */
/* result in non-50%-duty-cycle waveforms. */
#define BEEPER_OFF 0x00
#define BEEPER_ON 0xFF

/* for OutShiftRegister()'s second argument -- either just */
/* shift the data through U2, or shift and then latch it. */
#define SHIFT_ONLY FALSE
#define SHIFT_AND_LATCH TRUE

/* bit times in 1us instructions for RS-232 baud rates. */
/* Note that low baud rates will have an adverse effect on*/
/* the PWM period when there's RS-232 activity, and high */
/* baud rates lead to poor command receiption due to the */
/* narrow sampling window. 2400 baud is default because */
/* it responds best to commands. 4800 is OK, 9600 barely */
/* works. */
#ifndef BAUD
#define BAUD 2400
#elif BAUD < 1310 /* limit w/char delays */
#error RS-232 baud rate too low.
#elif BAUD > 19200
#error RS-232 baud rate too high.
#endif
#define DLY 3 /* cycles per delay loop */
#define OHEAD 8 /* overhead in Tx and Rx */
#define XTAL 4000000
#define ONE_BIT ((XTAL/4/BAUD)-(OHEAD))/DLY
#define ONE_BIT_1200 ((XTAL/4/1200)-(OHEAD))/DLY
#define ONE_BIT_2400 ((XTAL/4/2400)-(OHEAD))/DLY
#define ONE_BIT_4800 ((XTAL/4/4800)-(OHEAD))/DLY
#define ONE_BIT_9600 ((XTAL/4/9600)-(OHEAD))/DLY
#define BAUD_DEFAULT ONE_BIT
#define BAUD_KEY_UP ONE_BIT_9600
#define BAUD_KEY_DN ONE_BIT_4800

/* software handshaking / flow control characters. Used to */
/* indicate when we're ready to receive a command. */
#define XON 17 /* Ctrl-Q */
#define XOFF 19 /* Ctrl-S */

/* return codes for InRS232 */
#define NO_RX_CHAR 1 /* none detected */
#define BAD_RX_CHAR 2 /* bad stop bit */

/* bit patterns for bargraph LEDs when napping. */
#define TICK_PATTERN 0x7F
#define TOCK_PATTERN 0xBF

/* speed of fan at POR start -- show some life. */
#define FAN_START_SPEED 6

/* function-calling overhead on PIC12 is greater (by 2 */
/* instructions) than in-lining delay functionality, so */
/* use this macro instead. Downside is that a char */
/* variable declaration for delay must accompany it ... */
/* with full optimizations, each loop iteration takes three*/
/* cycles. */
#define ShortDelay(a, b) { b = a; while (--b) ; }

/* sleep instruction. Don't sleep when debugging via ICE. */
#define Sleep() asm("SLEEP");
#if BATTERY_OPERATION
#define ClrWakeFlag() { GPWUF = 0; }
#define GoToSleep() { Sleep(); }
#define WokeFromSleep() GPWUF

 Application Note

22 AN-6 Designing a Low-Cost Multifunction PIC12C509A-based Remote Fan Controller with Salvo

#else
#define ClrWakeFlag()
#define GoToSleep() { SleepHere: goto SleepHere; }
#define WokeFromSleep() 0
#endif

/* function prototypes. */
char InRS232 (void);
void OutBargraph (char pattern);
void OutRS232 (char byte);
void OutShiftRegister (char byte, char useStrobe);
void RcvCmd (void);
void TaskBeep (void);
void TaskReadKeys (void);
void TaskSpinFan (void);

/* context-switching labels. */
_OSLabel(TaskBeep1)
_OSLabel(TaskReadKeys1)
_OSLabel(TaskReadKeys2)
_OSLabel(TaskSpinFan1)

/* global system status and sysStat byte. */
typedef struct {
 char beep :1; /* keypress beep required (sem)*/
 char change :1; /* speed changed (flag) */
 char dontSleep :1; /* suppress sleeping */
 char onPWM :1; /* PWM out active, not dc */
 char xmitOK :1; /* OK to transmit to remote */
 char napBit :1; /* for nap display on bargraph */
} typeSysStat;
persistent typeSysStat sysStat;

/* fan speed, 0-8. Too expensive (ROM-wise) to have this */
/* nibble in sysStat. */
persistent char speed;

/* system ticks counter. By declaring it persistent (OK, */
/* since we always reset it on startup) we're able to rid */
/* ourselves of all the startup variable initialization */
/* code. */
persistent unsigned int sleepTimer;

/* baud-rate-specific delay counter. Used by ShortDelay(). */
persistent char oneBitDelay;

/* U2's output to drive bargraph display. D2 on REV A and */
/* REV B has odd pinout, hence the bit juggling. */
const char LEDs[PWM_STEPS+1] = { 0xFF, /* 0 / OFF */
 0xEF, /* 1 */
 0xCF, /* 2 */
 0x8F, /* 3 */
 0x0F, /* 4 */
 0x07, /* 5 */
 0x03, /* 6 */
 0x01, /* 7 */
 0x00 }; /* 8 */

/**
**** ****
** **
main()

Typical Salvo main(), with extra code to accomodate
differences between resets, OSTimer() and receipt of RS-232
in main loop due to lack of interrupts, and entering sleep.

** **
**** ****
**/
void main (void)
{
 unsigned char oldTMR0, tmpTMR0;

 /* Power-on reset (POR) and wake-up-from-sleep (WUF) */

 Application Note

AN-6 Designing a Low-Cost Multifunction PIC12C509A-based Remote Fan Controller with Salvo

23

 /* bring us here after startup code. No other resets */
 /* in use. */

 /* setting TRIS and OPTION is always required. */
 /* port outputs in normal configuration. */
 /* Timer0 in timer mode at fosc/4 w/1:16 prescalar, */
 /* free-running. Rolls over every 256 * 16 = 4096 */
 /* instruction cycles. */
 TRIS = GPIO_NORMAL_CONFIG;
 OPTION = OPTION_CONFIG;

 /* wake-on-pin-change can be due to either a keypress */
 /* or RS-232 Rx activity. The Device Reset Timer (DRT)*/
 /* period is around 300us for non-POR resets and */
 /* varies over operating conditions. This, coupled */
 /* with the number of instructions it takes to get */
 /* from reset to RcvCmd() actually sampling incoming */
 /* RS-232 Rx data, makes processing the command that */
 /* woke us up from sleep simply infeasible. Hence */
 /* there's nothing to do on wake-on-pin-change. */

