OS WaitMsg ()

OS WaitMsgQ ()
S a I VO 0S Yield()

The RTOS that runs in tiny places.”

OSCreateBinS

OSCreateMsg ()

N OSCreat MsgQ ()
OSCreaﬁpSem()
OSCr'ateTask()
0SGetTicks ()

0SIdleTask ()

OSIdleTaskHook ()
e R W

LY

b\ \\'\ N L]
TN oS)

OSPrio ()

OSRpt (

OSSched ()

\
)
\

SR \‘ NN e 1\\ jSSetTicks ()
PUMPKIN \ \ L © NN SignalBinSem()
B HREAI—TIMESOFTV\‘IARE \\\} \\\\\\“\\\\ \k\
HOUORE S \Vat DN\ 88N malSem ()
Dy 1

mq" <€> \ A ‘i SN - Qs\
PORTH = G LEE L T OSSNl sg ()

(inside front cover)

5 Salvo

The RTOS that runs in tiny places”

User Manual

version 4.2.2

for all distributions

PUMPKIN

REAL-TIME SOFTWARE

Quick Start Guide

Thanks for purchasing Salvo, The RTOS that runs in tiny places.™
Pumpkin is dedicated to providing powerful, efficient and low-cost
embedded programming solutions. We hope you'll like what we've
made for you.

If this is the first time you've encountered Salvo, please review
Chapter 1 « Introduction to get a flavor for what Salvo is, what it
can do, and what other tools you'll need to use it successfully. See
Chapter 2 « RTOS Fundamentals if you haven't used an RTOS
before. Then try the steps below in the order listed.

Note You don't need to purchase Salvo to run the demo pro-
grams, try the tutorial or use the freeware libraries to build your
own multitasking Salvo application — they're all part of Salvo Lite,
the freeware version of Salvo.

Running on Your Hardware

If you have a compatible target environment, you can run one of
the standalone Salvo example applications contained in Punp-
ki n\ Sal vo\ Exanpl e on your own hardware. Open the demo's pro-
ject, build it, download or program it into your hardware, and let it
run. Most demo programs provide real-time feedback. If it's a
Salvo Lite demo and uses commonly available hardware, you can
even build your own application by modifying the source and re-
building it.

See Appendix C ¢ File and Program Descriptions for more infor-
mation on the demo programs.

Trying the Tutorial

Chapter 4 « Tutorial builds a multitasking, event-driven Salvo ap-
plication in six easy steps. The tutorial will familiarize you with
Salvo's terminology, user services, and the process of building a
working application. A set of tutorial projects is included with
every Salvo distribution for embedded targets, enabling you to
build each tutorial application by simply loading and building the
project in the appropriate development environment.

Salvo Lite

Salvo LE

Salvo Pro

Getting Help

A compiler that's certified for use with Salvo is all you need to use
Salvo Lite, the freeware version of Salvo. You can write your own,
small multitasking application with calls to Salvo services and link
it to the freeware libraries. See Chapter 4 « Tutorial and the Salvo
Application Note for your compiler and/or target for more informa-
tion.

Salvo LE adds the standard Salvo libraries to Salvo Lite. This
means that the numbers of tasks, events, etc. in your application
are limited only by the available RAM.

With Salvo Pro, you'll have full access to all its source code, stan-
dard libraries, test programs and priority support. If you haven't
done so already, try the tutorial in Chapter 4 « Tutorial as a first
step towards creating your own application. Then use the configu-
ration options in Chapter 5 ¢ Configuration and the services out-
lined in Chapter 7 « Reference, along with their examples, to fine-
tune Salvo to your application's requirements. If you run into prob-
lems or have questions, you'll find lots of useful information in
Chapter 6 « Frequently Asked Questions (FAQ) and Chapter 11 «
Tips, Tricks and Troubleshooting.

Some of the best resources for new and experienced Salvo users
are the Salvo User Forums, hosted on Pumpkin's web site,
http://www.pumpkininc.com/. Check there for up-to-date informa-
tion on the latest Salvo releases.

http://www.pumpkininc.com/

Contact Information & Technical
Support

Contacting Pumpkin

Pumpkin's mailing address and phone and fax numbers are:

Pumpkin, Inc.

750 Naples Street

San Francisco, CA 94112 USA
tel: 415-584-6360

fax: 415-585-7948

info@pumpkininc.com
sales@pumpkininc.com
support@pumpkininc.com

Time Zone: GMT-0800 (Pacific Standard Time)

Connecting to Pumpkin's Web Site

Use your web browser to access the Pumpkin web site at

e http://www.pumpkininc.com/

Information available on the web site includes

» Latest News

* Software Downloads & Upgrades
* User Manuals

» Compiler Reference Manuals

* Application Notes

* Assembly Guides

* Release Notes

 User Forums

mailto:info@pumpkininc.com
mailto:sales@pumpkininc.com
mailto:support@pumpkininc.com
http://www.pumpkininc.com/

Salvo User Forums

Pumpkin maintains User Forums for Salvo at Pumpkin's web site.
The forums contain a wealth of practical information on using
Salvo, and is visited by Salvo users as well as Pumpkin technical
support.

How to Contact Pumpkin for Support

Internet (WWW)

Email

Mail, Phone & Fax

Pumpkin provides online Salvo support via the Salvo Users Fo-
rums on the Pumpkin World Wide Web (WWW) site. Files and
information are available to all Salvo users via the web site. To
access the site, you'll need web access and a browser (e.g. Net-
scape, Opera, Internet Explorer).

The Salvo User Forums are located at:

e http://www.pumpkininc.com

and are the preferred method for you to post your pre-sales, gen-
eral or technical support questions.

Normally, we ask that you post your technical support questions to
the Salvo User Forums on our website. We monitor the forums and
answer technical support questions on-line.

In an emergency, you can reach technical support via email:

e support@pumpkininc.com

We will make every effort to respond to your email requests for
technical support within 1 working day. Please be sure to provide
as much information about your problem as possible.

If you were unable to find an answer to your question in this man-
ual, check the Pumpkin website and the Salvo user Forums (see
below) for additional information that may have been recently

http://www.pumpkininc.com/cgi-bin/Ultimate.cgi?action=intro
mailto:support@pumpkininc.com

posted. If you are still unable to resolve your questions, please con-
tact us directly at the numbers above.

What To Provide when Requesting Support

Registered users requesting Salvo technical support should supply:

* The Salvo version number

* The compiler name and version number

* The user's source code snippet(s) in question
* The user's sal vocfg. h file

 All other relevant files, details, etc.

Small code sections can be posted directly to the Salvo User Fo-
rums — see the on-line posting FAQ on how to use the UBB code
tags ([code] and [/ code]) to preserve the code's formatting and
make it more legible.

If the need arises to send larger code sections, or even a complete,
buildable project, please compress the files and email them directly
to Salvo Technical support (see below). Please be sure to provide
all necessary files to enable Technical Support to build your Salvo
application locally in an attempt to solve your problem. Keep in
mind that without the appropriate target system hardware, support
in these cases is generally limited to non-runtime problem solving.
Technical Support will keep all user code in strictest confidence.

Salvo User Manual
Copyright © 1995-2010 by Pumpkin, Inc.

All rights reserved worldwide. No part of this publication may be reproduced, stored in a retrieval system, or trans-
mitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior
permission of Pumpkin, Inc.

Pumpkin, Inc.
750 Naples Street
San Francisco, CA 94112 USA

tel: 415-584-6360

fax: 415-585-7948

web: www.pumpkininc.com
email: sales@pumpkininc.com

Disclaimer

Pumpkin, Incorporated ("Pumpkin") has taken every precaution to provide complete and accurate information in this
document. However, due to continuous efforts being made to improve and update the product(s), Pumpkin and its
Licensor(s) shall not be liable for any technical or editorial errors or omissions contained in this document, or for
any damage, direct or indirect, from discrepancies between the document and the product(s) it describes.

The information is provided on an as-is basis, is subject to change without notice and does not represent a commit-
ment on the part of Pumpkin, Incorporated or its Licensor(s).

Trademarks
The Pumpkin name and logo, the Salvo name and logo, the CubeSat Kit name and logo, "The RTOS that runs in tiny
places." and "Don’t leave Earth without It." are trademarks of Pumpkin, Incorporated.

The absence of a product or service name or logo from this list does not constitute a waiver of Pumpkin's trademark
or other intellectual property rights concerning that name or logo.

All other products and company names mentioned may be trademarks of their respective owners. All words and
terms mentioned that are known to be trademarks or service marks have been appropriately capitalized. Pumpkin,
Incorporated cannot attest to the accuracy of this information. Use of a term should not be regarded as affecting the
validity of any trademark or service mark.

This list may be partial.
Patent Information
The software described in this document is manufactured under one or more of the following U.S. patents:
Patents Pending
Life Support Policy
Pumpkin, Incorporated's products are not authorized for use as critical components in life support devices or systems

without the express written approval of the president of Pumpkin, Incorporated. As used herein:

» 1) Life support devices or systems are devices or systems which, (a) are intended for surgical
implant into the body, or (b) support or sustain life, and whose failure to perform, when

properly used in accordance with instructions for use provided in the labeling, can be
reasonably expected to result in significant injury to the user.

* 2) A critical component is any component of a life support device or system whose failure to
perform can be reasonably expected to cause the failure of the life support device or system,
or to affect its safety or effectiveness.

Refund Policy and Limited Warranty on Media

Pumpkin wants you to be happy with your Salvo purchase. That's why Pumpkin invites you to test drive Salvo be-
fore you buy. You can download and evaluate the fully functional Salvo freeware version Salvo Lite from the Salvo
web site. If you have questions while you are using Salvo Lite, please don't hesitate to consult the Salvo User Fo-
rums, contact our support staff at support@pumpkininc.com, or contact Pumpkin directly.

Because of this free evaluation practice, and because the purchased version contains the complete source code for
Salvo, Pumpkin does not offer refunds on software purchases.

Pumpkin will replace defective distribution media or manuals at no charge, provided you return the item to be re-
placed with proof of purchase to Pumpkin during the 90-day period after purchase. More details can be found in
Section 11 Limited Warranty on Media of the Pumpkin Salvo License.

Documentation Creation Notes
This documentation was produced using Microsoft Word, Creative Softworx Capture Professional, CorelDRAW!,
Adobe Photoshop, Adobe Illustrator and Adobe Acrobat.

Document name: SalvoUserManual.doc (a Master document)
Template used: User's Manual - Template (TT).dot

Last saved on: 16:06, Thursday, June 3, 2010

Total pages: 528

Total words: 97163

Credits

Author: Andrew E. Kalman

Artwork: Laura Macey, Elizabeth Peartree, Andrew E. Kalman
C-language Advice: Russell K. Kadota, Clyde Smith-Stubbs, Dan Henry

Compiler Advice: Matthew Luckman, Jeffrey O'Keefe, Paul Curtis, Richard Man

Pumpkin Salvo Software License Agreement v1.2

Please Read this Carefully and Completely Before Using this Software.

(Note: The Terms used herein are defined below in Section 1 Definitions)

Grant of License

This License Agreement is a legal agreement between You and Pumpkin, which owns the Software accompanied by
this License or identified above or on the Product Identification Card accompanying this License or on the Product
Identification Label attached to the product package. By clicking the Yes (i.e. Accept) button or by installing, copy-
ing, or otherwise using the Software or any Software Updates You agree to be bound by the terms of this License. If
You do not agree to the terms of this License, Pumpkin is unwilling to license the Software to You, and You must
not install, copy, or use the Software, including all Updates that You received as part of the Software. In such event,
You should click the No (i.e. Decline) button and promptly contact Pumpkin for instructions on returning the entire
unused Software and any accompanying product(s) for a refund. By installing, copying, or otherwise using an Up-
date, You agree to be bound by the additional License terms that accompany such Update. If You do not agree to
the terms of the additional License terms that accompany the Update, disregard the Update and the additional Li-
cense terms that accompany the Update. In this event, Customer's rights to use the Software shall continue to be
governed by the then-existing License.

1 Definitions
"License" means this document, a license agreement.

"You" means an individual or a legal entity exercising rights under, and complying with all of the terms of, this Li-
cense or a future version of this License. For legal entities, "You" includes any entity that controls, is controlled by,
or is under common control with You. For purposes of this definition, "control" means (i) the power, direct or indi-
rect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of fifty
percent (50%) or more of the outstanding shares or beneficial ownership of such entity.

"Pumpkin" means Pumpkin, Incorporated and its Supplier(s).

"Original Code" means Source Code of computer software that is described in the Source Code Notice (below) as
Original Code, and which, at the time of its release under this License is not already Covered Code governed by this
License.

"Source Code" means the preferred form of the Covered Code for making modifications to it, including all modules
it contains, plus any associated interface definition files, scripts used to control compilation and installation of an
Executable, or a list of source code differential comparisons against either the Original Code or another well known,

available Covered Code of Your choice.

"Covered Code" means the Original Code or Modifications or the combination of the Original Code and Modifica-
tions, in each case including portions thereof.

"Executable" means Covered Code in any form other than Source Code.

"Application" means computer software or firmware that is created in combination with Covered Code.

"Software" means the proprietary computer software system owned by Pumpkin that includes but is not limited to
software components (including, but not limited to Covered Code), product documentation and associated media,

sample files, extension files, tools, utilities and miscellaneous technical information, in whole or in part.

"Update" means any Software Update.

"Larger Work" means a work that combines Covered Code or portions thereof with code not governed by the terms
of this License.

"Modifications" means any addition to or deletion from the substance or structure of either the Original Code or any
previous Modifications. When Covered Code is released as a series of files, a Modification is (i) any addition to or
deletion from the contents of a file containing Original Code or previous Modifications, or (ii) any new file that con-
tains any part of the Original Code or Previous Modifications.

"Support" means customer support.

"Prerelease Code" means portions of the Software identified as prerelease code or "beta" versions.

2 Copyright

The Software, including all applicable rights to patents, copyrights, trademarks and trade secrets, is the sole and ex-
clusive property of Pumpkin, Incorporated and its Licensor(s) and is provided for Your exclusive use for the pur-
poses of this License. The Software is protected by United States copyright laws and international treaty provisions.
Therefore, You must treat the Software like any other copyrighted material, except that You may either (i) make one
copy of the Software in machine readable form solely for backup or archival purposes, or (ii) transfer the Software
to a hard disk, provided You keep the original solely for backup and archival purposes. Additionally, only so long
as the Software is installed only on the permanent memory of a single computer and that single computer is used by
one user for at least 80% of the time the computer is in use, that same user may also make a copy of the Software to
use on a portable or home computer which is primarily used by such user. As an express condition of this License,
You must reproduce and include on each copy any copyright notice or other proprietary notice that is on the original
copy of the Software supplied by Pumpkin. You may not copy the printed materials accompanying the Software.

3 Source Code License

3.1 The Software is licensed, not sold, to You by Pumpkin for use only under the terms of this License, and Pump-
kin reserves any rights not expressly granted to You. Except where explicitly identified as such, the Software is
neither "shareware" nor "freeware" nor "communityware." The Software contains intellectual property in the form of
Source Code, algorithms and other manifestations. You own the media on which the Software is recorded or fixed,
but Pumpkin, Incorporated and its Licensor(s) retains ownership of the Software, related documentation and fonts.

