
 

AN-7 
Application Note 

750 Naples Street    •    San Francisco, CA 94112    •   (415) 584-6360    •    http://www.pumpkininc.com 

 

created by Andrew E. Kalman on May 2, 2001    updated on May 3, 2001 
All trademarks mentioned herein are properties of their respective companies. 

 

Ninety-Day Countdown Timer 

Introduction 
Some embedded applications have actions that occur on month-
long or greater timescales. This Application Notes illustrates an 
easy way to create and use a three-month delay in an application 
using the Salvo RTOS. 

Application 
Modern residential HVAC1 systems are commonly driven by low-
cost programmable electronic thermostats. The homeowner can set 
the desired temperature based on time of day, day of week, interior 
zone, etc. through a simple user interface consisting of a few 
buttons and a custom LCD display. 
 
Home furnaces and air conditioners are outfitted with filters 
designed to trap nuisance particles such as pollen, plant spores, 
lint, pet hair and household dust. These filters have a finite life and 
should be replaced, on average, every ninety days. 
 
A thermostat with a feature to alert the homeowner as to when the 
filter needs replacing will display "Replace Filter" after ninety 
days of operation.2 A button is provided so that the user can reset 
this indicator after having replaced the filter. 

Salvo Code 
The Salvo code to implement a ninety-day timer is shown in 
Listing 1 below. The system timer is configured for 10ms ticks.3  
The code specific to the countdown timer is shown in bold. 
 

main() 
{ 
  … 
  OSInit(); 
  … 



 Application Note 
 

2 AN-7  Ninety-Day Countdown Timer 
 

 

  OSCreateTask(TaskFilterLife,  
    TASK_FILTER_LIFE_P, 9); 
  … 
  filterNeedsChanging = FALSE; 
  … 
  for (;;) { 
    OSSched(); 
  } 
} 
 
 
void TaskFilterLife ( void ) 
{ 
  static unsigned long int longCounter; 
 
 
  for (;;) { 
    longCounter = 3888000; 
    do { 
      OS_Delay(200, TaskFilterLife1); 
    } while ( --longCounter ); 
 
    filterNeedsChanging = TRUE; 
  
    OSStop(TaskFilterLife2); 
  } 
} 
 
 
void TaskKeypad ( void ) 
{ 
  for (;;) { 
    … 
    switch ( key ) { 
      … 
      case RESET_FILTER: 
        filterNeedsChanging = FALSE; 
        OSStartTask(TASK_FILTER_LIFE_P); 
        break; 
      … 
      } 
    … 
    } 
} 

Listing 1: Code for Ninety-Day Countdown Timer 

Timer Issues 
Salvo can be configured for 8-, 16- and 32-bit delays. Delays are 
measured in units of system ticks. At 10ms per tick, 90 days is 
777,600,000 system ticks, less than 2^32. We could configure our 
application for 32-bit delays and delay TaskFilterLife() (above) 
via OS_Delay(777600000).  However, by utilizing 8-bit delays we 
can minimize the size of all of the task control blocks,4 thereby 
minimizing RAM usage.  



 Application Note 
 

AN-7  Ninety-Day Countdown Timer 
 

3 
 

 
In order to delay for longer than 255 system ticks with Salvo 
configured for 8-bit delays, we can use a loop construct around the 
call to OS_Delay(). The loop variable must be declared as static. 
In Listing 1 above, 10ms x 200 x 3,888,000 is the number of 
seconds in ninety days. 

Application Behavior 
TaskFilterLife() is created with a low priority. At startup, it 
begins running as soon as it is the highest-priority eligible task. It 
delays itself immediately, and every 2 seconds thereafter it 
decrements longCounter until it reaches zero ninety days later. 
Then, it sets the global flag filterNeedsChanging5 and stops 
itself. It will remain stopped indefinitely, until … the homeowner 
replaces the filter and resets the indicator by pressing the 
RESET_FILTER key. Then TaskFilterLife() will begin counting 
down again. 

RAM usage 
One task control block is required for TaskFilterLife(), and 
four bytes are required for longCounter, for a total of 9 bytes6 to 
implement this functionality. 

Saving RAM 
With an initial value of 3,888,000, the uppermost byte of 
longCounter is always zero. This means that only 24 bits are 
needed, and instead of a single 32-bit counter we could cascade a 
16-bit and an 8-bit counter, as shown in Listing 2 below: 
 

void TaskFilterLife ( void ) 
{ 
  static unsigned int intCounter; 
  static unsigned char charCounter; 
 
 
  for (;;) { 
    intCounter = 19440; 
    do { 
      charCounter = 200; 
      do { 
        OS_Delay(200, TaskFilterLife1); 
      } while ( --charCounter ); 
    } while ( --intCounter ); 
 
    filterNeedsChanging = TRUE; 



 Application Note 
 

4 AN-7  Ninety-Day Countdown Timer 
 

 

  
    OSStop(TaskFilterLife2); 
  } 
} 

Listing 2: Saving One Byte of RAM via Cascaded 
Counters 

The time to count down remains the same (10ms x 200 x 200 x 
19440), but we use one fewer byte of RAM. 

Conclusion 
By having TaskFilterLife() stop itself when the timer reaches 
zero, there's no need to further manage longCounter – all related 
activity stops until the task is restarted in TaskKeyPad(). Thus, the 
"Replace Filter" indicator, the ninety-day countdown timer and the 
desired application behavior are all easily implemented via a single 
Salvo task and a few bytes of RAM. 
 
 
 
                                                 
1  Heating, Ventilation and Air Conditioning. 
2  An HVAC system with the ability to sense pressure (vacuum) on either size of 

the filter(s) could make a more intelligent assessment of the filter's useful life. 
But a three-month timer is much less expensive. 

3  A typical value. 
4  When configured for delays, each task's task control block contains RAM 

dedicated for delays, whether or not the task calls OS_Delay(). Hence it's 
advantageous to configure Salvo for the smallest possible delays. 

5  A global flag is used here for simplicity only. OSSignalBinSem() could be 
used in place of the global flag as a (better) signaling mechanism to the display 
task. 

6  Microchip PIC16 family of PICmicro MCUs. 


	Ninety-Day Countdown Timer
	Introduction
	Application
	Salvo Code
	Timer Issues
	Application Behavior
	RAM usage
	Saving RAM
	Conclusion