 /* we get here through POR. All these things need be */
 /* initialized only once. */
 if (!WokeFromSleep()) {

 /* initialize port pin default values and modes. */
 /* GP0: input Rx data */
 /* GP1: input key up */
 /* GP2: output serial strobe */
 /* GP3: input key down */
 /* GP4: output PWM */
 /* GP5: output Tx data */
 PORT = (GP0_NO_SERIAL_DATA)
 | (GP1_NO_SERIAL_CLK)
 | (GP2_NO_SERIAL_STB)
 | (GP3_NO_KEY_DOWN)
 | (GP4_NO_PWM)
 | (GP5_RS232_IDLE);

 /* these variables are initialized only on power- */
 /* up and persist until the system loses power. */
 /* .dontSleep: default is to sleep */
 /* speed: start speed */
 sysStat.dontSleep = 0;
 speed = FAN_START_SPEED;

 /* set non-default baud rate if selected. */
 if (!keyUP)
 oneBitDelay = BAUD_KEY_UP;
 else if (!keyDN)
 oneBitDelay = BAUD_KEY_DN;
 else
 oneBitDelay = BAUD_DEFAULT;

 /* initialize Salvo. */
 /* required because Salvo's vars are declared as */
 /* persistent. */
 OSInit();

 /* create tasks. For those builds that use task */
 /* priorities (not really necessary here), */
 /* TaskBeep() must be lowest since it normally */
 /* only yields. */
 OSCreateTask(TaskReadKeys, TASK_READ_KEYS_P, 1);
 OSCreateTask(TaskSpinFan, TASK_SPIN_FAN_P, 2);
 OSCreateTask(TaskBeep, TASK_BEEP_P, 3);
 }

 /* these variables are (re-)initialized on power-up */
 /* and wake-up. */
 /* .beep: no beeping required */
 /* .change: force PWM & bargraph init */
 /* .onPWM: PWM output is OFF */
 /* .xmitOK: OK to transmit to remote */
 /* sleepTimer: reset this counter */
 sysStat.beep = 0;
 sysStat.change = 1;

 Application Note

24 AN-6 Designing a Low-Cost Multifunction PIC12C509A-based Remote Fan Controller with Salvo

 sysStat.onPWM = 0;
 sysStat.napBit = 0;
 sysStat.xmitOK = 1;
 sleepTimer = TIME_TO_SLEEP;

 /* reset Timer0 prior to entering main loop. This */
 /* clears the prescalar, too. */
 TMR0 = 0;

 /* the usual "infinite for() loop", with extra code to */
 /* handle timer and sensing for sleep. */
 for (;;) {

 /* if Timer0 has rolled over mark it so we can call*/
 /* OSTimer. A temporary placeholder for Timer0 is */
 /* required because it might change value between */
 /* the first and second reads. This is the normal */
 /* way the system keeps track of time. */
 tmpTMR0 = TMR0;
 if (tmpTMR0 < oldTMR0) {

 /* call Salvo's Timer to process delayed tasks.*/
 OSTimer();

 /* time-to-sleep countdown timer runs at */
 /* system tick rate. */
 if (sleepTimer)
 sleepTimer--;
 }
 oldTMR0 = tmpTMR0;

 /* act on command, if present. Note that this has */
 /* no deleterious effect on the command that woke */
 /* us up from sleep. */
 RcvCmd();

 /* if sleep timer times out, then there's been no */
 /* no user activity for a while, and it's safe */
 /* to shut things down. Wake up on pin change or */
 /* incoming RS-232 data. */
 /* GPIO pins are in the GPIO_NORMAL_CONFIG mode, */
 /* so no housekeeping is necessary. */
 if (!sleepTimer && !sysStat.dontSleep) {

 /* turn off fan, bargraph and beeper. No need */
 /* to do anything else, since it will all */
 /* be reset on POR/wake-on-pin anyway. */
 outPWM = PWM_OFF;
 OutBargraph(LEDs[0]);

 /* reset woke-up flag. */
 ClrWakeFlag();

 /* dummy read for proper wake-on-change */
 /* operation. */
 oldTMR0 = PORT;

 /* sleepy time - will wake up on pin change. */
 GoToSleep();
 }

 /* dispatch most eligible task. */
 OSSched();
 }
}

/**
**** ****
** **
TaskReadKeys()

Interprets user activity on the two pushbutton keys, and
does key-repeat without acceleration. External action from
RS-232 port is processed here by monitoring sysStat.change
periodically.

** **
**** ****

 Application Note

AN-6 Designing a Low-Cost Multifunction PIC12C509A-based Remote Fan Controller with Salvo

25

**/
void TaskReadKeys (void)
{
 static persistent i; /* persistent to avoid init code */
 char tickTockPattern;

 /* intialize this once, when task first runs. */
 i = NAP_TOCK_PERIOD;

 for (;;) {
 /* sample keys every 20ms. */
 OS_Delay(SAMPLE_PERIOD, TaskReadKeys1);

 /* keypress means user wants to wake system and/or */
 /* change fan speed. */
 if (!keyUP || !keyDN) {

 /* wait the debounce period. */
 OS_Delay(DEBOUNCE_PERIOD, TaskReadKeys2);

 /* if keyUP is still pressed, then it's valid. */
 /* by not waiting for the key to be released, */
 /* we get key-repeat for free! */
 if (!keyUP) {

 /* do keyUP stuff. force beep, etc. even */
 /* if speed doesn't change. */
 sysStat.change = 1;
 if (speed != PWM_STEPS)
 speed++;
 }

 /* repeat for keyDN. */
 else if (!keyDN) {

 sysStat.change = 1;
 if (speed != 0)
 speed--;
 }
 }

 /* time for some fun -- couldn't leave any free */
 /* ROM leftover, after all ... do a two-bit */
 /* metronome at 1Hz when the unit is napping. */
 if (!sysStat.dontSleep
 && (sleepTimer <= (TIME_TO_SLEEP - TIME_TO_NAP))) {