3.2 Pumpkin grants You the use of the Software only if You have registered the Software with Pumpkin by return-
ing the registration card or by other means specified by Pumpkin.

3.3 Pumpkin grants You a non-exclusive, worldwide License, subject to third-party intellectual property claims, (i)
to use and modify ("Utilize") the Software (or portions thereof) with or without Modifications, or as part of a Larger
Work, on a single computer for the purpose of creating, modifying, running, debugging and testing Your own Ap-
plication and any of its updates, enhancements and successors, and (ii) under patents now or hereafter owned or con-
trolled by Pumpkin, to Utilize the Software (or portions thereof), but solely to the extent that any such patent is
reasonably necessary to enable You to Utilize the Software (or portions thereof) and not to any greater extent that
may be necessary to Utilize further Modifications or combinations. To use ("Use") the Software means that the
Software is either loaded in the temporary memory (i.e. RAM) of a computer or installed on the permanent memory
of a computer (i.e. hard disk, etc.). You may Use the Software on a network, provided that a licensed copy of the
software has been acquired for each person permitted to access the Software through the network. You may also Use
the Software in object form only (i.e. as an Executable) on a single, different computer or computing device (e.g.
target microcontroller or microprocessor, demonstration or evaluation board, in-circuit emulator, test system, proto-

type, etc.).

3.4 Any supplemental software code or other materials provided to You as part of Pumpkin's Support shall be con-
sidered part of the Software and subject to the terms and conditions of this License. With respect to technical infor-
mation You provide to Pumpkin as part of the Support, Pumpkin may use such information for its business
purposes, including product support and development. Pumpkin will not utilize such technical information in a form
that personally identifies You without Your permission.

3.5 The Software shall be deemed accepted by You upon payment of the Software by You and shall not be granted a
refund of any license fees for the Software, except for Your rights defined in this License.

4 Software Distribution Obligations
4.1 You may not under any circumstances release or distribute the Source Code, with or without Modifications, or as
part of a Larger Work, without Pumpkin's express written permission.

4.2 You may distribute the Software in Executable form only and as part of a Larger Work only (i.e. in conjunction
with and as part of Your Application. Additionally, You must (i) not permit the further redistribution of the Software
in any form by Your customers, (ii) include a valid copyright notice in Your application (where possible - if it is not
possible to put such a notice in Your Application due to its structure, then You must include such a notice in a loca-
tion (such as a relevant directory file) where a user would be likely to look for such a notice), (iii) include the exist-
ing copyright notice(s) in all Pumpkin Software used in Your Application, (iv) agree to indemnify, hold harmless
and defend Pumpkin from and against any and all claims and lawsuits, including attorney's fees, that arise or result
from the use or distribution of Your Application, (v) otherwise comply with the terms of this License, and (vi) agree
that Pumpkin reserves all rights not expressly granted.

4.3 You may freely distribute the demonstration programs (identified as "Demo") that are part of the Software as
long as they are accompanied by this License.

4.4 The freeware version (consisting of pre-compiled libraries, a limited number of source code files, and various
other files and documentation) and identified as "Freeware" is governed by this license, with the following excep-
tions: The sole exception shall be for a Larger Work created exclusively with the freeware libraries that are part of
the Software; in this case Pumpkin automatically grants You the right to distribute Your Application freely.

4.5 You may not under any circumstances, other than those explicitly mentioned in Sections 4.2, 4.3 and 4.4 above,
release or distribute the Covered Code, with or without Modifications, or as part of a Larger Work, without Pump-
kin's express written permission.

5 Other Restrictions
5.1 You may not permit other individuals to use the Software except under the terms of this License.

5.2 You may not rent, lease, grant a security interest in, loan or sublicense the Software; nor may You create deriva-
tive works based upon the Software in whole or in part.

5.3 You may not translate, decompile, reverse engineer, disassemble (except and solely to the extent an applicable
statute expressly and specifically prohibits such restrictions), or otherwise attempt to create a human-readable ver-
sion of any parts of the Software supplied exclusively in binary form.

5.4 If the Software was licensed to You for academic use, You may not use the software for commercial product
development.

5.5 You may not remove any designation mark from any supplied material that identifies such material as belonging
to or developed by Pumpkin.

5.6 You may permanently transfer all of Your rights under this License, provided You retain no copies, You transfer
all of the Software (including all component parts, the media and printed materials, any upgrades, and this License),
You provide Pumpkin notice of Your name, company, and address and the name, company, and address of the per-
son to whom You are transferring the rights granted herein, and the recipient agrees to the terms of this License and
pays to Pumpkin a transfer fee in an amount to be determined by Pumpkin and in effect at the time in question. If
the Software is an upgrade, any transfer must include all prior versions of the Software. If the Software is received
as part of a subscription, any transfer must include all prior deliverables of Software and all other subscription deliv-
erables. Upon such transfer, Your License under this Agreement is automatically terminated.

XV

5.7 You may use or transfer the Updates to the Software only in conjunction with Your then-existing Software. The
Software and all Updates are licensed as a single product and the Updates may not be separated from the Software
for use at any time.

6 Termination

This License is effective until terminated. This License will terminate immediately without notice from Pumpkin or
judicial resolution if You fail to comply with any provision of this License, and You may terminate this License at
any time. Upon such termination You must destroy the Software, all accompanying written materials and all copies
thereof. Provisions which, by their nature, must remain in effect beyond the termination of this License shall sur-
vive.

7 Multiple Media

Even if this Pumpkin product includes the Software on more than one medium (e.g., on both a CD-ROM and on
magnetic disk(s); or on both 3.5 inch disk(s) and 5.25 inch disk(s)), You are only licensed to use one copy of the
Software as described in Section 2.3. The restrictions contained herein apply equally to hybrid media that may con-
tain multiple versions of the Software for use on different operating systems. Regardless of the type of media You
receive, You may only use the portion appropriate for Your single user computer / workstation. You may not use
the Software stored on the other medium on another computer or common storage device, nor may You rent, lease,
loan or transfer it to another user except as part of a transfer pursuant to Section 5.7.

8 Prerelease Code

Prerelease Code may not be at the level of performance and compatibility of the final, generally available product
offering, and may not operate correctly and may be substantially modified prior to first commercial shipment.
Pumpkin is not obligated to make this or any later version of the Prerelease Code commercially available. The grant
of license to use Prerelease Code expires upon availability of a commercial release of the Prerelease Code from
Pumpkin.

9 Export Law Assurances

You may not use or otherwise export or re-export the Software except as authorized by United States law and the
laws of the jurisdiction in which the Software was obtained. In particular, but without limitation, the Software may
not be exported or re-exported to (i) into (or to a national or resident of) any U.S. embargoed country or (ii) to any-
one on the U.S. Treasury Department's list of Specially Designated Nations or the U.S. Department of Commerce's
Table of Denial Orders. By using the Software You represent and warrant that You are not located in, under control
of, or a national or resident of any such country or on any such list.

10 U.S. Government End Users

If You are acquiring the Software and fonts on behalf of any unit or agency of the United States Government, the
following provisions apply. The Government agrees that the Software and fonts shall be classified as "commercial
computer software" and "commercial computer software documentation” as such terms are defined in the applicable
provisions of the Federal Acquisition Regulation ("FAR") and supplements thereto, including the Department of
Defense ("DoD") FAR Supplement ("DFARS"). If the Software and fonts are supplied for use by DoD, it is deliv-
ered subject to the terms of this Agreement and either (i) in accordance with DFARS 227.7202-1(a) and 227.7202-
3(a), or (ii) with restricted rights in accordance with DFARS 252.227-7013(c)(1)(ii) (OCT 1988), as applicable. If
the Software and fonts are supplied for use by any other Federal agency, it is restricted computer software delivered
subject to the terms of this Agreement and (i) FAR 12.212(a); (ii) FAR 52.227-19; or (iii) FAR 52.227-14(ALT III),
as applicable.

11 Limited Warranty on Media

Pumpkin warrants for a period of ninety (90) days from Your date of purchase (as evidenced by a copy of Your re-
ceipt) that the media provided by Pumpkin, if any, on which the Software is recorded will be free from defects in
materials and workmanship under normal use. Pumpkin will have no responsibility to replace media damaged by
accident, abuse or misapplication. PUMPKIN'S ENTIRE LIABILITY AND YOUR SOLE AND EXCLUSIVE
REMEDY WILL BE, AT PUMPKIN'S OPTION, REPLACEMENT OF THE MEDIA, REFUND OF THE
PURCHASE PRICE OR REPAIR OR REPLACEMENT OF THE SOFTWARE. ANY IMPLIED WARRANTIES
ON THE MEDIA, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE, ARE LIMITED IN DURATION TO NINETY (90) DAYS FROM THE DATE OF
DELIVERY. THIS WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS, AND YOU MAY ALSO HAVE
OTHER RIGHTS THAT VARY BY JURISDICTION.

12 Disclaimer of Warranty

THIS LIMITED WARRANTY IS THE ONLY WARRANTY PROVIDED BY PUMPKIN. PUMPKIN
EXPRESSLY DISCLAIMS ALL OTHER WARRANTIES AND/OR CONDITIONS, ORAL OR WRITTEN,
EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, IMPLIED WARRANTIES OR
CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE WITH REGARD TO
THE SOFTWARE AND ACCOMPANYING WRITTEN MATERIALS, AND NONINFRINGEMENT.
PUMPKIN DOES NOT WARRANT THAT THE FUNCTIONS CONTAINED IN THE SOFTWARE WILL
MEET YOUR REQUIREMENTS, OR THAT THE OPERATION OF THE SOFTWARE WILL BE
UNINTERRUPTED OR ERROR-FREE, OR THAT DEFECTS IN THE SOFTWARE WILL BE CORRECTED.
FURTHERMORE, PUMPKIN DOES NOT WARRANT OR MAKE ANY REPRESENTATIONS REGARDING
THE USE OR THE RESULTS OF THE USE OF THE SOFTWARE OR RELATED DOCUMENTATION IN
TERMS OF THEIR CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE. AS A RESULT, THE
SOFTWARE IS LICENSED "AS-IS", AND YOU THE LICENSEE EXPRESSLY ASSUME ALL LIABILITIES
AND RISKS, FOR USE OR OPERATION OF ANY APPLICATION PROGRAMS YOU MAY CREATE WITH
THE SOFTWARE, INCLUDING WITHOUT LIMITATION, APPLICATIONS DESIGNED OR INTENDED FOR
MISSION CRITICAL APPLICATIONS AND HIGH-RISK ACTIVITIES, SUCH AS THE OPERATION OF
NUCLEAR FACILITIES, PACEMAKERS, DIRECT LIFE SUPPORT MACHINES, WEAPONRY, AIR
TRAFFIC CONTROL, AIRCRAFT NAVIGATION OR COMMUNICATIONS SYSTEMS, FACTORY
CONTROL SYSTEMS, ETC., IN WHICH THE FAILURE OF THE SOFTWARE COULD LEAD DIRECTLY TO
DEATH, PERSONAL INJURY, OR SEVERE PHYSICAL OR ENVIRONMENTAL DAMAGE. NO PUMPKIN
DEALER, DIRECTOR, OFFICER, EMPLOYEE OR AGENT IS AUTHORIZED TO MAKE ANY
MODIFICATION, EXTENSION, OR ADDITION TO THIS WARRANTY. BECAUSE SOME JURISDICTIONS
DO NOT ALLOW THE EXCLUSION OR LIMITATION OF IMPLIED WARRANTIES, THE ABOVE
LIMITATION MAY NOT APPLY TO YOU. THIS WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS,
AND YOU MAY ALSO HAVE OTHER RIGHTS THAT VARY BY JURISDICTION.

13 Limitation of Liabilities, Remedies and Damages

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT WILL PUMPKIN,
INCORPORATED, OR ANY OF ITS LICENSORS, SUPPLIERS, DIRECTORS, OFFICERS, EMPLOYEES OR
AGENTS (COLLECTIVELY "PUMPKIN AND ITS SUPPLIER(S)") BE LIABLE TO YOU FOR ANY
CONSEQUENTIAL, INCIDENTAL, INDIRECT OR SPECIAL DAMAGES WHATSOEVER (INCLUDING,
WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION,
LOSS OF BUSINESS INFORMATION AND THE LIKE, OR ANY OTHER PECUNIARY LOSS), WHETHER
FORESEEABLE OR UNFORESEEABLE, ARISING OUT OF THE USE OF OR INABILITY TO USE THE
SOFTWARE OR ACCOMPANYING WRITTEN MATERIALS, REGARDLESS OF THE BASIS OF THE
CLAIM AND EVEN IF PUMPKIN AND ITS SUPPLIER(S) HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES. THIS LIMITATION WILL NOT APPLY IN CASE OF PERSONAL INJURY ONLY
WHERE AND TO THE EXTENT THAT APPLICABLE LAW REQUIRES SUCH LIABILITY. BECAUSE
SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF LIMITATION OF LIABILITY FOR
CONSEQUENTIAL OR INCIDENTAL DAMAGES, THE ABOVE LIMITATIONS MAY NOT APPLY TO
YOU. IN NO EVENT SHALL PUMPKIN AND ITS SUPPLIER(S)' TOTAL LIABILITY TO YOU FOR ALL

Xvii

DAMAGES, LOSSES AND CAUSES OF ACTION (WHETHER IN CONTRACT, TORT (INCLUDING
NEGLIGENCE), PRODUCT LIABILITY OR OTHERWISE) EXCEED $50.00.

PUMPKIN SHALL BE RELIEVED OF ANY AND ALL OBLIGATIONS WITH RESPECT TO THIS SECTION
FOR ANY PORTIONS OF THE SOFTWARE THAT ARE REVISED, CHANGED, MODIFIED, OR
MAINTAINED BY ANYONE OTHER THAN PUMPKIN.

14 Complete Agreement, Controlling Law and Severability

This License constitutes the entire agreement between You and Pumpkin with respect to the use of the Software, the
related documentation and fonts, and supersedes all prior or contemporaneous understandings or agreements, written
or oral, regarding such subject matter. No amendment to or modification of this License will be binding unless in
writing and signed by a duly authorized representative of Pumpkin. The acceptance of any purchase order placed by
You is expressly made conditional on Your assent to the terms set forth herein, and not those in Your purchase or-
der. This License will be construed under the laws of the State of California, except for that body of law dealing
with conflicts of law. If any provision of this License shall be held by a court of competent jurisdiction to be con-
trary to law, that provision will be enforced to the maximum extent permissible, and the remaining provisions of this
License will remain in full force and effect. The application of the United Nations Convention on Contracts for the
International Sale of Goods is expressly excluded. Any law or regulation that provides that the language of a con-
tract shall be construed against the drafter shall not apply to this License. In the event of any action to enforce this
Agreement, the prevailing party shall be entitled to recover from the other its court costs and reasonable attorneys'
fees, including costs and fees on appeal.

15 Additional Terms
Nothing in this License shall be interpreted to prohibit Pumpkin from licensing under terms different from this Li-
cense any code which Pumpkin otherwise would have a right to License.

