

AN-9
Application Note

750 Naples Street • San Francisco, CA 94112 • (415) 584-6360 • http://www.pumpkininc.com

created by Andrew E. Kalman on Aug 17, 2001 updated on Aug 17, 2001
All trademarks mentioned herein are properties of their respective companies.

Interrupts and Salvo Services

Introduction
Writing reliable microcontroller applications that use interrupts is
easy if you understand the effect that interrupts can have on
mainline code. This Application Note explains how to control
interrupts when using Salvo™ user services.

Critical Sections
Most real-time operating system (RTOS) services contain critical
sections of code. Critical sections may read or modify global (i.e.
shared) RTOS variables. In order to protect these variables against
possible corruption by interrupt service routines (ISRs), interrupts
are disabled prior to the critical section and restored thereafter.

Note A basic tenet of RTOS design is to minimize the time
during which interrupts are disabled. In other words, critical
sections of code should be as short as possible.

As an example of the need for protecting critical sections, an
RTOS might maintain a linked list of objects. Removing an object
from this linked list might be one of the actions performed by an
RTOS service – SvcM() – that is callable by the user. If an
unrelated interrupt (e.g. a UART receive buffer full interrupt) were
to occur during the execution of this RTOS service, it would have
no effect.1

However, if the application calls another RTOS service – SvcI() –
in an ISR, and that service operates on same the linked list, then it's
entirely possible that data corruption will occur if SvcI() is called
while SvcM() is interrupted. To protect this critical section of
code, each service would be written as shown in Listing 1.

 Application Note

2 AN-9 Interrupts and Salvo Services

{
 …
 disable interrupts;
 operate on linked list; /* critical section */
 restore interrupts;
 …
}

Listing 1: Protecting A Critical Section

This way, an interrupt that modifies the linked list2 can only
happen before or after the operation on the linked list – it cannot
happen during that time. All Salvo services disable interrupts
during critical sections of code.

Don't Worry, Be Happy
The overview above sums up the issue of critical sections and
interrupts for a conventional RTOS. But Salvo is different – it
neither uses nor requires a software stack. This is one reason for
Salvo's miniscule RAM requirements. In certain situations, this has
important implications on the issue of interrupts and critical
sections.

But first, note that there are two situations where you needn't
worry about interrupts in a Salvo application: 1) if you neither
have nor use interrupts,3 and 2) if the C compiler you are using
passes parameters on the stack. The vast majority of compilers
operate this way due to their target processors having support for
stack-based operations. Salvo supports certain processors and
compilers like this. The ability to save (push) the interrupt state on
the stack and restore (pop) it later, together with the compiler's
ability to pass function parameters and return values on the stack,
ensure that the method outlined above for protecting critical
sections of code is sufficient.

A Stack! A Stack! My Kingdom for a Stack!4
C compilers for processors without a general-purpose software
stack (we'll call them stackless compilers) are able to provide full
C functionality by using dedicated RAM for storing parameters,
return values, auto variables, etc. To minimize RAM usage, objects
are overlayed when not in use at the same time. The compiler does
this automatically by analyzing the call graphs of all the functions
in the application. If two functions are never in the same call graph
(i.e. neither one is a child of the other), then their parameters can
share the same RAM at runtime.

 Application Note

AN-9 Interrupts and Salvo Services

3

In Listing 2 we see how this is done.5 Prior to calling the
subroutine of interest, the subroutine's second parameter (an
unsigned 8-bit value) is cleared to 0, and its first parameter (an 8-
bit pointer to RAM) is passed to it via a register.6

 main.c: 231: OSCreateBinSem(&OSecbArea[(1-1)], 0);
03B6 01AF clrf ?_OSCreateBinSem
03B7 30AA movlw OSecbArea
03B8 120A 158A 2668 fcall _OSCreateBinSem

Listing 2: Example of Stackless Parameter Passing

For functions called from interrupts, a separate area in RAM is
dedicated for parameters, etc., since these functions can execute at
any time. Again, the compiler analyzes the call graphs for the
opportunity to overlay in RAM. The map file (not shown) reveals
that OSCreateBinSem()'s second parameter is overlayed with one
of OSReturnBinSem()'s parameters and with OSSignalBinSem()'s
lone auto variable – they all share the same location in RAM.

Applications with nested interrupts complicate things further by
requiring even more dedicated RAM. All of this is handled
automatically by the compiler, and the user is unaware that
anything differs from a normal compiler … except in one
important instance.