 /* countdown timer of SAMPLE_PERIOD. */
 if (--i == 0) {

 /* reset timer. Note the error in the */
 /* nap tock period -- it's compounded */
 /* by this multiplier. */
 i = NAP_TOCK_PERIOD;

 /* tick or tock on bargraph. */
 sysStat.napBit ^= 1;
 if (sysStat.napBit)
 tickTockPattern = TICK_PATTERN;
 else
 tickTockPattern = TOCK_PATTERN;
 OutBargraph(tickTockPattern);
 }
 }

 /* make necessary changes if the user requested */
 /* a change in speed or if an external command */
 /* was received. */
 if (sysStat.change) {

 /* reset changed flag. */
 sysStat.change = 0;

 /* reset sleep timer. */
 sleepTimer = TIME_TO_SLEEP;

 /* request a beep. */
 sysStat.beep = 1;

 /* show new speed on LED bargraph. Force */
 /* -MON/BEEP low to enable Rx data monitoring.*/

 Application Note

26 AN-6 Designing a Low-Cost Multifunction PIC12C509A-based Remote Fan Controller with Salvo

 OutBargraph(LEDs[speed]);

 /* now send the speed out via RS-232. */
 OutRS232(speed | '0');
 }
 }
}

/**
**** ****
** **
TaskSpinFan()

Drives the fan at the current fan setting via a PWM.

** **
**** ****
**/
void TaskSpinFan (void)
{
 OStypeDelay delay;

 for (;;) {
 /* speed of 0 means fan is completely OFF. No PWM -*/
 /* dc only. Revisit in one system tick. */
 if (speed == 0) {
 delay = ONE_TICK;
 outPWM = PWM_OFF;
 }

 /* speed of PWM_STEPS means fan is completely ON. */
 /* No PWM - dc only. Revisit in one system tick. */
 else if (speed == PWM_STEPS) {
 delay = ONE_TICK;
 outPWM = PWM_ON;
 }

 /* intermediate speeds (1 <= speed <= 7) */
 /* require PWM action. */
 else {

 /* If PWM output is OFF, we need to create the */
 /* "ON pulse" whose length is directly propor-*/
 /* tional to the fan speed. */
 if (!sysStat.onPWM) {
 delay = PWM_EXTRA_PERIODS + speed;
 outPWM = PWM_ON;
 sysStat.onPWM = 1;
 }

 /* If PWM output is ON, we need to finish the */
 /* PWM period with the output OFF. */
 else {
 delay = PWM_STEPS - speed;
 outPWM = PWM_OFF;
 sysStat.onPWM = 0;
 }
 }

 /* PWM port value has been set -- now delay either */
 /* 4ms (dc output) or PWM high- or low-cycle. */
 OS_Delay(delay, TaskSpinFan1);
 }
}

/**
**** ****
** **
TaskBeep()

Beep by outputting a 4kHz waveform to the beeper for a short
time:
 _ _ _ _ _ _ _
 _| |__| |__| |__| |__| |__| |__| |________________ etc.

Pulse width is ca. 125us. Checks for the need to beep
every system tick, except when it's in the middle of
beeping. Yields to more important tasks.

NOTE: since no interrupts are used, semaphore management is
very simple ...

 Application Note

AN-6 Designing a Low-Cost Multifunction PIC12C509A-based Remote Fan Controller with Salvo

27

** **
**** ****
**/
void TaskBeep (void)
{
 char j;

 for (;;) {
 /* no services are available for us to wait the */
 /* sem, so we have to poll it ... */
 OS_Delay(1, TaskBeep1);

 /* is semaphore set? */
 if (sysStat.beep) {

 /* yes, clear it. */
 sysStat.beep = 0;

 /* we're gonna enter a tight loop (below), so */
 /* we won't be able to receive any incoming */
 /* RS-232 data ... */
 OutRS232(XOFF);

 /* create BEEP_DURATION pulses, each of */
 /* minimum width. */
 j = BEEP_PULSES;
 do {
 OutShiftRegister(BEEPER_ON, SHIFT_ONLY);
 OutShiftRegister(BEEPER_OFF, SHIFT_ONLY);
 } while (--j);

 /* now that we're done beeping, we can afford */
 /* to listen for incoming RS-232 again. */
 OutRS232(XON);
 }
 }
}

/**
**** ****
** **
OutShiftRegister(byte, useStrobe)

Transfer data to U2 serially and latch it if requested.

Bargraph updates require latching, beeper updates do not.

** **
**** ****
**/
void OutShiftRegister (char byte, char useStrobe)
{
 char i;

 /* force data, clock and strobe to be outputs with */
 /* all-zero values. Enable these outputs. */
 outDATA = 0;
 outCLK = 0;
 outSTB = 0;
 TRIS = GPIO_SERIAL_CONFIG;

 /* clock the 8 bits of the serial byte out GP0. */
 i = 8;
 do {
 /* take shift clock LOW. */
 outCLK = 0;

 /* send serial data, msb first. */
 if (byte & 0x80)
 outDATA = 1;
 else
 outDATA = 0;

 /* shift data locally. */
 byte <<= 1;

 /* take shift clock HIGH and transfer data */
 /* into shift register. */
 outCLK = 1;

 Application Note

28 AN-6 Designing a Low-Cost Multifunction PIC12C509A-based Remote Fan Controller with Salvo

 } while (--i);

 /* transfer the newly-shifted byte to the */
 /* latch if requested. */
 if (useStrobe) {
 outSTB = 1;
 outSTB = 0;
 }

 /* lastly, restore PORTB directions to their */
 /* normal sense. */
 TRIS = GPIO_NORMAL_CONFIG;
}

/**
**** ****
** **
OutBargraph(pattern)

Since the need to update the bargraph and keep the beeper
off arises in several places, it makes sense to turn this
sequence into a function.

** **
**** ****
**/
void OutBargraph (char pattern)
{
 OutShiftRegister(pattern, SHIFT_AND_LATCH);
 OutShiftRegister(BEEPER_OFF, SHIFT_ONLY);
}

/**
**** ****
** **
InRS232()

Read a character from the RS-232 port at 2400 baud.

Returns RX_NO_CHAR if no activity was detected, and
RX_BAD_CHAR if the incoming char was clearly bad.

Adapted from HI-TECH example code.