This License does not grant You any rights to use the trademarks or logos that are the property of Pumpkin, Inc.,
even if such marks are included in the Software. You may contact Pumpkin for permission to display the above-
mentioned marks.

Pumpkin may publish revised and/or new versions of this License from time to time. Each version will be given a
distinguishing version number.

Should You have any questions or comments concerning this License, please do not hesitate to write to Pumpkin,
Inc., 750 Naples Street, San Francisco, CA 94112 USA, Attn: Warranty Information. You may also send email to
support@pumpkininc.com.

Source Code Notice

The contents of this file are subject to the Pumpkin Salvo License (the "License"). You may not use this file except
in compliance with the License. You may obtain a copy of the License at http://www.pumpkininc.com, or from war-
ranty@pumpkininc.com.

Software distributed under the License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
KIND, either express or implied. See the License for specific language governing the warranty and the rights and
limitations under the License.

The Original Code is Salvo - The RTOS that runs in tiny places(tm). Copyright (C) 1995-2002 Pumpkin, Inc. and its
Licensor(s). All Rights Reserved.

Contents

(O] 01 (=10 | K= PRSP PPPPPPPRPPP [
o LU =SSP XV
TS o P XVii
T A S e e aeeae XiX
ReleasSe NOTESoooiiiiii XXI
INEEOAUCTION ...ttt ettt e v e et e e s te e etbeesbeesbeebeestsessbeeebeesbeenbeesseenses XX1
WRAL'S INEW ..eeiiiiieiecie ettt ettt ettt ettt e st e sateesteeste e beesseesssesnseanseassaensaessaesssessseensens XXi
REIEASE INOLESeevieeiieeiie ettt sttt ettt ettt estaesabesateesseesbe e seesseessseanseassaensaessaessaessseensens XXi
Third-Party TOOl VEISIONS........ccuiiiuiiriieiiieiieite et ecteesteeetreeveeeteesteeseaeseveesveesaeseseseseesseessessens XX1
Supported Targets and CoOmMPIlers ... XXiil
Preface .o XXV
Historical INfOrmMationc.ceoeiiiiiiiiiiie ettt et e e ee e s be e e b e e ssreeesseeensaeenens XXV
Typographic CONVENTIONSccuvereveeiieiietieiieriierteereeseesseesseessaesssessseesseesseesssesssesssessseensesnses XXV
Standardized NUmMbering SChEMEccceevviiieiiiiiieeciee et XXVi
The Salvo Coding MINASEL.......cccvieeiiiiiiriiiiieeie ettt cte e ete et et esebeeveereesaeeseveeaveenres XXVii
Configurability IS KiNg.......cccoviviieiieriieiie ettt sre e eaeesseesanesnne e XXVii
Conserve Precious RESOUICEScccvveriieriierieiiieie ettt ste et e seaesteesnaesenesnseens xxviil

Learn to Love the PreproCeSSOrcviiiuiiiiiiiiiciieieesieeetee ettt e vaesene e XXViii
Document, But Don't DUPLICALE..........cccvireiieiiiiieiie et XXViil

WE'TE NOE PEITECL. ... viiiiiiieiiecece ettt sttt sse s e snees XXViil
Chapter 1 ¢ INtrodUCTION ...cciiiee e 1
LTS3 (70711 TSP 1
WRAL IS SAIVO?....ccciiieiieieeteeeee ettt ettt et e st e st e s ste e e eteesseessseesseensaessaessnesnnennsennns 2
Why Should TUSE SAIVOTeeiieiiiciieecee ettt ettt ee et e et e e s veeetae e s beeesaseesssaaens 2
What Kind of RTOS IS SAlVO7ccciiiiieiieieseceeeet ettt ettt st ns 3
What Does a Salvo Program Look LiKe?cccccevvieiiiiiiiiienieniecie e 3
What Resources Does Salvo REQUITE?ccuiiuieiiiiiiiiiieiiecriectee et ettt sireseveseveeve e 5
How IS Salvo DIfferent?.......ccviiiiiiiiiiciiccec ettt ettt eve et s ev e v e b vaens 6
What Do I Need to Use SalVO?......ccieiiiiiiiiiiiiieiteee ettt st essae st snaesene e 7
Which Processors and Compilers does Salvo SUPPOI?cccvveevierieeiieeiieeiiecrecre e 8

Salvo User Manual i

HOW IS SAIVO DISIIIDULEA? ..eeeeiieeeeeeeeeeeeeeeeee et e et e e e e e e e e e e reeeeeeeeseeneaeees 8

What Is in this Manual?.........cccoooiiiiiiiiiee ettt st 8
Chapter 2 « RTOS FundamentalS.........cooouuuiiiiiiii e 11
INEEOUCTION ..ttt ettt e et e et et e e st eseesseensesesseenseeseeneensenneas 11
BaSIC TOIMIS ...ttt ettt et et bt et e bt e st et s bt et e st et et saeeneeae s 12
Foreground / Background SYStEIMSc.cccveriiriiiiriiieeieeieesiee sttt esae e 14
REENIIANCYeiiiiiiiiee ettt e et e e e ete e e s bte e e s nbteeeesnsaeessnnseeeeennsees 15
RESOUICES ..ttt ettt sttt bbb satesteeneens 16
Multitasking and Context SWItChING........ccccveviieriiiiiiieiieriere et see e s 16
Tasks and INTEITUPLSccuviiiierieiieciecie ettt ettt et e et te e teesteeeabeeabeesbeesbsesaseeeseesbeesseesssesseans 17
Preemptive vs. Cooperative SChedUuling.........c..covveiiiiiiieiieiieiie ettt er e sire s 18
Preemptive SChedUIINGc.cooiiiiiiiiiieeeereese ettt seeesnseeseesae s 19
Cooperative SChEdUIINGcoiiiiiiiiieie ettt e ee b ere s teesaneeare e 20
MOTE ON MUILIEASKINEiiiiiiieiiiciie ettt ettt et ste e etteeabeeabeeaveestaesesessveesseeabeesseens 21
TASK STUCTUTE ...ttt sttt st e b et e st et e it e 21
SIMPle MUIIEASKING........coiviiiieiieiieriesie ettt ettt e s s e et eesseessaessseesseenseessnennns 22
Priority-based MUItItaskingcccueiviiiviiiiieiie ettt ser e eveete e s v eeveereesanas 22
TASK STALES ..ottt ettt ettt et ettt et e et e et e et et e be e st enteene et e nseeneetennes 23
Delays and the TIiMeTcccvevieriiiiiieiierieree e ete et eteesteeseesresbeeseeseesseesssesssessseesseens 24
Event-driven MUltitaskingcccoovveiviiiiiiiie ettt eveeve e aneseneeaveeveas 26
Events and Intertask CommMUNICAtIONSeeruiiriieniiriieiiieie ettt 29
RT3 10T:1 0] 110] (TP 29
EVENE FIaZSiiiiiiiieiieciece ettt ettt ettt et e st e s nseensaensaenneens 30

Task SYNCAIONIZAtIONccvieiiiiieitieitie et eteeste e e steestreeveeveebeesteesabeseaeesveeareesseens 31
RESOUICES ..ttt ettt s st 33

IV ESSAEES - envveeeurieeiteeeieeeeteestte ettt e e tteesabeesatee e steesaseeesaseesnseeeasbeesaseeesnbeesnsaeeenbeeesaeennneeans 35
MESSAZE QUEUESvveeeerieeiiieiiieesitee ettt esereeetaeestreeassaeessseaassseesssesassseesssesasssesssseesssseessseeans 37
Summary of Task and Event INteractionccceevievieiiiiiiioiiesiecre e 37
COMTTICES .ttt ettt et e e e bt et e st e bt e be s be et e bt e st et e ebe e besaeeneebeas 38
DIEAALOCK ...ttt ettt ettt et et et et e ne et e st ennentenes 38
PriOTIEY INVEISIONS. ...ceitiiiieiieeiiiecite et e ettt e et e st e e e vt e ssbeeetbeessbeeessseesnsaeessseeesseesnsnaans 39
RTOS PErfOIMANCEc..eeuieieiieiieieeieie ettt sttt sttt et sbe et e st st enaeeaeas 39
A Real-World EXAMPIEcccveeriiiiiieiiiciieieecieste sttt e tee st esene s e enbaeseessnennnes 39
The Conventional Superloop APProach..........cccceevveriiiiieiiieniesiecre et 40
The Event-Driven RTOS APProach..........cccccceeeiveriienieniieiie et 41
N7 0 2 N 1< o PSRRI 43
Initializing the Operating SYSTEIMcccvieviieriieirieiiecre et eeeesee e esreesreeereereereeas 43
Structuring the TaASKS.......ccviiiciiiiiiieciie et e e e e e e eenee s 43
Prioritizing the TasKS........cceciierieiiiieiieiecee et esnseeneees 44
Interfacing With EVENLScccuiiiiiiiiiiiiiccic ettt 45

Adding the SYStem TIMET........cccviiviiiiiiiiieiie ettt ere et r e reebeebeesreeas 45
Starting the TASKSccvevieiiieiieieree ettt e e seeseeesnnessneenes 45
Enabling MUltitaSKingcccverierieniiiieeiieeeseesee st ee et seesae e enseeseens 46

Putting It All TOZETNETccuviieiiiiieiiicece et 46

The RTOS DIffereNCe.......couieuieieeiieieieieie sttt ettt ae st eeeeeesneenes 49
Chapter 3 e InStallationcoovieiiiie e 51
IEEOUCTION ...ttt ettt et e e et et e e st e st e sseeneesesseenseeseeneensanneas 51

Contents Salvo User Manual

RUNNING the INSTAIIETcooviiiieiieciiccie et ettt eb e ebe v e eteestae s tbeerveeabeeareans 51

Network INStAllationcccceevieeiiieiiieiierierie ettt re e se e st esereesbeebeesneessneennas 56
Installing Salvo on non-Wintel Platforms...........ccccoveviveiienieniiniieieeeeee e 57

A Completed INStAllation.ecieriiiirieiieiee ettt ettt e st saesee e 57
UNINSEAIING SAIVO ...ttt sttt e st e b e et et esseeneeseeneenseseeees 58
Uninstalling Salvo on non-Wintel Machines...........ccceevuereiieciienierieniieieeeenee e 59
Installations with Multiple Salvo DiStribUtions..........cccvveerierierieseeieceee e 60
INStaller BENAVIOT......cc.eiiiiieieiieiee ettt e e enes 60
Installing Multiple Salvo DiStriDULIONS........c.cccvierieriiiiieiieie e seee e 60
Uninstalling with Multiple Salvo DiStributions............ccecverevercieereenieniesieesee e sveeneens 60
CoPYING SAIVO FILES ..ttt st st 60
MOdifying SAIVO FileScccuiiiiiiieiieiieeieeieeeere ettt sttt esnbeeseensaesaensnens 61
(@ aF= 1oL (=T g A MUY (o] o - | 63
IEEOAUCTION ...ttt ettt ettt et et e et et e e st e e e sseeneensesseenteeseeneensanseas 63
Part 1: Writing a Salvo APPLICALIONccvievciieciieiierieeie ettt see b e s eseeseaesenes 63
Tutl: Initializing Salvo and Starting to Multitaskccccoooiiiiiinniiniiieeee 63
Tut2: Creating, Starting and SWitching tasksccccovvevviieeriiiieiiicie e 65
Tut3: Adding Functionality to TasKsccceviiiiiiiiiiicieceeceecte e 68
Tut4: Using Events for Better Performance..............ccoocvveeiiieiieniinieiieeieeesee e 70
Tut5: Delaying @ TaSK........covevieiiiiiiiiieieecee sttt ettt eereebeeveesaeeseaeseveesreeveesreen 74
Signaling from MUultiple TasKSc.cccieiiiiiiiiiieiieiecceecee et s 78
WIAPPING UD...eiiiiiiiiieiieriieeie ettt es e este et e e s taesaaessseasbeesseesseesssesssesssesnseeseesseens 81
FOOd FOr TROUGNEcccviiiiiiiiicit ettt sttt sns e snseenseensaens 82
Part 2: Building a Salvo APpPliCation.........cc.ceviiiiiieiieeie ettt er v saeesane v s 82
Working ENVITONMENEcccviviiiiieriieniieiie st eieesieesieeseeeteeteesseesseesssesnseesseesseessnesnsesnsens 82
Creating @ Project DITCCIOTYoocuiiviieiieiieiierie sttt sttt see e snseeteessaesenesnneens 83
INCIUAING SAIVO. Moottt et be e te e e b e eveebeesree 84
Configuring Your COMPILET........ccueiiviiieiiieecieeeiee ettt ee e e e eae e sre e eebeeeereeenes 84
Setting Search Paths..........ccccoviiiciiiieiece e 84

Using Libraries vs. Using SoUrce Files........cooiviiiiiiiiiiieiieciece e 85
USING LIDTATIES ...veeevvieeiiieeiiiieciie ettt e st e eiteesveeeteeereveesveeesseessbeeessseessseeessseesssesansseessseenns 85
USING SOUICE FIlESiiuiiiiiiiieiiiciieieeieeese ettt sttt e st e snseensaesaens 86
Setting Configuration OPLIONS.........c.eerveereeriierieeieerieeseesresaeereesseesseessressseeseessessses 86
Linking to Salvo ODbJect FIleS.......cciiviiiiiiiiiiie ettt 90
Chapter 5« Configurationueeiiiii e 93
INEEOUCTION .ttt ettt et et e et et e e st eseesseeneesesseensessesneensanneas 93
The Salvo BUild PrOCESS.c.eiueeciieiieieiieiteieeeee ettt ettt ettt st se e eeeeneas 93
Library BUildScccvveeiieriieieriieiteie ettt sttt e et ae s e e be e e e ssaessaesssesnseensaensaens 93
SoUrce-Code BUildscc.eiiiiiiiieiiiieieie ettt 96
Benefits of Different Build TyPes.....c.ccocvieeiiiieiiie ittt 98
Configuration OPtion OVEIVIEW.......cc.veveerieriieeireesieesieeseesreaseesseesseesseesseesssessseesseessassssesssesns 98
Configuration Options for all DiStribDUtIONScccverevereiieriierierieeie et eie e esieesaesne e 99
OSCOMPILER: Identify Compiler in USE......c.ccoveviieviieiieeieeiicieecreecirecere e eveevee e 100
OSEVENTS: Set Maximum Number of EVents........cc.cccoccoiviiiiiniiiiiiiieeeceeee, 101
OSEVENT _FLAGS: Set Maximum Number of Event Flagsc.cccccooviniininnnnnnn. 102
OSLIBRARY_ CONFIG: Specify Precompiled Library Configurationc.ccccucu.... 103