Be Afraid, Be Very Afraid
Imagine the situation with a stackless compiler where a function is
called at both the mainline (background) and interrupt (foreground)
levels. The compiler must decide where to locate and overlay the
parameters, etc. in RAM. Since interrupts are involved, it will
probably place them with those of other interrupt-level functions.
This is all well and good, except that the function's parameters
(and return values) are no longer protected against corruption!

Review Listing 2 carefully. If this code is called both at the
mainline and interrupt levels, what will happen? If the interrupt
happens after line 0x03B6 and before the mainline code enters
OSCreateBinSem() and disables interrupts (typically 5-7
instruction cycles later), it will overwrite the function's second
parameter.7 This can have catastrophic results.

The solution, as the compiler vendors are careful to point out, is to
disable interrupts in mainline code before calling functions with
multiple callgraphs. An example is shown in Listing 3.

 Application Note

4 AN-9 Interrupts and Salvo Services

 main.c: 278: GIE = 0; /* disable interrupts */
03B5 138B bcf 11,7
 main.c: 279: OSCreateBinSem(&OSecbArea[(1-1)], 0);
03B6 01AF clrf ?_OSCreateBinSem
03B7 30AA movlw OSecbArea
03B8 120A 158A 2668 fcall _OSCreateBinSem
 main.c: 280: GIE = 1; /* re-enable interrupts */
03BB 178B bsf 11,7

Listing 3: Protecting Parameters Passed without a Stack

Note that the issues of parameter passing and critical section
protection are not directly related – even functions that have
parameters but no critical section are affected. Disabling interrupts
inside a function in order to protect a critical section is too late to
protect the parameters of the function. Similarly, if interrupts are
re-enabled inside the function after the critical section, return
values8 may be corrupted by the interrupt-level function. Therefore
interrupt control must be done outside the function.

It would be desirable to hide the need for this external interrupt
control from the Salvo user. One possibility would be to create
macros for mainline code that would first disable interrupts, then
execute the desired Salvo service, and then restore interrupts.
Unfortunately this method is incompatible with functions that have
return values.

Comparison of Methods

Table 1 lists the methods whereby Salvo controls interrupts for
critical sections.

service is called
from:

conventional
compiler

stackless
compiler

background only inside inside
foreground only inside inside

anywhere inside outside
Table 1: Location of RTOS Service Interrupt Control for

Protecting Critical Region

Table 1 makes clear that the need to protect critical regions by
external control of interrupts is required in only one situation.
Salvo provides two macros – OSProtect() and OSUnprotect() –
expressly for this purpose. Their use is illustrated in Listing 4 for a
Salvo service called at the mainline (background) level. Services
called from ISRs do not require these macros.

 Application Note

AN-9 Interrupts and Salvo Services

5

OSProtect();
OSSignalBinSem(BINSEM_TXBUFF_P);
OSUnprotect();

Listing 4: Protecting Salvo Services with Multiple Call
Graphs

This protection is simply an external form of disabling and the
restoring interrupts around a function with multiple call graphs. By
using these macros with both conventional and stackless
compilers, no changes to the source code are required when
porting from one development environment to another.

Conclusion
An RTOS should support the calling of certain services from both
mainline and interrupt levels. Stackless compilers require control
of interrupts external to functions with multiple call graphs in order
to avoid parameter corruption. Salvo's OSProtect() and
OSUnprotect() macros must be used in these situations.

1 Assuming the compiler implements proper context save and restore for the

interrupt in question.
2 With potentially disastrous results if it were to occur at the wrong time.
3 Believe it or not, there are useful microcontrollers with no interrupts, e.g.

Microchip PIC12 PICmicro family.
4 With apologies to Wm. Shakespeare. Richard III, act 5, sc. 7.
5 salvo\demo\d5\main.c compiled for PIC16C77 PICmicro® MCU.
6 W (working) register. PIC16C77 is RISC-like.
7 Since the first parameter is passed in a register, and registers are preserved by the

interrupt handler, only the second parameter will be affected.
8 Only those that are not passed in registers will be affected.

	Interrupts and Salvo Services
	Introduction
	Critical Sections
	Don't Worry, Be Happy
	A Stack! A Stack! My Kingdom for a Stack!
	Be Afraid, Be Very Afraid
	Comparison of Methods
	Conclusion