** **
**** ****
**/
char InRS232 (void)
{
 char c, i, j;

 /* first, see if the line is not idle. If so, then */
 /* maybe it's a start bit. If it isn't, then it */
 /* can't possibly be a start bit. */
 if (inRX)
 return NO_RX_CHAR;

 /* okay, we may have got a start bit. Let's delay half */
 /* a bit time so that if we did in fact pick up the */
 /* very beginning of the start bit, we won't end up on*/
 /* edges of the data later on due to timing */
 /* variations. */
 ShortDelay((oneBitDelay/2), j);

 /* Now sample 8 bits of data. No need to initialize c, */
 /* since all 8 bits are shifted out anyway. */
 c = 0;
 i = 8;
 do {
 ShortDelay(oneBitDelay, j);
 c = (c >> 1) | (inRX << 7);
 } while (--i);

 /* now that we've got the data bits, we must check the */
 /* stop bit -- it had better be high. In fact, by */
 /* testing the next 9 bit for stop bit, we can avoid */
 /* some ambiguities that occur when the next data */
 /* follows closely. */
 /* E.g. '5''5'... is 0 1010 1100 1 0 1010 1100 1 ... */
 /* which looks like 'S' (0x53) if we pick up a false */
 /* start bit in the fifth bit of the transmission. */

 Application Note

AN-6 Designing a Low-Cost Multifunction PIC12C509A-based Remote Fan Controller with Salvo

29

 i = 9;
 ShortDelay(oneBitDelay, j);
 do {
 if (!inRX)
 return BAD_RX_CHAR;
 } while (--i);

 /* return w/received char. */
 return c;
}

/**
**** ****
** **
OutRS232()

Send a character out the RS-232 port.

Adapted from HI-TECH example code.

** **
**** ****
**/
void OutRS232 (char byte)
{
 char i, j;

 /* can send chars unless remote system has told us not */
 /* to. */
 if (sysStat.xmitOK) {

 /* send start bit. outTX was previously high/idle. */
 outTX = 0;

 /* send data, LSB first, one it at a bit time. */
 i = 8;
 do {

 ShortDelay(oneBitDelay, j);

 if (byte & 0x01)
 outTX = 1;
 else
 outTX = 0;

 byte >>= 1;

 } while (--i);

 /* send stop bit. Line returns to idle condition. */
 ShortDelay(oneBitDelay, j);
 outTX = 1;
 }
}

/**
**** ****
** **
RcvCmd()

Get incoming RS-232 data. Echo most of them.

Note that we will be in here for between zero to three
character times depending on what is detected and how we
act on it.

Command list: '?': report speed
 '0': turn fan off
 '1'-'8': set fan speed to 1-8
 'S','s': go to sleep immediately
 'T','t': sleep when timer expires
 'W','w': stay awake (don't sleep)

** **
**** ****
**/
void RcvCmd (void)
{
 char c;

 Application Note

30 AN-6 Designing a Low-Cost Multifunction PIC12C509A-based Remote Fan Controller with Salvo

 /* get incoming RS-232 character, if any. */
 c = InRS232();

 /* if it's a speed command, update the speed and force */
 /* a speed change -- char will be echoed via update. */
 if ((c >= '0') && (c <= '8')) {

 speed = c & 0x0F;
 sysStat.change = 1;
 c = 0;
 }

 /* other commands don't require speed updates -- echo */
 /* certain ones. */
 else {

 switch (c) {

 /* report fan speed. */
 case '?':
 c = speed | '0';
 break;

 /* sleep now. */
 case 'S':
 case 's':
 sysStat.dontSleep = 0;
 sleepTimer = 0;
 break;

 /* sleep TIME_TO_SLEEP from now. */
 case 'T':
 case 't':
 sysStat.dontSleep = 0;
 sleepTimer = TIME_TO_SLEEP;
 break;

 /* stay awake forever. */
 case 'W':
 case 'w':
 sysStat.dontSleep = 1;
 break;

 /* received XOFF -- stop transmitting. */
 case XOFF:
 sysStat.xmitOK = 0;
 c = 0;
 break;

 /* received XON -- OK to transmit. */
 case XON:
 sysStat.xmitOK = 1;
 c = 0;
 break;

 /* not present, bad or unknown command. */
 default:
 c = 0;
 break;
 }
 }

 /* echo if required. */
 if (c)
 OutRS232(c);
}

Listing 6: main.c Source File

 Application Note

AN-6 Designing a Low-Cost Multifunction PIC12C509A-based Remote Fan Controller with Salvo

31

Build Results

RTOS Size
Examination of the map file14 shows that the ROM required by
Salvo alone is 394 words. This represents the code for
initialization, delay, scheduling, timer and assorted utility services.

Application Size
Listing 7 below displays the linker output for project
salvo\demo\d3\sysj\d3.pjt when the Fan Controller
application is built using the necessary Salvo source files as nodes
in a project. All of Salvo's variables (task control blocks, etc.) are
in RAM Bank 1. The application's auto and static variables, and
the RAM required by the compiler for function argument passing
and other purposes, are in Bank 0.

Linking:
Command line: "C:\HT-PIC\BIN\PICC.EXE -G -INTEL -Md3.map -12C509A -
oD3.HEX -fakelocal -I\salvo\include -I\salvo\source
\salvo\demo\d3\MAIN.OBJ \salvo\source\DELAY.OBJ \salvo\source\MEM.OBJ
\salvo\source\QINS.OBJ \salvo\source\UTIL.OBJ \salvo\source\INIT.OBJ
\salvo\source\INITTASK.OBJ \salvo\source\SCHED.OBJ
\salvo\source\TIMER.OBJ "
Enter PICC -HELP for help

Memory Usage Map:

Program ROM $0000 - $0002 $0003 (3) words
Program ROM $0009 - $0261 $0259 (601) words
Program ROM $028F - $03FE $0170 (368) words
Program ROM $0FFF - $0FFF $0001 (1) words
 $03CD (973) words total Program ROM

Bank 0 RAM $0007 - $0008 $0002 (2) bytes
Bank 0 RAM $000B - $001F $0015 (21) bytes
 $0017 (23) bytes total Bank 0 RAM

Bank 1 RAM $0030 - $003F $0010 (16) bytes total Bank 1 RAM

Build completed successfully.