Salvo User Manual Contents i

OSLIBRARY GLOBALS: Specify Memory Type for Global Salvo Objects in

Precompiled LiDIaryccccveviieriienienieiie ettt sttt se e sns e essaesaeseee s 104
OSLIBRARY_OPTION: Specify Precompiled Library Option...........cceceverercienennces 105
OSLIBRARY TYPE: Specify Precompiled Library Typeccccoveeveeieevieniieeieeerennn. 106
OSLIBRARY_ VARIANT: Specify Precompiled Library Variant............c...ccccevveveennen. 107
OSMESSAGE QUEUES: Set Maximum Number of Message Queues...........c..cue...... 108
OSTARGET: Identify Target ProCESSOr........ccvvieiieiieiieeiieciieeirecere e eave e 109
OSTASKS: Set Maximum Number of Tasks and Cyclic Timers..........c..ccceeevvervvennnnnne. 110
OSUSE LIBRARY: Use Precompiled Library..........cccccoevverierienieenieenieeneeneesve e 111

Configuration Options for Source Code DiStributions...........cccecverververcieesieeneeneeseesveennenn 112
OSBIG_SEMAPHORES: Use 16-bit Semaphores...........ccccovevrieviierienrenieereeveeveenens 113
OSBYTES OF COUNTS: Set Size 0f COUNLETS......c.ecvverieerieeiieiieirenieesnesnesvesenennnes 114
OSBYTES OF DELAYS: Set Length of Delays.......cccoeeveciieciieciieiieneeseeeieeie e 115
OSBYTES OF EVENT FLAGS: Set Size of Event Flags........cccccoevvvivviieecieeieeene. 116
OSBYTES OF TICKS: Set Maximum System Tick Countcccceevveviieeceeennnnn. 117
OSCALL OSCREATEEVENT: Manage Interrupts when Creating Events.................. 118

OSCALL_OSGETPRIOTASK: Manage Interrupts when Returning a Task's Priority.. 121
OSCALL OSGETSTATETASK: Manage Interrupts when Returning a Task's State .. 121
OSCALL_OSMSGQCOUNT: Manage Interrupts when Returning Number of

Messages in MeSSAZE QUEUEeeveerieiieeiieieesiiesreereereeseesseesnseesseesaessaesssesssenssens 121
OSCALL OSMSGQEMPTY: Manage Interrupts when Checking if Message Queue

IS EIMIPEY ittt ettt e et e et e e et eeetaeeenbaeetaeennreas 121
OSCALL_OSRETURNEVENT: Manage Interrupts when Reading and/or Trying

BVENES -ttt ettt ettt 122
OSCALL OSSIGNALEVENT: Manage Interrupts when Signaling Events and

Manipulating Event FIags...........cceoviriiiiiiieiiiecieeeeeese et 122
OSCALL OSSTARTTASK: Manage Interrupts when Starting Tasks.............cccceveeneen. 122
OSCLEAR GLOBALS: Explicitly Clear all Global Parameters..............cccccveevvvereennen. 123
OSCLEAR UNUSED POINTERS: Reset Unused Tcb and Ecb Pointers.................... 124
OSCOLLECT_LOST _TICKS: Configure Timer System For Maximum Versatility 125
OSCOMBINE EVENT SERVICES: Combine Common Event Service Code............ 126
OSCTXSW_METHOD: Identify Context-Switching Methodology in Use................... 127
OSCUSTOM_LIBRARY_CONFIG: Select Custom Library Configuration File.......... 128
OSDISABLE _ERROR CHECKING: Disable Runtime Error Checking...................... 129
OSDISABLE FAST SCHEDULING: Configure Round-Robin Scheduling 130
OSDISABLE TASK PRIORITIES: Force All Tasks to Same Priority..........ccccceuenee. 131

OSENABLE BINARY SEMAPHORES: Enable Support for Binary Semaphores..... 132
OSENABLE BOUNDS CHECKING: Enable Runtime Pointer Bounds Checking..... 133

OSENABLE CYCLIC_TIMERS: Enable Cyclic TImerscccoceeeerereeneeneneneeeene 134
OSENABLE EVENT FLAGS: Enable Support for Event Flags............ccccocvevvennnnen. 135
OSENABLE EVENT READING: Enable Support for Event Reading........................ 136
OSENABLE EVENT TRYING: Enable Support for Event Trying........c..cceevvevuennen. 137
OSENABLE FAST SIGNALING: Enable Fast Event Signaling............ccccccceevneeneene. 138
OSENABLE IDLE COUNTER: Track Scheduler Idling..........ccocoveeevenineineneneenne. 139
OSENABLE IDLING HOOK: Call a User Function when Idling..........c..cccccevvenennen. 140
OSENABLE MESSAGES: Enable Support for Messages.........ccccevvververveecveenveenveennn 141
OSENABLE MESSAGE QUEUES: Enable Support for Message Queues................. 142

OSENABLE OSSCHED DISPATCH HOOK: Call User Function Inside Scheduler 143
OSENABLE OSSCHED ENTRY HOOK: Call User Function Inside Scheduler....... 144
OSENABLE OSSCHED RETURN_HOOK: Call User Function Inside Scheduler.... 145
OSENABLE SEMAPHORES: Enable Support for Semaphoresc..cccccevvevvvennnnnnen. 146

Contents Salvo User Manual

OSENABLE STACK CHECKING: Monitor Call ... Return Stack Depth................... 147

OSENABLE TCBEXTO|1]2|3]4|5: Enable Tcb EXtensionsccocceveeereeneneneenene 148
OSENABLE TIMEOUTS: Enable Support for Timeouts..........c.ccevververeervervennennne. 151
OSGATHER STATISTICS: Collect Run-time StatiStiCS........cccovverrerreecreerreerreenreennn. 152
OSINTERRUPT LEVEL: Specify Interrupt Level for Interrupt-callable Services....... 153
OSLOC _ALL: Storage Type for All Salvo ODbJectScccveveveecrieciieiieiierierie e e 154
OSLOC COUNT: Storage Type for COUNLETSccveerreerrieerieerreesieeesieeesereeeereesaeeens 156
OSLOC CTCB: Storage Type for Current Task Control Block Pointer........................ 157
OSLOC_DEPTH: Storage Type for Stack Depth Counterscccceeererieneneneennene 157
OSLOC_ECB: Storage Type for Event Control Blocks and Queue Pointers................. 157
OSLOC EFCB: Storage Type for Event Flag Control Blocks...........ccccveeveiveeveenneennen. 157
OSLOC _ERR: Storage Type for Error COUNLETS..........ceeevvereerieneerreereeieesieeseeseeeennes 158
OSLOC GLSTAT: Storage Type for Global Status Bits...........c.cceeververrercrencienreennenn 158
OSLOC LOGMSG: Storage Type for Log Message Stringccceeeeeveerieeecreeennnenns 158
OSLOC LOST TICK: Storage Type for Lost TickS.......ccccoeeerieiieciieniienienieeeeereennenn 158
OSLOC_MQCB: Storage Type for Message Queue Control Blocks.........c.ccecevereennen. 159
OSLOC MSGQ: Storage Type for Message QUEUES.........cccueeevierierieerieerrenrenreeieeeens 159
OSLOC _PS: Storage Type for Timer Prescalarccccoeevvevviiiiiieeciieciie e 159
OSLOC TCB: Storage Type for Task Control BIOcksc.ccovevverieniinciiniieieeeen, 160
OSLOC_SIGQ: Storage Type for Signaled Events Queue Pointers...........c.ccocevereenen. 160
OSLOC TICK: Storage Type for System Tick Counter............ccccveevvieeiieencieeerreeenennn 160
OSLOGGING: Log Runtime Errors and Warnings...........ccceeeeeeeveeereeenveescreeesveesneens 161
OSLOG_MESSAGES: Configure Runtime Logging Messagescccoeeverveecveerveennen. 162
OS MESSAGE TYPE: Configure Message Pointersccceeevveeecieeenieenieeeieeenennn 164
OSMPLAB C18 LOC ALL NEAR: Locate all Salvo Objects in Access Bank
(MPLAB-C18 ONLY) ..ttt sttt sttt et sttt saeen 165
OSOPTIMIZE FOR _SPEED: Optimize for Code Size or Speed.........cceeveevverrvennennen. 166
OSPIC18 INTERRUPT MASK: Configure PIC18 Interrupt Mode..........cccvveeeveennenn. 167
OSRPT HIDE INVALID POINTERS: OSRpt() Won't Display Invalid Pointers....... 169
OSRPT_SHOW_ONLY_ACTIVE: OSRpt() Displays Only Active Task and Event
DIALA ..t ettt et et b e be e st eaeen 170
OSRPT SHOW TOTAL DELAY: OSRpt() Shows the Total Delay in the Delay
QUEUE.eeee ittt ettt e ettt e e ettt e e ettt e e e esatbeeeeaassaeeeantseeeeanssaeeeasssaeeeanssaeenansseeans 171
OSRTNADDR_OFFSET: Offset (in bytes) for Context-Switching Saved Return
AAIESS ettt et ettt bt e st teenae e 172
OSSCHED RETURN LABEL(): Define Label within OSSched()c...ccoeevveriveneennen. 173
OSSET_ LIMITS: Limit Number of Runtime Salvo Objects..........ccceeevverververcrenreennen. 174
OSSPEEDUP QUEUEING: Speed Up Queue Operations..............eeveevreerreesreereesveennnns 175
OSTIMER_PRESCALAR: Configure Prescalar for OSTimer().....cc.ccooeevereeveenereennens 176
OSTYPE TCBEXTO0|1]2|3|4|5: Set Tcb Extension TYPEccoecveeveereenverienieeieeieenenn 177
OSUSE CHAR SIZED BITFIELDS: Pack Bitfields into Charscccccevevvveevennen. 178
OSUSE_EVENT TYPES: Check for Event Types at Runtime...........ccccccoevveeveenrenen. 179
OSUSE_INLINE OSSCHED: Reduce Task Call...Return Stack Depth 180
OSUSE_INLINE OSTIMER: Eliminate OSTimer() Call...Return Stack Usage.......... 182
OSUSE INSELIG MACRO: Reduce Salvo's Call Depth........c.ccoeevvieviievieniecieennee. 183
OSUSE_MEMSET: Use memset() (if available)c.ccovevieniinieniieieeriecie e, 184
OFZANIZALIONveeeieeeieeeieeieesieestesteeteeteesteessaessseenseesseesseessaessseasseesseessaesseesssesssesnseensesnssessses 185
Choosing the Right Options for your Applicationcccceveeveerieerienieeieereesiee e eve e 186
Predefined Configuration CONSIANTS...........c.cevvieviieiieiieeie et eeiee e e ere et e sereseveeveevee e 188
Obsolete Configuration Parameters...........cueeevieeiierienienieeiieie et ere e esenessneensees 189

Salvo User Manual Contents Vv

Chapter 6 « Frequently Asked Questions (FAQ)ccccovveviiiiiiiiiieiiineeeeeii, 191

GETIETAL ...ttt h et b ettt b ettt e et et e b et bt st et bt bt et e ntes 191
WRAL 1S SAIVO? ...ttt ettt ettt et e et e teeneebeeneenteeneennas 191
Is there a shareware / freeware / open source version of Salvo?ccceevevveevveneenne. 191
Just how SMall 18 SAIVO?oouiiiiiiii et 192
Why Should T USE SAIVO?ooiieiiiiiieieeieete ettt st nes 192
What should I consider Salvo Pro over Salvo LE?.........ccccoiieiiiiiiieieeeeeeee 193
What can I do With SaIVO7cc.ciiiiiiii e 193
What kind of RTOS 1S SAlVO?....cceoiiiiiiiiiiieieees ettt 194
What are Salvo's minimum requIremMENtS?ceeveerveerreereeseeereerreesreessesseesseesseenens 194
What kind of processors can Salvo applications run on?..........c.ccccveeveeveenreeseesveeveennes 194
My compiler doesn't implement a stack. It allocates variables using a static overlay
model. Can it be used With SAIVO?cceoiiiiiiiiieee e 195
How many tasks and events does Salvo SUPPOIt?.........ccccevevieiieeieeciieiieciiesre e 195
How many priority levels does Salvo SUPPOTL?ccccvevveriieciieriieierieere e 195
What kind of events does Salvo SUPPOTL?ceecvveriierieriieeii et 195
Is Salvo Y2K COMPIIANT?oociiiieiieiieieeciiecitectie ettt ettt e eaveeveeve e aeseneeebeenreesvaenes 195
Where did Salvo come from?ccccoeiiiiiiiiiiee et 196
GEHNG STATTEA. .. c.veeieiieiieiiete ettt e e sebesb e e s e e teessaessaessseesseesseesssennnensnes 196
Where can I find examples of projects that use Salvo?c.cccvevveiiieciienieniecreereenne 196
Which compiler(s) do you recommend for use with Salvo?.........c.cccceevvivvieciieniiennnennnn. 196
IS there @ tULOTIAl?oouiiiiiieee ettt st 196
Apart from the Salvo User Manual, what other sources of documentation are
AVALIADIE? ...ttt ettt 197
I'm on a tight budget. Can [use SalVO?ccveviveiiiriecie et 197
I only have an assembler. Can 1 use Salvo?.........ccevvveveiieiiienieriece e 197
PerfOrMANCE. ...ccueeenieetie ettt sttt et ettt ettt 197
How can using Salvo improve the performance of my application?cccccveenvenne. 197
How do delays work under Salvo?cccovciiriieiienieriecee e 198
What's so great about having task Priorities?..........ccvevueerierereerieeniesreereesreeseeeereeveenns 198
When does the Salvo code in my application actually run?cccceeevvevvenieeveeneenne. 199
How can I perform fast, timing-critical operations under Salvo?...........cccccoceeverereenens 199
1Y £S5 10) 2 USSP 199
How much will Salvo add to my application's ROM and RAM usage?...........ceevenee.. 199
How much RAM will an application built with the libraries use?..........cccccoceevereennnnen. 200
Do I need to worry about running out of MEMOTY?cccvvevveeriieriierienieereeeeee e 200
If I define a task or event but never use it, is it costing me RAM?...........cccevvvevvrennenne. 201
How much call ... return stack depth does Salvo USE?ccoeeviecieevieeiecreereeceeeere e 201

Why must I use pointers when working with tasks? Why can't I use explicit task IDs? 202
How can I avoid re-initializing Salvo's variables when I wake up from sleep on a

PIC12C509 PICMICIO MCUT.....cuiiiieieeeeee ettt 203
LUDTATIES ..ttt sttt et b e ettt be et e bt et et sat et e bt eae e 203
What kinds of libraries does Salvo include?...........ccccceeveeiinieninenineeececeeeen 203
What's in each Salvo LIDIary?.........cccueiiiiiiiiiiieiieciecee et 204
Why are there SO many lDraries?.......ccvevvieiieiieiiieecieesie ettt eveeve e eenas 204
Should I use the libraries or the source code when building my application?................ 204
What's the difference between the freeware and standard Salvo libraries? 204
My library-based application is using more RAM than I can account for. Why? 204

I'm using a library. Why does my application use more RAM than one compiled
directly from SOUTCE fIlES?eeviieiiieieriecie et 205