Listing 7: Build Results using Salvo Source Files

Listing 8 below displays the linker output for project
salvo\demo\d3\sysj\d3lib.pjt when the Fan Controller
application is built using a Salvo standard library for the
PIC12C509A. Library spl221d-.lib supports multitasking and
delays. The ROM and RAM requirements are identical to those of
Listing 7.

 Application Note

32 AN-6 Designing a Low-Cost Multifunction PIC12C509A-based Remote Fan Controller with Salvo

Linking:
Command line: "C:\HT-PIC\BIN\PICC.EXE -G -INTEL -Md3lib.map -12C509A -
oD3LIB.HEX -fakelocal -I\salvo\include -I\salvo\source
\salvo\demo\d3\MAIN.OBJ D:\SALVO\LIBRARY\SLP211D-.LIB "
Enter PICC -HELP for help

Memory Usage Map:

Program ROM $0000 - $0002 $0003 (3) words
Program ROM $0009 - $0261 $0259 (601) words
Program ROM $028F - $03FE $0170 (368) words
Program ROM $0FFF - $0FFF $0001 (1) words
 $03CD (973) words total Program ROM

Bank 0 RAM $0007 - $0008 $0002 (2) bytes
Bank 0 RAM $000B - $001F $0015 (21) bytes
 $0017 (23) bytes total Bank 0 RAM

Bank 1 RAM $0030 - $003F $0010 (16) bytes total Bank 1 RAM

Build completed successfully.

Listing 8: Build Results using Salvo Standard Library

Listing 9 displays the linker output for
salvo\demo\d3\sysj\d3free.pjt when the Fan Controller
application is built using a Salvo freeware library. The extra
bounds-checking code contained in the freeware libraries accounts
for slightly larger ROM usage.

Linking:
Command line: "C:\HT-PIC\BIN\PICC.EXE -G -INTEL -Md3free.map -12C509A -
oD3FREE.HEX -fakelocal -I\salvo\include -I\salvo\source
\salvo\demo\d3\MAIN.OBJ \salvo\library\SFP211D-.LIB "
Enter PICC -HELP for help

Memory Usage Map:

Program ROM $0000 - $0002 $0003 (3) words
Program ROM $0004 - $0261 $025E (606) words
Program ROM $028D - $03FE $0172 (370) words
Program ROM $0FFF - $0FFF $0001 (1) words
 $03D4 (980) words total Program ROM

Bank 0 RAM $0007 - $0008 $0002 (2) bytes
Bank 0 RAM $000B - $001F $0015 (21) bytes
 $0017 (23) bytes total Bank 0 RAM

Bank 1 RAM $0030 - $003F $0010 (16) bytes total Bank 1 RAM

Build completed successfully.

Listing 9: Build Results using Salvo Freeware Library

Listing 10 below displays the linker output for
salvo\demo\d3\sysa\d3.pjt when the Fan Controller
application is built for the midrange PIC16C77 instead of the
baseline PIC12C509A.15 The smaller ROM usage is due to the
PIC16C77 having an 8-level call�return stack, which obviates the
need for many of the jump tables found in the other builds.

 Application Note

AN-6 Designing a Low-Cost Multifunction PIC12C509A-based Remote Fan Controller with Salvo

33

Linking:
Command line: "C:\HT-PIC\BIN\PICC.EXE -G -INTEL -Md3.map -16C77 -oD3.HEX
-fakelocal -I\salvo\include -I\salvo\source \salvo\demo\d3\MAIN.OBJ
\salvo\source\DELAY.OBJ \salvo\source\INIT.OBJ \salvo\source\MEM.OBJ
\salvo\source\QINS.OBJ \salvo\source\SCHED.OBJ \salvo\source\TIMER.OBJ
\salvo\source\UTIL.OBJ \salvo\source\INITTASK.OBJ "
Enter PICC -HELP for help

Memory Usage Map:

Program ROM $0000 - $0038 $0039 (57) words
Program ROM $04E4 - $07FF $031C (796) words
 $0355 (853) words total Program ROM

Bank 0 RAM $0020 - $0033 $0014 (20) bytes
Bank 0 RAM $0070 - $0071 $0002 (2) bytes
 $0016 (22) bytes total Bank 0 RAM

Bank 1 RAM $00A0 - $00B2 $0013 (19) bytes total Bank 1 RAM

Build completed successfully.

Listing 10 : PIC16C77 Build Results

 Application Note

34 AN-6 Designing a Low-Cost Multifunction PIC12C509A-based Remote Fan Controller with Salvo

Schematic Diagram
Figure 12 below displays the schematic diagram for the version of
the Fan Controller.

D
a
t
e
:

A
p
r
i
l

8
,

2
0
0
1
S
h
e
e
t

1

o
f

1

S
i
z
e
D
o
c
u
m
e
n
t

N
u
m
b
e
r

R
E
V

B
0
0
1
9
6
B
.
S
C
H

B

T
i
t
l
e

S
a
l
v
o

P
I
C
1
2

D
e
m
o

B
o
a
r
d

w
w
w
.
p
u
m
p
k
i
n
i
n
c
.
c
o
m

(
4
1
5
)

5
8
4
-
6
3
6
0

S
a
n

F
r
a
n
c
i
s
c
o
,

C
A

9
4
1
1
2

7
5
0

N
a
p
l
e
s

S
t
r
e
e
t

P
u
m
p
k
i
n
,

I
n
c
.

A
s

O
u
t
p
u
t

s
e
r
i
a
l

d
a
t
a

o
u
t

*
:

d
e
f
a
u
l
t

G
P
0

A
s

I
n
p
u
t

P
i
n

a
t

9
6
0
0

b
a
u
d
,

I
/
O

C
o
n
f
i
g
u
r
a
t
i
o
n

a
n
d

U
s
e

*
R
S
2
3
2

R
x

d
a
t
a

B
a
r
g
r
a
p
h

1

2

3

4

5

6

7

8

9

1
0

N
1

3
3
0
X
9

+
5
V

A
1
1

A
2
2

A
3
3

A
4
4

A
9
9

A
1
0
1
0

C
1

2
0

C
2

1
9

C
3

1
8

C
4

1
7

C
9

1
2

C
1
0

1
1

C
5

1
3

C
6

1
4

C
7

1
5

C
8

1
6

A
5
5

A
6
6

A
7
7

A
8
8

D
2

H
D
S
P
-
4
8
3
0

I
N

1
4

Q
A

1
5

Q
B

1

S
C
K

1
1

Q
C

2

-
C
L

1
0

Q
D

3

Q
E

4

S
T
B

1
2

Q
F

5

-
O
E

1
3

Q
G

6

Q
H

7

O
U
T

9

U
2

7
4
H
C
5
9
5
N

G
P
0

G
P
1

G
P
2

V
C
C

V
D
D

+
5
V

V
S
S

V
E
E

G
P
0

7

G
P
1

6

T
0
C
K
I
/
G
P
2

5

V
P
P
/
M
C
L
R
/
G
P
3

4

O
S
C
2
/
G
P
4

3

C
L
K
I
N
/
O
S
C
1
/
G
P
5

2

U
1

P
I
C
1
2
C
5
0
9
A
-
0
4
/
P

Z
6

P
A
D

Z
7

P
A
D

Z
8

P
A
D

Z
9

P
A
D

Z
1
0
P
A
D

Z
1
1
P
A
D

Z
1
2
P
A
D

Z
1
3
P
A
D

G
P
0

G
P
1

G
P
2

G
P
3

G
P
4

G
P
5

+
5
V

+
5
V

T
P
3

T
P

R
1

4
7

Z
1
9

P
A
D

Z
2
0

B
E
E
P

s
h
o
w
s

s
p
e
e
d
s

0
/
o
f
f

t
o

8
/
m
a
x

S
P
1

B
R
T
1
2
0
9
P
-
0
1

D
3

1
N
4
1
4
8

G
P
1

G
P
2

G
P
3

w
e
a
k

p
u
l
l
-
u
p

w
a
k
e
-
o
n
-
c
h
a
n
g
e
,

w
e
a
k

p
u
l
l
-
u
p

w
a
k
e
-
o
n
-
c
h
a
n
g
e
,

w
e
a
k

p
u
l
l
-
u
p

w
a
k
e
-
o
n
-
c
h
a
n
g
e
,

*
d
e
t
e
c
t

k
e
y
p
r
e
s
s
,

*
d
e
t
e
c
t

k
e
y
p
r
e
s
s
,

s
e
r
i
a
l

c
l
o
c
k

n
/
a

*
s
e
r
i
a
l

s
t
r
o
b
e

a
t

9
6
0
0

b
a
u
d

*
P
W
M

o
u
t
p
u
t

*
R
S
2
3
2

T
x

d
a
t
a

G
P
4

G
P
5

1
.

U
3

"
s
t
e
a
l
s
"

p
o
w
e
r

f
r
o
m

R
S
-
2
3
2

r
e
c
e
i
v
e

N
o
t
e
s
:

U
p

B
e
e
p
e
r

p
u
l
s
e
s

p
r
o
d
u
c
e

c
l
i
c
k

s
o
u
n
d

S
W
1

E
V
Q
-
P
A
C
0
4
M

T
P
4

T
P

T
P
5

T
P

1

2

N
2
A

1
K
X
3
I

(

-
>

S
E
R

D
A
T

)

G
P
0

Z
1
4
P
A
D

Z
1
5
P
A
D

Z
1
6
P
A
D

Z
1
7
P
A
D

Z
1
8
P
A
D

Z
2
1
P
A
D

Z
2
2
P
A
D

Z
2
3
P
A
D

F
o
r

H
o
l
d
i
n
g

B
1

B
1

B
H
3
A
A
-
P
C

+
5
V

3
x
A
A

4
.
5
V

J
1

P
J
-
2
0
2
B

C
1

0
.
1
U

C
2

1
0
0
U
-
1
0
-
L
P

I

1

O
3

G 2

U
4

L
M
2
9
4
0
C
T
-
5
.
0

Z
2
4
P
A
D

D
1

1
N
4
1
4
8

(

<
-

K
E
Y

U
P

)

(

-
>

S
E
R

S
T
B

)

G
P
1

G
P
2

+
5
V

T
P
6

T
P

T
P
7

T
P

3

4

N
2
B

1
K
X
3
I

D
o
w
n

i
n
c
r
e
a
s
e

f
a
n

s
p
e
e
d

S
W
2

E
V
Q
-
P
A
C
0
4
M

a
n
d

f
e
e
d
s

U
2
’
s

s
e
r
i
a
l

o
u
t
p
u
t
.

D
a
t
a

3
.

F
a
s
t

(
>
1
0
k
H
z
)

s
e
r
i
a
l

d
a
t
a

p
r
e
l
o
a
d
s

l
a
t
c
h

2
.

K
e
y
p
r
e
s
s

o
r

R
S
2
3
2

R
x

d
a
t
a

c
a
u
s
e
s

s
y
s
t
e
m

t
o

w
a
k
e
-
u
p

f
r
o
m

S
L
E
E
P
.

l
i
n
e
.

C
o
n
n
e
c
t

H
1

t
o

P
C

v
i
a

n
u
l
l
-
m
o
d
e
m

a
t

a
n
y

r
a
t
e

c
a
n

f
e
e
d

b
e
e
p
e
r

-
-

b
e
s
t

b
e
e
p

f
o
u
n
d

b
y

t
r
i
a
l

a
n
d

e
r
r
o
r
.

c
a
b
l
e
.

C
o
m
m
a
n
d
s

r
e
c
e
i
v
e
d

a
r
e

n
o
r
m
a
l
l
y

e
c
h
o
e
d

b
a
c
k

t
o

P
C

/

r
e
m
o
t
e

/

t
e
r
m
i
n
a
l
.

I
f

v
a
l
i
d

k
e
y
p
r
e
s
s
,

u
p
d
a
t
e

f
a
n

s
p
e
e
d

5
.

S
a
l
v
o

t
a
s
k
s
:

6
.

C
o
m
p
a
t
i
b
l
e

w
i
t
h

P
I
C
S
T
A
R
T

P
l
u
s

D
C

4
.

U
1

r
u
n
n
i
n
g

@

4
M
H
z

v
i
a

I
n
t
R
C
.

3
.

B
e
e
p

o
n

k
e
y
p
r
e
s
s
.

1
.