Contents Salvo User Manual

I'm using a freeware library and I get the message "#error: OSXYZ exceeds library

limit — aboTting." WRY?ooiiiiiiiiieicieere ettt sree st eebaessaesnne e 205
Why can't I alter the functionality of a library by adding configuration options to my
SAIVOCTZ.N? .o s e e eb e enrae e nas 205
The libraries are very large — much larger than the ROM size of my target processor.
Won't that affect my appliCation?..........cccvevveeeiieiiierierieeie et 206
I'm using a library. Can I change the bank where Salvo variables are located? 206
CONTIGUIATION. ...euvieeetieeite et e etee et e et ee et e e et ee e tbeeebeeetbeeesseeessseesssasessseesssesassseenssesesseesses 206
I'm overwhelmed by all the configuration options. Where should I start? 206
Do I have to use all of Salvo's functionality?cccoecveveiieriierienirieieeeee e 207
What file(s) do I include in my mMain.C?c..cceevrieiieiiieiieeiecee e ere v e 207
What is the purpose of OSENABLE SEMAPHORES and similar configuration
OPLIONIS? ..eevieuiieeieeeteeeteeteeteesteesttestreeeseesseesseesseesseessseasseasseessaesaesssesssesssennseensassseenseenns 207
Can I collect run-time statistics With Salvo?..........cccceiieiiiinieeee e 207
How can I clear my processor's watchdog timer with Salvo?...........cccccvevveeieeieenieennen. 207
I enabled timeouts and my RAM and ROM grew substantially— why?c........... 208
TImMET and TIMINE.......ceeivierieerieerieeieete e et ettt e st e stesbeesbe e saessaessaesssessseasseesseesseesssesssennss 208
Do I have to install the tIMET?.........cooiiiiiiieiere et 208
How do Iinstall the tHMET?.........ccccooiiiiiiiiiieeeeee et 208
I added the timer to my ISR and now my ISR is huge and slow. What should I do?.....209
How do I pick a tick rate for SAlVO?ccocviiiiiiiiiiiceceee e 209
How do I use the timer prescalar?...........cc.vivveviieiieiieiie et ere e sve e eenas 209
I enabled the prescalar and set it to 1 but it didn't make any difference. Why?.............. 209
What is the accuracy of the system timer?..........cc.eecveviieiiiiciieciecie e 210
What is Salvo's interrupt IateNCy?......ccvevvieiieeiieieeciie ettt et r e e 210
What if I need to specify delays larger than 8 bits of ticks?ccccoeceriniininiinines 210
How can I achieve very long delays via Salvo? Can I do that and still keep task
MEMOTY t0 @ MINIMIUM?......eiiitiieiieeeieeesieeeteeestteeeeseeessreesseeessseesseeessseessseeesssesssesennns 210
Can I specify a timeout when waiting for an event?............cceeveveeriercieerieenee e 211
Does Salvo provide functions to obtain elapsed time?ccceeevververrercreeneereeneenene 211
How do I choose the right value for OSBYTES OF TICKS?.....ccocccvveviieiieieeiieinnee, 212
My processor has no interrupts. Can I still use Salvo's timer services?...........cccveeuveenee. 213
CONLEXE SWILCRINGvieeiiiiiiiiecieee ettt ettt et e st e staesaaessbeesseessaessnesnsesnnes 213
How do I know when I'm context switching in Salvo?..........ccccceeeiiiviienieniecie e 213
Why can't I context switch from something other than the task level?........................... 213
Why does Salvo use macros to do context SWitching?cccceeveverciiecverierceesreeieenens 213
Can I context switch in more than one place per task?..........coccoevveviercieecieenieeneenieennenn 214
When must I use context-switching 1abels?.........ccoooveiiiiiiioiiecieiieceeeeeecee e 214
TaSKS & EVETIES. ...ttt ettt sttt 214
What are taskIDIS?coeeiuiiieieteee ettt sttt ettt 214
Does it matter which taskID I assign to a particular task?..........cccceeeveerieriennenreereene. 215
Is there an idle task in SAIVO?ocieiiiiiiiee e s 215
How can [monitor the tasks in my application?............ccccvevvveecriecieerierieereeeeee e 215
What exactly happens in the scheduler?coooeveiiiiiiiieniece e 215
What about reentrant code and Salvo?..........cooiioieiiiiieiieieeee e 216
What are "implicit" and "explicit" OS task functions?ccccoeoeeveniiienieeninieneneene, 216
How do I setup an infinite 100p in @ task?ccccvevieriieiciieiieieeereee e 216
Why must tasks use static local variables?c.ccvevieviiiciiecienieciecreeieesre e 217
Doesn't using static local variables take more memory than with other RTOSes?......... 217
Can tasks share the SAmME Priority?........cccevciireiieriierienienieeeeeeree e eeeeseeesereenseeneees 217
Can | have multiple instances of the same task?.........c.ccccevieiiiiviieniecie e 218

Salvo User Manual Contents Vii

Does the order in which I start tasks Matter?vvveeeeeiieeeeeeeeeeee e e e e eeeeenee 218

How can I reduce code size when starting tasks?cccoccvevvierciencienienieniesie e 219
What is the difference between a delayed task and a waiting task?............ccccevvevvennennen. 219
Can I create a task to immediately wait an event?...........cccocueevveevieevieiie e e 220
I started a task but it never ran. Why?ccocooviiiiiiiieniecicceeeesre e 220
What happens if I forget to loop in my task?.........ccccevevveeieniieniiiniieieeere e, 220
Why did my low-priority run-time tasks start running before my high-priority startup

taSK COMPIELEA? ...iiviiiiieiiiciie ettt ettt eb e e ve e be e teesebesereerbeeveesaean 221
When I signaled a waiting task, it took much longer than the context switching time

£O TUINL WY ? 1ttt ettt ettt sttt et e e taestaessaessbeessaenseenseesssennsas 221
Can I destroy a task and (re-) create a new one in its place?c.cccceevveeveevreenreenneennenn 221
Can more than one task wait 0n an eVent?...........cooevieriiierenenereeeeeee e 222
Does Salvo preserve the order in which events 0CCUI?.........cccoccvevciieciierierieere e 222
Can a task wait on more than one event at @ time?ccccveveeeereeiesieniece e 222
How can [implement event flags?...........ccoovviviiiiiiiiiieiiicieeeiecee e 223
What happens when a task times out waiting for an event?cccceveveeeeereerveereene 224
Why is my high-priority task stuck waiting, while other low-priority tasks are

TUNIIIE? ..ot eeiieeeiteeetteeeteeestteesteeetbeessbeesssaeessaesssasessseesssaeassseeasseeessseeasseesssseensseesnses 224
When an event occurs and there are tasks waiting for it, which task(s) become

ST T o) RS SUPUUSUSRPRN 224
How can I tell if a task timed out waiting for an event?c.cccceevveevveevieeneeneeenreenne 225
Can I create an event from inside @ task?..........cccoecieiirieiiiieieeeeeeee e 225
What kind of information can I pass to a task via a message?.........ccoceveevereenereenennne. 226
My application uses messages and binary semaphores. Is there any way to make the

Salvo cOde SMAILET?ocueeiiieieieeieeee ettt ettt ettt et et eseene e 226
Why did RAM requirements increase substantially when I enabled message queues?..227
Can I signal an event from outside @ task?c.cccceevieviiriiiiiiiniene e 227
When I signal a message that has more than one task waiting for it, why does only

one task become CligibIe?.........ccvecuieriiiiiiiieeeeee e 227
I'm using a message event to pass a character variable to a waiting task, but I don't

get the right data when I dereference the pointer. What's going on?............ccccceuveeeee. 227
What happens when there are no tasks in the eligible queue?cccocevvevvvevveeveeneenne. 228
In what order do messages leave a mesSage qUEUE?cccvvveveerieerierieereerieenneeereeneeenens 229
What happens if an event is signaled before any task starts to wait it? Will the event

get lost or it will be processed after task starts to wait it?cccoeeeeeiieeviieieenieennen, 229

What happens if an event is signaled several times before waiting task gets a chance
to run and process that event? Will the last one signal be processed and previous

lost? Or the first will be processed and the following signals 10St?.........c.ccccveeeviennens 229
What is more important to create first, an event or the task that waits it? Does the

order Of CTeation MAIET?c.coeeriirieiertieiee ettt ettt st ee b et 229
What if I don't need one event anymore and want to use its slot for another event?

Can [deStrOY EVEINL?cvievieiieciieciie ettt e st ete e esteeste e et e eeveebeebeesebeseveesseesseesseens 229
Can [use messages or message queues to pass raw data between tasks?..............o....... 230
How can I test if there's room for additional messages in a message queue without

signaling the MESSAZE QUEUE?.......cceeviieiieriieiieeiieereeie et estresereereeveesasesereesseeseesseans 230

INECTTUPLES .ottt ettt e et e e st e st e e s ateesabteeenbeesasteeantaesnbaeeenbeesnnes 230
Why does Salvo disable all interrupts during a critical section of code?........................ 230
I'm concerned about interrupt latency. Can I modify Salvo to disable only certain

interrupts during critical sections of COde?........oovvviiiriiiiciiieiiieee e 231

How big are the Salvo functions I might call from within an interrupt?c..ccocc..... 231

Viii Contents Salvo User Manual

Why did my interrupt service routine grow and become slower when I added a call to

OSTIMET()?.eeveeereeieereesteereestesteete et e e esseesseessseesseenseesseesseesssessseanseesseesaesseesssensseans 232
My application can't afford the overhead of signaling from an ISR. How can I get
around this ProBICIMN?cc.ieviiiiiieiiiiie ettt ere et e sre s reeveeveesteesraeeaveereens 232
BUIlAING PrOJECLS ..ottt ettt ettt e et et e ne e e e e 233
What warning level should I use when building Salvo projects?cccecvvevvervveneenne. 233
What optimization level should I use when building Salvo projects?ccccceeevenenee. 233
IMISCEIIANEOUS ...ttt ettt ettt et et et e et e entesteeae e seeseensesseensesesseenseeneensensenns 233
Can Salvo run on a 12-bit PICmicro with only a 2-level call...return stack?................. 233
Will Salvo change my approach to embedded programming?cccoeevvecvverivennnnnen. 233
Chapter 7 ¢« REfEIENCE ... 235
RUN-TIME ATCRITECTUTE. ... coiiiieiiiiieiieteee ettt st 235
Rule #1: Every Task Needs a Context SWItChccccovviiviiiiieiiiciiceeeeeecre e 235
Rule #2: Context Switches May Only Occur in Tasksccceeevieiieiieciecieeeeeeeeeene e 236
Rule #3: Persistent Local Variables Must be Declared as Staticc.ccecververvennenne. 237
USEI SEIVICESeutiutieuienieitiete st eite sttt ettt et et e s et e s bt et e b e sb e e bt ebe e st e s bt estentesbee b e sbeentenbesaeeneenne 240
OS Delay(): Delay the Current Task and Context-switCh...........cccccvvvvvveviieniienieeneennen. 243
OS DelayTS(): Delay the Current Task Relative to its Timestamp and Context-
SWILCH. .ttt sttt 245
OS_Destroy(): Destroy the Current Task and Context-sWitChccceevveevieneenneannen. 247
OS Replace(): Replace the Current Task and Context-SwitCh.........c.cccveevveevieenienneennen. 249
OS_SetPrio(): Change the Current Task's Priority and Context-switchccce..... 251
OS_Stop(): Stop the Current Task and Context-sWitCh...........ccevvvvvviriveriveniienienieeen, 253
OS_ WaitBinSem(): Context-switch and Wait the Current Task on a Binary
N 13101 0] 1 10] (USSR 255
OS_ WaitEFlag(): Context-switch and Wait the Current Task on an Event Flag............ 257
OS WaitMsg(): Context-switch and Wait the Current Task on a Message 261
0OS WaitMsgQ(): Context-switch and Wait the Current Task on a Message Queue.....263
OS_ WaitSem(): Context-switch and Wait the Current Task on a Semaphore 265
OS_Yield(): ContexXt-SWItCRccuviiiiiiiiiiieiie ettt e 267
OSCIrEFlag(): Clear Event F1ag Bit(s).......cccoovieviieiiiiiieieecieceece et 269
OSCreateBinSem(): Create a Binary Semaphoreccccevvveviirienciienieenienee e eveenenn 271
OSCreateCycTmr(): Create @ Cyclic TIMET ...c.cccvvevieriieiieiieiierie e see e ennees 273
OSCreateEFlag(): Create an Event FIag.........ccccooveeiiiiiiiiciiiciiceceeeeeee e 275
OSCreateMsg(): Create @ MESSAZE ...ccvevveerreerrierirerreeieereereeseeessresseesseesseesseesssessessses 277
OSCreateMsgQ(): Create a Message QUEUC..........cccuveevierieerieerierieereereeseesenesenessneensees 279
OSCreateSem(): Create a SEMAPNOTE.........c.eeevvieiiiieeiieciie e eceeeereeeteeesreeeereeereeens 281
OSCreateTask(): Create and Start @ TasKccccveeevieeiievienieciecieceere e 283
OSDestroyCycTmr(): Destroy a Cyclic TImeTccvevveveercveeiiieiienieneeeve e 285
OSDestroyTask(): Destroy @ Task........cccveruieiiiieiiieeieecieecee et 287
OSGetPrio(): Return the Current Task's Prioritycccoevveeviiviieniienieireecveeciee e 289
OSGetPrioTask(): Return the Specified Task's Priorityccccoceevvvrcivevvenieenienveennen, 291
OSGetState(): Return the Current Task's State........ccccevvvevverieriinieeiieieeree e 293
OSGetStateTask(): Return the Specified Task's Stateccceeveevvievveicieevieeniecreereenen. 295
OSGetTicks(): Return the System TImeT........cc.ccveiiiiciieciierieciecie e eve e 297
OSGetTS(): Return the Current Task's TImMeStampcccecvververreecveenieereernesveeeeenens 299
OSInit(): Prepare for Multitasking............ccccvereiiiiiiieciieciie et 301
OSMsgQCount(): Return Number of Messages in Message Queue...........ccveeveeennennen. 303
OSMsgQEmpty(): Check for Available Space in Message Queue...........ccoeevvervvernennnen. 305

Salvo User Manual Contents IX

OSReadBinSem(): Obtain a Binary Semaphore Unconditionallyccccccveeveeneennen. 307