E
v
e
r
y

2
0
m
s
,

c
h
e
c
k

a
n
d

d
e
b
o
u
n
c
e

k
e
y
s
.

s
e
t
t
i
n
g
,

a
n
d

s
h
o
w

o
n

b
a
r
g
r
a
p
h
.

2
.

D
r
i
v
e

f
a
n

v
i
a

P
W
M
.

F
a
n

d
e
c
r
e
a
s
e

f
a
n

s
p
e
e
d

31

2

Q
1

2
N
3
9
0
6

+
5
V

T
P
8

T
P

5

6

N
2
C

1
K
X
3
I

(

<
-

K
E
Y

D
N

)

(

-
>

P
W
M

)

G
P
3

G
P
4

M
i
s
c
e
l
l
a
n
e
o
u
s

P
a
r
t
s

6
-
2
6
V Z
2

S
o
c
k
e
t
,

8
-
p
i
n
,

D
I
P

Z
3

B
a
t
t
e
r
y
,

A
A

Z
4

B
a
t
t
e
r
y
,

A
A

Z
5

B
a
t
t
e
r
y
,

A
A

Z
1

P
C
B
,

S
a
l
v
o

P
I
C
1
2

D
e
m
o

B
o
a
r
d

Z
2
5

S
c
r
e
w
,

4
-
4
0
x
.
2
5
0
"

s
l
o
t
t
e
d

p
a
n

h
e
a
d

(
x
5
)

Z
2
6

S
c
r
e
w
,

4
-
4
0
x
.
5
0
0
"

s
l
o
t
t
e
d

p
a
n

h
e
a
d

(
x
4
)

Z
2
7

W
a
s
h
e
r
,

4
-
4
0

s
p
l
i
t
-
l
o
c
k

(
x
4
)

Z
2
8

W
a
s
h
e
r
,

4
-
4
0

f
l
a
t

(
x
1
)

Z
2
9

N
u
t
,

4
-
4
0

(
x
1
)

Z
3
0

S
t
d
o
f
f
,

4
-
4
0

H
e
x

0
.
1
8
7
"
x
.
2
5
0
"

(
x
4
)

Z
3
1

W
a
s
h
e
r
,

S
p
e
c
i
a
l

T
O
-
2
2
0

i
n
s
u
l
a
t
i
n
g

(
x
1
)

D
e
c
o
u
p
l
i
n
g

C
a
p
s

9
-
s
t
e
p

P
W
M

a
t

2
7
.
1
2
H
z

M
1

F
A
N
-
2
5
X
1
0

D
4

1
N
4
1
4
8

d
e
v
e
l
o
p
m
e
n
t

o
n
l
y
.

G
P
[
5
.
.
0
]

m
a
p
p
e
d

t
o

p
o
w
e
r

s
u
p
p
l
y
.

2
.
5
m
m

m
a
l
e
,

n
e
g
.

s
h
i
e
l
d
.

8
.

F
a
n

M
1

i
s

2
5
x
2
5
x
1
0
m
m
,

5
V
,

0
.
6
W
,

1
.
8
c
f
m

7
.

S
P
1

s
p
e
c
’
d

a
t

2
0
4
8
H
z
.

P
O
R
T
B
[
5
.
.
0
]

o
n

P
I
C
1
6
C
7
7
-
X
X
/
P
.

O
n
l
y

p
i
n
s

3
-
7

a
n
d

3
1
-
3
8

a
r
e

m
a
p
p
e
d

t
o

/
P

D
I
P

p
k
g
.

S
h
i
c
o
h

2
5
1
0

o
r

e
q
u
i
v
a
l
e
n
t
.

9
.

Z
6
-
Z
1
8

p
r
o
v
i
d
e
d

f
o
r

a
l
t
e
r
n
a
t
i
v
e

P
I
C
m
i
c
r
o

1
0
.

+
5
V

s
u
p
p
l
y

i
s

n
o
m
i
n
a
l
l
y

+
4
.
5
V
.

1
1
.

Z
2
1
-
Z
2
4

u
s
e
d

t
o

f
a
s
t
e
n

B
1

t
o

P
C
B
.

1
3
.

Z
1
9

a
n
d

Z
2
0

m
a
y

b
e

c
o
n
n
e
c
t
e
d

t
o

T
P
1
0

a
n
d

T
P
9
,

r
e
s
p
e
c
t
i
v
e
l
y
,

t
o

s
h
o
w

R
S
-
2
3
2

1
2
.

N
o
t
e

D
2
’
s

o
d
d

p
i
n
o
u
t
.

a
c
t
i
v
i
t
y
,

R
x

a
b
o
v
e

T
x
.

S
o
f
t
w
a
r
e

9
6
0
0
,
N
,
8
,
1

X
O
N
/
X
O
F
F

f
l
o
w

c
o
n
t
r
o
l

1

2

3

4

5

6

7

8

9

1 0
1 1

H
1

D
B
-
9
P

U
A
R
T

(

-
>

)

(

<
-

)

R
3

1
0

D
5

1
N
4
1
4
8

T
P
9

T
P

T
P
1
0
T
P

R
2

4
.
7
K

T
O

5

R
I

7

T
I

3

R
O

1

V C C8 G N D 4

V
-

6

V
+

2

U
3

D
S
2
7
6
S

+
5
V

(

-
>

T
X

)

(

<
-

R
X

)

G
P
5

G
P
0

T
e
s
t

P
o
i
n
t
s

C
6

0
.
1
U

C
7

0
.
1
U

M
o
u
n
t
i
n
g

H
o
l
e
s

C
5

0
.
1
U

+
5
V

Z
H
1

P
A
D
4

Z
H
2

P
A
D
4

Z
H
3

P
A
D
4

Z
H
4

P
A
D
4

T
P
1

T
P

T
P
2

T
P

+
5
V

C
o
m
m
a
n
d

L
i
s
t
:

’
S
’
,
’
s
’
:

S
l
e
e
p

’
T
’
,
’
t
’
:

S
l
e
e
p

i
n

2
m
i
n

’
W
’
,
’
w
’
:

S
t
a
y

a
w
a
k
e

(
n
o

s
l
e
e
p
)

’
1
’
-
’
8
’
:

F
a
n

s
p
e
e
d
s

’
0
’
:

T
u
r
n

o
f
f

f
a
n

’
?
’
:

R
e
p
o
r
t

f
a
n

s
p
e
e
d

(
C
)

2
0
0
1

P
u
m
p
k
i
n
,

I
n
c
.

A
l
l

R
i
g
h
t
s

R
e
s
e
r
v
e
d

d
r
a
w
n

b
y
:

A
E
K

C
3

1
0
0
U
-
1
0
-
L
P

N
o
i
s
e

R
4

1
M

C
4

0
.
1
U

T
P
1
1

T
P

D
T
E

F
i
l
t
e
r

R
S
2
3
2

Figure 12: PIC12 Demo Board Schematic Diagram

 Application Note

AN-6 Designing a Low-Cost Multifunction PIC12C509A-based Remote Fan Controller with Salvo

35

Bill of Materials
Listing 11 below is the Bill of Materials for the Fan Controller.

Salvo PIC12 Demo Board Revised: April 8, 2001
00196B.SCH Revision: B

Pumpkin, Inc.
750 Naples Street
San Francisco, CA 94112
(415) 584-6360
www.pumpkininc.com

Bill Of Materials April 8, 2001 19:42:22 Page 1

 Item Quantity Reference Part
__

 1 1 B1 BH3AA-PC
 2 5 C1,C4,C5,C6,C7 0.1U
 3 2 C2,C3 100U-10-LP
 4 4 D1,D3,D4,D5 1N4148
 5 1 D2 HDSP-4830
 6 1 H1 DB-9P
 7 1 J1 PJ-202B
 8 1 M1 FAN-25X10
 9 1 N1 330X9
 10 1 N2 1KX3I
 11 1 Q1 2N3906
 12 1 R1 47
 13 1 R2 4.7K
 14 1 R3 10
 15 1 R4 1M
 16 1 SP1 BRT1209P-01
 17 2 SW1,SW2 EVQ-PAC04M
 18 11 TP1,TP2,TP3,TP4,TP5,TP6, TP
 TP7,TP8,TP9,TP10,TP11
 19 1 U1 PIC12C509A-04/P
 20 1 U2 74HC595N
 21 1 U3 DS276S
 22 1 U4 LM2940CT-5.0
 23 4 ZH1,ZH2,ZH3,ZH4 PAD4
 24 1 Z1 PCB, Salvo PIC12 Demo Board
 25 1 Z2 Socket, 8-pin, DIP
 26 3 Z3,Z4,Z5 Battery, AA
 27 19 Z6,Z7,Z8,Z9,Z10,Z11,Z12, PAD
 Z13,Z14,Z15,Z16,Z17,Z18,
 Z19,Z20,Z21,Z22,Z23,Z24
 28 1 Z25 Screw, 4-40x.250" slotted pan
 head (x5)
 29 1 Z26 Screw, 4-40x.500" slotted pan
 head (x4)
 30 1 Z27 Washer, 4-40 split-lock (x4)
 31 1 Z28 Washer, 4-40 flat (x1)
 32 1 Z29 Nut, 4-40 (x1)
 33 1 Z30 Stdoff, 4-40 Hex 0.187"x.250"
 (x4)
 34 1 Z31 Washer, Special TO-220
 insulating (x1)

Listing 11: Fan Controller Bill of Materials

 Application Note

36 AN-6 Designing a Low-Cost Multifunction PIC12C509A-based Remote Fan Controller with Salvo

PCB Plots
Shown below are the assembly and artwork plots for the Fan
Controller printed circuit board (PCB).

Assembly Drawing (Component Side)

Figure 13: Assembly Drawing (Component Side)

Artwork (Layer 1 / Top)

Figure 14: Artwork (Layer 1 / Top)

 Application Note

AN-6 Designing a Low-Cost Multifunction PIC12C509A-based Remote Fan Controller with Salvo

37

Artwork (Layer 2 / Bottom)

Figure 15: Artwork (Layer 2 / Bottom)

1 Costs substantially less than one dollar in high volumes.
2 The lowest two segments display RS-232 activity.
3 2400,N,8,1 with software flow control (XON/XOFF).
4 E.g. via messages.
5 41 instructions, including the call to OS_Delay().
6 HI-TECH PICC v7.86PL3 or later.
7 Unity-gain Sallen-Key topology, d=1.414 for maximally flat amplitude.
8 Hanrahan, David, "Fan Speed Control Techniques in PCs," Analog Dialogue,

Volume 34, Number 04, June-July, 2000.
9 Waveforms shown are for a fan circuit that turns the fan on with a logic high

(+5V) signal.
10 A difference in price of 2x to 5x is typical.
11 Note that alternate values for BEEPER_OFF and BEEPER_ON can be used to drive

the beeper at a higher frequency.
12 +4.5V supply.
13 Remember, it's a software, non-interrupt-driven UART, so while you may have

to send a character to it a few times before it's accepted, the Fan Controller will
not misidentify it. Command reception can be verified by the fact that the Fan
Controller echoes each character it successfully receives.

14 salvo\demo\d3\sysj\d3free.map.
15 The salvocfg.h for this project differs only by #define OSTARGET

OSPIC16.

	Designing a Low-Cost Multifunction PIC12C509A-based Remote Fan Controller with Salvo
	Introduction
	Functional Description
	Software Organization
	Variables
	Task Priorities
	main()
	Locating the Software UART

	TaskReadKeys()
	TaskSpinFan()
	TaskBeep()
	Other Functions
	A Snapshot in Time

	Command Set
	Design Challenges
	Just Six I/O Pins
	Not Much Stack
	What? No Interrupts!
	Effective and Inexpensive Fan Speed Control
	Variable Voltage Drive
	Direct PWM Drive
	No PWM Output Either?

	Driving the Beeper
	Detecting Keypresses
	Two Outputs and Two Inputs, One Three-Pin Interface
	Taking Advantage of the Beeper's Slow Response

	Impact of Software UART
	Optional Baud Rates

	Timing Issues
	Circuit Description
	Performance
	Enhancements
	Conclusion
	Source Code Listings
	salvocfg.h
	main.c

	Build Results
	RTOS Size
	Application Size

	Schematic Diagram
	Bill of Materials
	PCB Plots
	Assembly Drawing (Component Side)
	Artwork (Layer 1 / Top)
	Artwork (Layer 2 / Bottom)