OSReadEFlag(): Obtain an Event Flag Unconditionally............cccooevreivirieninniennennnen. 309
OSReadMsg():Obtain a Message's Message Pointer Unconditionallyccccceeene. 311
OSReadMsgQ(): Obtain a Message Queue's Message Pointer Unconditionally............ 313
OSReadSem(): Obtain a Semaphore Unconditionally............ccceevevviiiiiviienienienieennenn 315
OSResetCycTmr(): Reset @ CYCIC TImMeT.......ccevveeviierieerieeie et eieesieesne e eveeseeeeesenes 317
OSRpt(): Display the Status of all Tasks, Events, Queues and Counters 319
OSSched(): Run the Highest-Priority Eligible Task...........ccccoovevieiiiiviieieeiiecieereeen. 321
OSSetCycTmrPeriod(): Set a Cyclic Timer's Period..........cccceveveeeiieiienienieecieeeeeieeee. 323
OSSetEFlag(): Set Event Flag Bit(s)cccceecieoierierienieeieeieereeree e ere e svesnreensees 325
OSSetPrio(): Change the Current Task's Prioritycccceveevvieviieiienieiieeieecee e e 327
OSSetPrioTask(): Change a Task's Priority.........cccecveriereeniienciieieereeseeeie e 329
OSSetTicks(): Initialize the System TimeTccevcveeeieereerienieeie et 331
OSSetTS(): Initialize the Current Task's TIMeStamp...........ccceevvevveeivievieenieeneeereesreenns 333
0OSSignalBinSem(): Signal a Binary Semaphore...........cccceevveviiviiniieieecieecie e 335
OSSignalMsg(): Send @ MESSAZE.cccuevveecrieiieiierierieereereesteeseeeseressreeseesseessaesssesnses 337
OSSignalMsgQ(): Send a Message via a Message QUEUE..........ccvevveeveerieereenvenveennens 339
OSSignalSem(): Signal @ SEMAPIOTEceeeviieiiiieciie e 341
OSStartCycTmr(): Start @ CYClic TIMeTc.eecvveriieriirieeieeiieeeree e seesere e 343
OSStartTask(): Make a Task Eligible To RUN.........ccccccvvviiiiiiniieiiciecieee e, 345
OSStopCycTmr(): Stop @ CYClic TIMET.....c.eovviiiieiiicieeie ettt 347
OSStopTask(): StOP @ TASK...cc.eeiiiiiieieeiiestie ettt eveeve et eseneeareeaveeareas 349
OSSyncTS(): Synchronize the Current Task's Timestampcccevevevveerieereeneenvennnnn 351
OSTimer(): RUN the TIMET.......cccoiiiiiieeiieeeiie ettt eree e e veeetveesereeestreessneeens 353
OSTryBinSem(): Obtain a Binary Semaphore if Available.............ccccceveevvievienienneennnnn 355
OSTryMsg(): Obtain a Message if Available..........ccocvveiieciieniiniinieieceee e 357
OSTryMsgQ(): Obtain a Message from a Message Queue if Available 359
OSTrySem(): Obtain a Semaphore if Availablec.cccceevviiiiiiiiiiiiiciece e, 361
Additional USET SEIVICES.....ccuiruiriiriiiieieeiterie ettt sttt ettt ettt e te st e st et e e sbeeneas 363
OSAnyEligibleTasks (): Check for Eligible Tasks..........cccccvrviiniirnirnieeriieniesieeieeeenn 363
OScTcbExt0|1[2]3]4|5, OStcbExt0|1]2|3]4]5(): Return a Tcb Extension............ccveeuneeee.. 365
OSCycTmrRunning(): Check Cyclic Timer for Running.............cccccovevvieeieeviieniennnenne. 367
OSProtect(), OSUnprotect(): Protect Services Against Corruption by ISR.................... 369
OSTaskStopped(): Check whether Task has Stopped.........ccccevviviiiiieciienieiiecieereeen 371
OSTimedOut(): Check for TIMEOUL.........eeecuiririieeiie ettt e e eveeeeevee s 372
OSVersion(), OSVERSION: Return Version as INtEgErccoeevvvevveeiiereenienienreennenn 374
USEE IMIACTOS ..eenveeitiiiteeiteee ettt ettt ettt st sttt et b e bt e sae e st esateeabeeabeebeenaees 376
OSECBP(), OSEFCBP(),0SMQCBP(), OSTCBP(): Return a Control Block Pointer ..376
USEI-DETINEd SEIVICES. .. cuuiiuiiieriieiintietieteett ettt sttt et et eb ettt e b sae et b e 378
OSDisableIntsHook(), OSEnablelntsHook(): Interrupt-control Hooks..............c.......... 378
OSIdlingHook(): Idle Function HOOK............cccueviiiiiiiiieiieciecee e 380
OSSchedDispatchHook(), OSSchedEntryHook(), OSSchedReturnHook(): Scheduler
HOOKS. ..ttt ettt sttt ettt 382
REUITI COARS ...ttt et b et sttt b et enee e 384
SaAlVO DEfINEd TYPES .oouvvieiiiiiiiieeiie ettt ettt e rte et e et e e s beeeteeetbeessbaeessseesssaeesseessseeans 384
SAIVO VaTIADIES.oouieiiiiiiieiee ettt sttt ettt 388
SAIVO SOUTCE COUE ...ttt sttt ettt e ae et bt e e 389
Locations of Salvo FUNCLIONSccuiiiiiiiiieiecieese ettt 391
Abbreviations USEd DY SAIVOccviiiiiiiiiieieeieceecee ettt eve v ve e an e ene e 393

Contents Salvo User Manual

Chapter 8 ¢ LiDrari@S. ... 395

LIDTATY TYPES 1eeuvieriiiieieeiieieesieestteeteeteeteebe e e e teesteesabessseesseessaessaesseesssesnseasseesseesseesssennsensss 395
Libraries for Different ENVIFONMENTS..........c.eoirieiieieiieiieiesiceie ettt 395
NAtIVE COMPILETS ..oeieriiiiiiiciie ettt ettt et e et e e et e e stbeeebeeeseseeessseessseessseeessseeanes 395
NON-NAIVE COMPIIETS.....eeuvieiieieieiieeieeeeeie ettt et seesreebeeseesseestnesssessseesseesseessnenes 396
USING the LIDTATIESeeviieiieiieiieiecee sttt ettt este e e staestaesrnesabeesbeessaesseessnesnsensnes 396
Overriding Default RAM SEtNESc.ccovieiiiiiiiiieiiesieesiee e ere et esteesireeereeveeveesveesenas 397
Library FUNCLIONALILYcccueeeiieitierieriesie ettt ete et e e staestaesnseesbeessaessaessnesnsennnes 398
) 01 PRSP 399
MEMOTY MOMEIS....c.uviieiiiiiiiiiciiecie ettt ettt e st eetbeebeesbe e baessbesebeenbeenseennes 399
OPTIOMIS ...teeeiieeeitie ettt et e et e et e et eestbeeeteeesabeeesbeeassaeessseeassseassaeassaeessseeassaeasseessseeensseeans 399
GlODAl VArTabIescccuiiuiiieiieiieieiee ettt ettt sttt ettt 399
CONTIGUIATIONS ...eiivviieiiieeiieeeteeeite et e eeteeesveesteeestbeeesbeeestseessseeessseesssesesseesssesessseessseeans 400
VATTANES 1.ttt ettt ettt et ettt e e b e s bt e s at e e at e et e et e e bt e ebeesateeateenteenbeeebeesateeaneenne 401
Library REEIENCE.ccovieiieiieiieiieceee sttt sttt et te e st essae b e ssseesseessaensnennnes 403
Rebuilding the LiDIari€s........cvecierierieriieieecieeieesee st steeie et siaeseaesaesaseebeesseesseessnesnsesnses 403
GNU Make and the bash Shell..........cccooieiiiiiiiie e 404
Rebuilding Salvo LIDIariescccviiviiiieiiiiiiieiiie et et e eaeereeve e e sineseneeeveesreenes 404
Linux/UnixX ENVITONMENToeviiiieiieiienieiiesieeie e esieeseeseeseeeressseesseeseessnesnnes 404
Multiple COMPIIET VEISIONSccviiiiieiiieiiieiiieteeeteesire e eteesteestresereeveevaesaseseneesreesseenens 405
WiN32 ENVIFONIMENLoitiiiiiitieiieeie ettt ettt sttt ettt e sate st e et e et e be e bt e saeeeneas 405
Customizing the LiDIari€s.........ccvevierierciieiieieriesie ettt seeseresnseeseesseesenessnesnsens 406
Creating a Custom Library Configuration Fileccoccovieiininiininiiiniceee, 406
Building the Custom LibBIary.........cccccvevieiiieiieiie ettt sere e eve s 407

Using the Custom Library in a Library Buildcccoeeviviiniininieeeeeeeee, 407
Example — Custom Library with 16-bit Delays and Non-Zero Prescalar................. 407
Preserving a User's salvOCICN.D Files........cccccoveiiiiviiiiiiccieciece e 409
Restoring the Standard Libraries..........cocvevveiieiieeiieieecie et 409
Custom Libraries for non-Salvo Pro USErsccccevveviiiiiienieenieeieeie e 409
MaKEf1e DESCIIPHIONSecuvieiiiieiiieeciieeecite et e e tee e e etee e s e e ebaeessseeebaeessseeessseessseeensnens 409
Pumpkin\Salvo\SIc\MaKeflleccveeviiiiiiiiiiiecieeeeee e 409
Pumpkin\Salvo\STc\Makefile2cccveviierieiieiieeieeeese e 410
Pumpkin\Salvo\Src\CODE\MaAKETIIEccceevviriieiieiieieesie e 410
Pumpkin\Salvo\Src\CODEMArgetS.mKccceevvieiiierieiiecie e 410
Chapter 9 ¢ PerformanCe........ooovuiiiiiiie e e e 411
INEEOAUCTION ...ttt ettt et et e et e e sse et e steeseenseeneeneensenne 411
INECTTUDES .evvieiiie ettt ettt e et e e et e e et e e s taeessbeeestae e sseesssseessseesssseeassaeassseensseennses 411
CONtEXt SWILCHETeitieiiiiiitiee ettt ettt 411
SUMIMATY ..eeitieeiiieeiee et eetee et et e ettt ettt e st e sbteeebeesteeessteesaseeensseesnseesseeesnseesssenn 412
CrItICAL SECHOMSouvieienieetieieete ettt et et et e et et et et e st ent et esseensessesneesesseensenseeneensenns 412
Effect on Runtime Performance............cccovvevieiiieniienienie e 413
Controlling Interrupts Globallyc.ccccvevierieriiiiiieiere e 414
Controlling Interrupts Individuallycccoeviiviiiiiiiiiiiieeceeee e 415
Avoiding Interrupt Control AItOgether..........ceevviiviiiiieiieieceeceee e 417

Side Effects of Interrupt HOOKS.........cccveviiriieiieierieeie et 420

The Fallacy of Avoiding Critical Sections at the Interrupt Levelc.ccoeenveeeen. 421

USET HOOKS ...ttt et ettt et ettt e e te e s e beeaee s e eseensenseeneensesseensansens 422
OSDisableHook(), OSENableHOOK()ceecvveriieriieriiriieiieieesieesiee e eie e 422

Salvo User Manual Contents Xi

OSCIEWDTHOOK(). vvvveveeeseeeeeeeeseseeesesseseseeseesesseessesssssssessssssssssseessssssesessesssssseesesesee 422

(O gF= o) (=T gt K0 I = o Y o o 425
Chapter 11 « Tips, Tricks and Troubleshootingcccoooiiiiiiiiiiii, 427
INETOAUCTION ...ttt ettt s b ettt e b bt e e e e 427
Compile-Time TroubleShOOtINGcccvireiieriieiiirieiie ettt ennes 428
I'm just starting, and I'm getting 10ts Of €ITOTS.ccveeeeiiiiiiiiiiieceecee e, 428
My compiler can't find salVo.h.c.coiiiiiiiiiii s 428
My compiler can't find salvocTZ.h.c.coovviiiiiiiiiiiie 428
My compiler can't find certain target-specific header files...........ccccovveviiiviievienineneenne. 428
My compiler can't locate a particular Salvo SEIVICE.cvevveeveeviieiieereenieenre e 428
My compiler has issued an "undefined symbol" error for a context-switching label
that I've defined Properly.....c.cccveieriiiiiiiicteree e 429
My compiler is saying something about OSIdlingHoOK..........cccceoveviiiiiiiienienieeerenne, 429
My compiler has no command-line tools. Can I still build a library?............ccccceceenenee. 429
RUN-TIimMe TroubleShOOtINGccvevieeiieiieiieieeeerte ettt et et e e snneennes 430
Nothing's RAPPENING. ...cc.vviiieiiieiiiicieeeee ettt e e tr e e s beeeraeessaeeesbaeessseeenses 430
It only works if I single-step through my program.cccceevveeereerreenienieecreeereenneeeene 431
It still doesn't work. How should I begin debugging?...........c.cccceevvvriiveciecienienieneeene, 431
My program's behavior still doesn't make any SEnse.ccovevereveerreerverveneieeseereeeen. 432
COMPILET ISSUCSvviviieiiieiieieeciee ettt ettt ettt e et e te e te e s tb e et e esbeeteestaesabeeabeesbeestaesssesesasnas 432
Where can [get a free C cOMPILET?oovviiieriieriiiiecie et 432
Where can [get a free make UtIEY?occvviveeriienieiie et 433
Where can I get a Linux/Unix-like shell for my Windows PC?cccoovvevvvervennnee. 433
My compiler behaves strangely when I'm compiling from the DOS command line,
e.g. "This program has performed an illegal operation and will be terminated."........ 433
My compiler is issuing redeclaration errors when I compile my program with Salvo's
SOUICE TTLES. .ttt ettt et e b 434
HI-TECH PICC COMPILET ...c.eeeuiiiiiiieiieiieeeieeee ettt s 434
Running HPDPIC under Windows 2000 PTo..........cccccveveieriiincienieeieeeeeeeesee e 434
Setting PICC Error/Warning Format under Windows 2000 Pro...........cccevevvvennen. 435
Linker reports fIXUP ©ITOTSecvieriieriieiieiieeieesieestesreereeieesteesseesnseesseesseesseesssesnnes 435
Placing variables in RAMcccoooviiiiiiinieiie ettt 436
Link errors when working with IIDIaries...........cccevveeveeciieniiesiesiecreeseesee e 436
Avoiding absolute file pathnamescccceevieviiiiieiiecie e 436
Compiled code dOSN't WOTKccveruiiriiriieiieierie et 437
PIC17CXXX pointer passing DUEZS.......ccc.ecveevuierieeniienieire e e esreesieesereseveesveeveenns 437
While() statements and context SWItCHESccoveeviieviiiiieiiecii e 437
Library generation in HPDPIC..........c.ccccoviiiiiiiiiiiieeceeeeeeeee e 437
Problems banking Salvo variables on 12-bit devices.......ccccoeceevireinencenenienieeeene 438
Working with SaIVO MESSAZEScc.eevvviiiiiiieirieitie e e ere e e steesreereeveeveesaresereeenas 438
Adding OSTimer() to an Interrupt Service Routine...........ccceevvevievcieeneeneenienien, 438
Using the interrupt level pragma.........cccovvveeeeiieecieereeree e 440
HI-TECH V8C COMPIIET.....ciciiiiiiiieeiieeiieeeieeeite et steeeiee e e etveeseveesraeesesaeesneeeenes 440
STMULALOTS. ...ttt sttt et sb e s bt saeeeaeeeneeens 440
HI-TECH 8051C COMPILET.....cciiiiiriieiiiiiieieeiteie ettt 441
Problems with static initialization and small and medium memory models. 441
TAR PICC COMPILET......cciiiiiiiiiiiieiiiciecieeie ettt st e streetreeateeteeteestaesasesesesebeesseesseenseeseas 441

Xii Contents Salvo User Manual

Target-specific header fllesoooveviiiiiiiiieecece e 441

INECTTUPLES ..ottt ettt e st e et e e st e e abe e sbeesbteesnbeeennreenas 441

MiX POWET C COMPILET.....ecviiiieiiieiieieeiteiteritesee st ete ettt see e sere e esseesaesneesnnes 442
Required compile OPtIONS.........ccuviiiieiieiieitieciie ettt ste e eveesteesaresebeeebeesveenes 442
Application crashes after adding long C source lines to a Salvo task...................... 442
Application crashes after adding complex expressions to a Salvo task 443
Application crashes when compiling with /t Option...........ccceevvevieiiieviienienreeieenne. 444
Compiler crashes when using a make SYSteMcccveevieviievieiieiieeieesieesreeevre e 444
Metrowerks CodeWarrior COMPIIETcccveriierieiienieeieeriesee e ere e eeees 444
Compiler has a fatal internal error when compiling your source code..................... 444
MIiCTOChIP MPLABooiiiie ettt st eab e eveeve e beesbaesenas 445
The Stack window shows nested INterruPLS........c.eccvvereereeriiercieeieesienre e 445
Controlling the Size of your APPlICAtIONccveeuierierieeiieiteeeree e ere e 445
Working with MeSSage POINLETS.c..cvviiiiiiiiiicitieeie ettt ettt vt sereeeveeave e 446
Appendix A * Recommended Reading........ccouvviiiiiiiiiiiiiiiiieiiiicci e 449
SaIVO PUDBIICALIONS ...ttt sttt et 449
LEAINING C ..ottt e et e et e e st e e bt eessbeeeta e et beeeabbeeeabeeeabeeesbaeanraeennraeennes 449
KR ettt ettt ettt ettt et et e n et e ste st e teereenteaens 449

C, A Reference ManUalcoooovvoiiiiiiiiiiiieeeeeee ettt e e e e eeeaaereee e e 449
POWET C ...ttt ettt e b e s bt e s et e st e et e e bt e be e bt e nneesneas 449
Real-time KEeIMEIS.......cooiiieieieiiieiee ettt ettt sre e et eee e 450
LC/OS & MICTOC/OSIL ittt st s 450
CTASK ettt ettt ettt et ettt et bt et be et et 450
Embedded Programming...........cceceveiieiiiiieeiieieesieesieesieeeeeeveesveesteesteesenessveesseesvesssesssssssns 450
RTOS ISSUES ..ottt ettt et et sttt 451
Priority INVEISIONS. ...cccvieieiiieiiiiieiierteste et ete et e seesreste e e e taessaesasessbeessaessnesssesnseenseenses 451
IMICTOCONEIONLETS ...ttt ettt ettt ettt et et e et e beene e seeseeneesseensesesseenseeseenseneenns 451
PICTO ettt sttt st e e ae et et e e st et e sseeneeseeeeensanaea 451
Appendix B ® Other RESOUICES........cuuuiiiiieieeeeeeeiiiiiiee e e e e e eeeeeaae e e e e e aeeeaannnns 453
Web Links to Other RESOUICES........ieieiiirieieeiieiesie ettt eee e e eeeenens 453
Appendix C ¢ File and Program DesSCriptiONScccceeeeeeeiiviviiiiiiiiieeeeeeeeenennns 457
OVEIVIEW ...ttt ettt ettt e et e e bt e ettt e at e e bt e bt e bt e e b tesaeeeateemte e bt e sbeesabesabeeabeenbeeseenaeas 457
ONlNg File LOCALIONSeeuiiiieieiieieie ettt ettt ettt et e b e sseestesse st ensesneennenees 457
SaIVO DISLIDULIONSeuveeiieiiiiieiieteetertee ettt ettt st see b 457
Local/User File LOCAtIONSccueruieiiriiiiiiieieieei ettt st 458
SalVO UNINSTALIET(S) ...viivieiiiiiiiiiietieriee st cte ettt e e teeveebeesteestaeeebeeebeebeesaneeeseesseessens 458
SalVO DOCUMENTALION.ceueiteriieiietieteiteete ettt ettt ettt ettt sb et e st e enee 458
SalvO HEader FIlescooueiuieiiiiiieieieeeee ettt e 458
SaIVO SOUTCE FIlES ...uviiieiiiieie ettt st e 458
SAIVO LIDTATIES ...ttt ettt sttt et ettt et e bt e saeesaeeeneean 459
SaAlVO APPIICALIONSvieuiieiiieiietieitereeste et e st e sttesresbeebe e seesssesssessseesseessaesssesssesssens 459
Salvo GraphiCs FIlESc.ccciiiiiiiiiiieiieieciie ettt et e eveete e ta e eb e v e eaveebeesaeens 459
Other PUmpKin ProdUCES..........ooiiiiiiiiiciiecee ettt 459
Target and Compiler ADDIEVIAtIONScccveeriieriieiieeieerieesteeteete et eteeseesreeebeeseeseeseneeenes 459
PrOJECES .ttt ettt ettt ettt et e e et e et e e aaeenteenbeanbeenbeenseennnennnes 460

Salvo User Manual Contents Xiii

INOINENCIALUTE ...ttt e e e e e e e e e eeeeeeseseaeaeeeeeeseeeseaaaeeeeessaaans 460
PrOJECE FILES ..uviiiieeieeieeiee ettt ettt ettt estaeseae et e e b e essaessaesssesnsennses 461

Xiv Contents Salvo User Manual

Figures

Figure 1: Foreground / Background PrOCESSINGcccveevieriierierieniieiiesieesee e eieenseeseeeseneeneees 14
Figure 2: Interrupts Can Occur While Tasks Are RUNNING...........cccoeeviiviiiiiiiiiiieiiecie e 18
Figure 3: Preemptive SCheduling.........c.coviiiiiiiiiiiiicieeectte ettt e e eave v evee s 19
Figure 4: Cooperative SChedULINGc.occuiieiiiiiieiieriecie ettt e e eae e 20
FAgure 5: Task StateS.......cceeeiieiiieiierierieeie ettt ste e eteesteestaeseaessseasseesseessaessseanseesseesseenseensenns 23
Figure 6: Binary and Counting S€mapRorescc.covveiieiiieiiiieiieeiiecire e e eeveesteeseneeveeveesveesaeea 29
Figure 7: Signaling a Binary SEmaphorecccocveviiriieiiiiiieie ettt sene e eeee s 30
Figure 8: Waiting a Binary Semaphore When the Event Has Already Occurred............ccccouennee. 30
Figure 9: Signaling a Binary Semaphore When a Task is Waiting for the Corresponding
EVENE ..ttt ettt et e b e b e bt sttt et et e be e bt e st e eate e 31
Figure 10: Synchronizing Two Tasks with Event Flagsccccocoviiiiiiniininiieeces 32
Figure 11: Using a Counting Semaphore to Implement a Ring Buffer.............ccccoevvveviiniiinnennn. 34
Figure 12: Signaling a Message with a Pointer to the Message's Contentscccceevvvevveenveennen. 36
Figure 13: WEICOME SCIEEM........cccvieiieiieiieiieeieeieeseesee et eteestaeseaesstessseesseesseessseanseesseesseesssessenns 51
Figure 14: Salvo License AGreement SCTEEIN..........cccuieerierierieeieesiieseenreeseesseessresseesseesseesssenses 52
Figure 15: Choose COMPONENTS SCIEEI.......cviiiiieirieiiierieireeitieereereesteesteesereereereesseesssesssesseessees 53
Figure 16: Choose Destination LocCation SCIEEN..........cccueevvieirierieeieeriecieecieecere e ereesrreseveeveeveas 54
Figure 17: Choose Start Menu Folder SCreen..........cccvvuvreiieiienienieeiieieeeesee e 55
Figure 18: Installation Complete SCIEEN.........ccviiiiiiiiiciieciie ettt e veesreesaneeave s 55
Figure 19: FINISH SCIEEIccuviiiiiiiiiiciicciiectte ettt ettt ettt sabeeebeeveeteestaesebeesseesseeseens 56
Figure 20: Typical Salvo Install Directory Contents (Lib Subdirectory View)........cccccoeenee. 57
Figure 21: Location of the Uninstaller(s)..........cceeveriieriieiiieiiiierieesie st eie et sre e senesre e 58
Figure 22: Confirming the Uninstall Operation............ccccveevievieeiieiieereeereesieesineeneesreesseessneennes 58
Figure 23: Uninstallation Complete SCIEEMccvieevieiierieriieieeieree ettt sere e eseeeseneennees 59
Figure 24: Uninstall Complete SCIEEMccvevieeiiierierieeieeieeiee et ereeseeeseresreeseessaesnsesnseensees 59
Figure 25: Salvo Library Build OVEIVIEWccceciiiiiiiiiiiiiiieciie ettt eveeveeste e e esveeveeevee s 95
Figure 26: Salvo Source-Code Build OVEIVIEWc.ccovuiivieiiiiiieniieciecie e ereesieeseeesveeveeveesaeens 97
Figure 27: How to call OSCreateBinSem() when OSCALL _OSCREATEEVENT is set to
OSFROM_BACKGROUND ..ottt sttt te st et sse st eae s eneeseeseeneensens 119
Figure 28: How to call OSCreateBinSem() when OSCALL OSCREATEBINSEM is set to
OSFROM_FOREGROUNDoiiiiiiiiieiinitetee ettt sttt s eee i 119
Figure 29: How to call OSCreateBinSem() when OSCALL CREATEBINSEM is set to
OSFROM_ANYWHERE ..ottt eenne s 120
Figure 30: Tcb Extension Example Program OUtPUL..........ccccvevveeeiieiiienienie e 150
Figure 31: OSRpt() Output to Terminal SCrEEN........c.cccvvrireeriierierieeie et eieesre e ere e e seesereeenes 320

Salvo User Manual XV

XVi Figures Salvo User Manual

Listings

Listing 1:
Listing 2:
Listing 3:
Listing 4:
Listing 5:
Listing 6:
Listing 7:
Listing 8:
Listing 9:

Listing 10:
Listing 11:

A Simple SalVO PrOgramcccoecviiciieniiiiiiieeieeie ettt s sae et e e snseeenes 4
C Compiler Feature REqQUITEMENLScccouiieiiieiiiieiiieeiieeeieeeieeesreeeiveesveeeseveesvneenes 7
Reentrancy Errors with printf()ccoeeeviiiiiiiiiiecec e 15
Task Structure for Preemptive Multitasking...........ccceecverieniieniiienienienie e esee e 21
Task Structure for Cooperative Multitaskingcccceveveereercieenienienieerieeseeeveeniens 22
DELAY LOOD cutieitieiieiiie ettt ettt ettt ettt et e v e et e e te e s te e s tb e e tbe e be e ba e teesabeerbeebeerean 24
Delaying via the RTOSc.oooiiiiiiiicieeeee ettt ssnesseensee 26
EXamples Of EVENLScoociiiiieiieieieciecieeeesee sttt eie ettt ste et senesnseessaesseenseens 27
Task Synchronization with Binary Semaphores...........cccccvvevieeiieiiieniecie e 32

Using a Binary Semaphore to Control Access to a Resource........c.coccvevveeveereennnennnn. 33
Using a Counting Semaphore to Control Access to a Resource..........cccceeveeveeneennennee. 35

Listing 12: Signaling a Message with @ POINET...........cccoeviiiiiiiiiiiciiceceeece e 36
Listing 13: Receiving a Message and Operating on its CONtents...........cccccveeeereeercreeereeencreeesveeennes 37
Listing 14: Vending Machine SUPErloopcccuevcvieriierierienieeie ettt seesseesaessee 40
Listing 15: Task Version of Releaseltem()ccccvervierieriirciieiieieniecieeieeee e sene e 44
Listing 16: Task Version of CallPoliCe()ccvveeiieriieiieiiecieeieesiteere e sireere v e saeesaneeane s 44
Listing 17: Prioritizing @ TaSKccccuiiiiiiiiiiieciee ettt e eeee e e 45
Listing 18: Creating a Message EVENtcccccviiiiiiiiiienienie ittt snesnseesaessee s 45
Listing 19: Calling the SyStem TimeTccccvieiiiieiiiiiiieee ettt e e e 45
Listing 20: Starting all TASKSc.ccoiveiiiiiiiiiiiieriesee sttt ettt aeeeveeveeeveesteeseseesveesveeseesseens 46
Listing 21: Multitasking Be@INS.........cccveriiriiiiiiiieieerieste sttt see e sreeseesseessnessseensaesaessaens 46
Listing 22: RTOS-based Vending Machine............ccccueviriieeiiieniienienie st eieeieeiee e seeenseesae e 49
Listing 23: A Minimal Salvo APPLICALIONccvieviiiiieiiecre ettt ere e eveesieesreeveesveesaeesaneenres 64
Listing 24: A Multitasking Salvo Application with two Tasks.........ccccecererieniniineniienceeene 65
Listing 25: Multitasking with two Non-trivial Tasks.........cccceeiririiniiiiniiieeeeeeeeeses 68
Listing 26: Multitasking with an EVENtcccccoiiiiiiiiiiicieceeeeece e 71
Listing 27: Multitasking with @ Delaycccccvviiiiiiiiiiiiiiecie ettt 76
Listing 28: Calling OSTimer() at the System Tick Rate.........c..cocoviniiiiniiniiniiieees 76
Listing 29: Signaling from Multiple TasKScccueeeiiiiiiiiieiiicieeeeceecee et sane e 79
Listing 30: salvocfg.h for Tutorial Programcccooveiiiiiiiciieiieciccrecreeciee e 90
Listing 31: Tcb Extension EXample.........cccocveiieiiiiiiriiieieiesie et seees 149
Listing 32: Task with a Proper Context SWitCh..........ccocvvvviiiiiiirierieciece e 235
Listing 33: Tasks that Fail to Context SWItCh..........ccceviiiiiiiiiiieiicciecie e 236
Listing 34: Incorrectly Context-Switching Outside of @ Taskccccevereieninieninienineceene 237
Listing 35: Task Using Persistent Local Variableccccceeeiiivienieniieniieeeeeseeee e 238
Listing 36: Task Using Auto Local Variablescccceeviiiiiiiiiinieiiecie e 239
Listing 37: Source Code FIles.......cooiiiuiiiiiiiiiiieiieieeteestee sttt ettt saesveeeveeve e veesanesenas 391
Listing 38: Location of Functions in Source Codeccevierierieeiieeriieniieniesie e eeeesee e 393
Listing 39: List Of ADDIEVIAtIONSccviiiiieiiieiiieiiieie ettt esteeeeeeteeteesteesbeeseeesereeeveeveereesenenenas 394
Listing 40: Example salvocfg.h for Use with Standard Libraryccccccceeevvevieniicieeieeieenen. 397
Listing 41: Example salvocfg.h for Use with Standard Library and Reduced Number of Tasks 397
Listing 42: Additional Lines in salvocfg.h for Reducing Memory Usage with Salvo Libraries . 398
Listing 43: Partial Listing of Services than can be called from Interrupts...........cccoeevvverveennenne. 402
Listing 44: Making a Single Salvo LiDIary.........cccccocueeviieiiinieiie et 404
Listing 45: Making all Salvo Libraries for a Particular Compilercccceveveiiiniencncenencene 404

Salvo User Manual XVil

XVill

Listing 46: Making all Salvo Libraries for a Particular Target..........ccccocvevveeereecienieecreeereeennenn 405

Listing 47: Obtaining a List of Library Targets in the Makefile...........cccccerveniniininnincniinne 405
Listing 48: Making Salvo Libraries for IAR's MSP430 C Compiler v2.X.....ccccoeeevenerreeneenenne. 405
Listing 49: Example Custom Library Configuration File salvoclcd.h..........cccoeevviviiiniiniiennenne. 407
Listing 50: Making a Custom Salvo Library with Custom Library Configuration 4................... 408
Listing 51: Example salvocfg.h for Library Build Using Custom Library Configuration 4 and
Archelon / Quadravox AQ430 Development TOOISccccevveeviieiieiiecieeieeeeeecee e 408
Listing 52: Making a Custom Salvo Library with Custom Library Configuration 4................... 408
Listing 53: Use of interrupt hooks in Salvo source code.cceevvevieriieciienienienireieeeeeeeen 413
Listing 54: Most general configuration for Salvo's interrupt hooks.cccccvevvvevieniercieeieenne, 414
Listing 55: Application-specific configuration for Salvo's interrupt hooks. Relevant ISRs also
shown. Target is TI'Ss MSPA30FGAO19.......ccvooieriiiiieieeieestesteeee e este et saesseesene s 416
Listing 56: Interrupt hooks for applications that do not call Salvo services from any
TECTTUDES . .. veeetveeeitieesteeeteeestreeetteeeteeeseseesssaeesssaessseeassseeassaeassseessseesssssasseeassssensseessseessseesssenans 417
Listing 57: Passing interrupt activity up from an ISR to call a Salvo service without a
corresponding interrupt hook. Target is Microchip PICI8F452.......ccccocivviiiiiiniiieieeee 418
Listing 58: Interrupt hooks to avoid interrupt NESHING.ccveeverieriieeriierierre e 421
Listing 59: Example watchdog hook. Target is TI's MSP430F1612.ccccovevvierieieeieirennn. 423

Listings Salvo User Manual

Tables

Table 1: Allowable Storage Types / Type Qualifiers for Salvo Objects........cccceevereenereenienncene 155
Table 2: Configuration Options DY CategOry.......ccvevierieiiieiieireesieesireereereereesreeseresereeveeveesnes 186
Table 3: Configuration Options by Desired Feature.............cocvevvvevieiieiiiciicieceeciece e 188
Table 4: Predefined SYMDOLS.......c.cooiiiiiiiieiieieeeee ettt 189
Table 5: RETUITI COAES ..c.uveiiriiiiiriiiieiieiteeet ettt sttt sttt st sbe et sb et ee e 384
Table 6: NOTMAL TYPES ..evveiiiiiieiii ettt ectteet ettt ettt et e s teeetreebeebeesbeesbeasesessseesbeesbeesseessensnas 386
Table 7: NOrmal POINIEr TYPES.....ucvcviecrieiieriierieiieeieeieeseeseaesresseeseesseessnesssessseessaesseesssesssennses 386
Table 8: QUAITIEA TYPES ..eevveerieiieiierierieete et ettt sttt e e esteesteestaesssessseesaessaesseesssesnsensses 387
Table 9: Qualified POINLEr TYPESccviiiriiiiiiiiciieieete ettt ettt et e e e ste e tae s areeeveeaveeaeas 387
Table 10: SalVO Variables........cceoiiieiiieieieeieeee ettt sttt ettt e e esaeeees 389
Table 11: Type Codes for SalVo LiDIaries........c.cccverierieiiriieeieesee e sie e esieesaesne e eseessneeens 399
Table 12: Configuration Codes for Salvo Libraries..........ccceevevieeieeiiecoieeniiesrecie e 400
Table 13: Features Common to all Salvo Library Configurations............ccceeeveeeveevrvenveeveenneene. 401
Table 14: Variant Codes for Salvo LiDrariesccccccvevverieiiieerieeniesee et sne e eve e 403

Salvo User Manual XiX

XX

Tables

Salvo User Manual

Release Notes

Introduction

What's New

Please refer to the distribution's sal vo- what snew. t xt file for
more information on what's new in the v4.2.2 release.

Release Notes

Please refer to the general (sal vo-r el ease. t xt) and distribution-
specific (sal vo-rel ease-targetnane. txt) release notes for
more information on release-related changes and updates in the
v4.2.2 release.

Third-Party Tool Versions

Please refer to the distribution-specific (sal vo-rel ease-
t ar get nane. t xt) release notes for the version numbers of third-
party tools (compilers, linkers, librarians, etc.) in the v4.2.2 re-
lease.

Salvo User Manual XXI

XXii Release Notes Salvo User Manual

Supported Targets and Compilers

Salvo User Manual

As of v4.2.2, Salvo supports a variety of 8-, 16- and 32-bit targets
and compilers:

Please refer to the distribution-specific (sal vo-r el ease-

t ar get nane. t xt) release notes for the version numbers of third-
party tools (compilers, linkers, librarians, etc.) in the v4.2.2 re-
lease. If you have a named compiler that is older than the ones
listed, you may need to upgrade it to work with Salvo. Contact the
compiler vendor for upgrade information.

XX

Preface

Historical Information

Pumpkin, Inc.'s Salvo v1 was an internal release, written in assem-
bly language and targeted specifically for the Microchip
PIC17C756 PICmicro® MCU in a proprietary, in-house data acqui-
sition system. This 1998 version provided much of the basic func-
tionality that would later makes its way into the later Salvo
releases.

After a market analysis Pumpkin, Inc. decided to expand on Salvo
v1's functionality by rewriting it in C. In doing so, opportunities
arose for many configuration options and optimizations, to the
point where not only was the C version more powerful and flexible
than its assembly-language predecessor, but it was completely
portable, too.

In 2000, Salvo v2 became the first commercial release of Pumpkin,
Inc.'s cooperative priority-based multitasking RTOS. It was tar-
geted at the entire range of Microchip PICmicro™ MCUs.

In 2002, Salvo v3 was released. This marked the expansion of the
Salvo RTOS into new embedded targets, like the 8-bit 8051 and
the 16-bit MSP430.

Salvo 4 was released in 2005. Not only did this release mark the
first Salvo support for 32-bit embedded targets, but it also included
many of the lessons learned over the previous six years in terms of
usability and maximum configurability for high performance.
Salvo 4 is the first Salvo release to remove all non-instruction-set
hardware dependencies from the core Salvo code. This gives
end-users complete flexibility in configuring Salvo for maximum
real-time performance.

Typographic Conventions

Salvo User Manual

Various text styles are used throughout this manual to improve
legibility. Code examples, code excerpts, path names and file
names are shown in a nonospaced font. New and particularly
useful terms, and terms requiring emphasis, are shown italicized.

XXV

User input (e.g. at the DOS command line) is shown in this man-
ner. Certain terms and sequence numbers are shown in bold. Im-
portant notes, cautions and warnings have distinct borders around
them:

Note Salvo source code uses tab settings of 4, i.e. tabs are
equivalent to 4 spaces.

The letters xyz are used to denote one of several possible names,
e.g. OSSignal Xyz() refers to OSSignal BinSen(), OSSig-
nal Msg(), OSSi gnal MsgQ(), OSSi gnal Sen(), etc. Xyz is case-
insensitive.

The symbol | is used as a shorthand to denote multiple, similar
names, e.g. sysale|[f denotes sysa and/or syse and/or sysf.

DOS and Windows pathnames use "\ '. Linux and Unix pathnames
use '/ ". They are used interchangeably throughout this document.

Standardized Numbering Scheme

XXVI

Salvo employs a standardized numbering scheme for all software
releases. The version/revision numbering scheme uses multiple
fields! as shown below:

sal vo-di stribution-target-
MAJOR. M NOR. SUBM NOR[- PATCH|

where

« distribution refers to Salvo Lite, tiny, SE, LE
or Pro

« target refers to the target processor(s)
supported in the distribution

* MAJORchanges when major features (e.g. array
mode) are added.

* M NOR changes when minor features (e.g. new
user services) are added to or changed.

* SUBM NOR changes during alpha and beta testing
and when support files (e.g. new Salvo
Application Notes) are added.

« PATCHis present and changes each time a bug
fix is applied and/or new documentation is

1 The final field is present only on patches.

Preface Salvo User Manual

added. PATCH may also be used for release
candidates, e.g. r c4.

All MAJOR. M NOR. SUBM NCR versions are released with their own,
complete installer. - PATCH may be used on complete installers or
on minimal installers or archives that add new or modified files to
an existing Salvo code and documentation installation.

Examples include:

. sal vo-lite- v2.2 Salvo

pic-2.2.0 Lite for PICmicro®
MCUs installer,
released

. sal vo- | e- 8051- v3.1.0 Salvo

3.1.0-rc3 LE for 8051 family
installer, release
candidate #3

. sal vo- pro- version

msp430-4.1.0 4.1.0 Salvo Pro for
TI's MSP430 installer,
released

Salvo releases are generically referred to by their MAJOR M NOR
numbering, i.e. "the 3.0 release."

The Salvo Coding Mindset

Configurability Is King

Salvo is extremely configurable to meet the requirements of the
widest possible target audience of embedded microcontrollers. It
also provides you, the user, with all the necessary header files, user
hooks, predefined constants, data types, useable functions, etc. that
will enable you to create your own Salvo application as quickly
and as error-free as possible.

Salvo User Manual Preface XXVii

Conserve Precious Resources

The Salvo source code is written first and foremost to use as few
resources as possible in the target application. Resources include
RAM, ROM, stack call...return levels and instruction cycles. Most
of Salvo's RAM- and ROM-hungry functionality is disabled by de-
fault. If you want a particular feature (e.g. event flags), you must
enable it via a configuration option (e.g. OSENABLE_EVENT_FLAGS)
and re-make your application. This allows you to manage the
Salvo code in your application from a single point — the Salvo con-
figuration file sal vocf g. h.

Learn to Love the Preprocessor

Salvo makes heavy use of the C preprocessor and symbols prede-
fined by the compiler, Salvo and/or the user in order to configure
the source code for compilation. Though this may seem somewhat
daunting at first, you'll find that it makes managing Salvo projects
much simpler.

Document, But Don't Duplicate

We're Not Perfect

XXVl

Wherever possible, neither source code nor documentation is re-
peated in Salvo. This makes it easier for us to maintain and test the
code, and provide accurate and up-to-date information.

While every effort has been made to ensure that Salvo works as
advertised and without error, it's entirely possible that we may
have overlooked a problem or failed to catch a mistake. Should
you find what you think is an error or ambiguity, please contact us
so that we can resolve the issue(s) as quickly as possible and en-
able you to continue coding your Salvo applications worry-free.2

Note We feel that it should not be necessary for you to modify
the source code to achieve functionality close to what Salvo al-
ready provides. We urge you to contact us first with your questions
before modifying the source code, as we cannot support modified
versions of Salvo. In many instances, we can both propose a solu-
tion to your problem, and perhaps also incorporate it into the next
Salvo release.

2 See Pumpkin Salvo Software License Agreement for more information.

Preface Salvo User Manual

Chapter 1 « Introduction

Welcome

Salvo User Manual

In the race to innovate, time-to-market is crucial in launching a
successful new product. If you don't take advantage of in-house or
commercially available software foundations and support tools,
your competition will. But cost is also an important issue, and with
silicon (as in real life) prices go up as things get bigger. If your de-
sign can afford lots memory and maybe a big microprocessor, too,
go out and get those tools. That's what everybody else is doing ...

But what if it can't?

What if you've been asked to do the impossible — fit complex, real-
time functionality into a low-cost microcontroller and do it all on a
tight schedule? What if your processor has only a few KB of ROM
and even less RAM? What if the only tools you have are a com-
piler, some debugging equipment, a couple of books and your
imagination? Are you really going to be stuck again with state ma-
chines, jump tables, complex interrupt schemes and code that you
can't explain to anyone else? After a while, that won't be much fun
anymore. Why should you be shut out of using the very same
software frameworks the big guys use?

They say that true multitasking needs plenty of memory, and it's
not an option for your design. But is that really true?

Not any more. Not with Salvo. Salvo is full-blown multitasking in
a surprisingly small memory space — it's about as big as
printf () !> Multitasking, priorities, events, a system timer — it's all
in there. No interrupts available? That's not a problem, either.
You'll get more functionality out of your processor quicker than
you ever thought possible. And you can put Salvo to work for you
right away.

3 Comparison based on implementations with full pri nt f () functionality.

What Is Salvo?

Salvo is a proven, powerful, high-performance and royalty-free
real-time operating system (RTOS) that requires very little pro-
gram and data memory, and no task stacks. It is an easy-to-use
software tool to help you quickly create powerful, reliable and so-
phisticated applications (programs) for embedded systems.

Salvo was designed from the ground up for use in microprocessors
and microcontrollers with severely limited resources, and will
typically require from 5 to 100 times less memory than other
RTOSes. In fact, Salvo's memory requirements are so minimal that
it will run where no other RTOS can.

Salvo is ROMable, easily scaleable and extremely portable. It runs
on just about any processor, from a PIC to a Pentium.

Why Should | Use Salvo?

If you're designing the next hot embedded product, you know that
time-to-market is crucial to guarantee success. Salvo provides a
powerful and flexible framework upon which you can quickly
build your application.

If you're faced with a complex design and limited processing re-
sources, Salvo can help you make the most of what's available in
your system.

And if you're trying to cost-reduce or add functionality to an exist-
ing design, Salvo may be what you need because it helps you lev-
erage the processing power you already have.

Before Salvo, embedded systems programmers could only dream
of running an RTOS in their low-end processors. They were locked
out of the benefits that an RTOS can bring to a project, including
reducing time-to-market, managing complexity, enhancing robust-
ness and improving code sharing and re-use. They were unable to
take advantage of the many well-established RTOS features de-
signed to solve common and recurring problems in embedded sys-
tems programming.

That dream is now a reality. With Salvo, you can stop worrying

about the underlying structure and reliability of your program and
start focusing on the application itself.

Chapter 1 « Introduction Salvo User Manual

What Kind of RTOS Is Salvo?

Salvo is a purely event-driven cooperative multitasking RTOS,
with full support for event and timer services. Multitasking is pri-
ority-based, with sixteen separate priority levels supported. Tasks
that share the same priority will execute in a round-robin fashion.
Salvo provides services for employing semaphores (binary and
counting), messages, message queues and event flags for intertask
communications and resource management. A full complement of
RTOS functions (e.g. context-switch, stop a task, wait on a sema-
phore, etc.) is supported. Timer functions, including delays, time-
outs and cyclic timers, are also supported.

Salvo is written in ANSI C, with a very small number of proces-
sor-specific extensions, some of which are written in native assem-
bly language. It is highly configurable to support the unique
demands of your particular application.

While Salvo is targeted towards embedded applications, it is uni-
versally applicable and can also be used to create applications for
other types of systems (e.g. 16-bit DOS applications).

What Does a Salvo Program Look Like?

Salvo User Manual

A Salvo program looks a lot like any other that runs under a multi-
tasking RTOS. Listing 1 shows (with comments) the source code
for a remote automotive seat warmer with user-settable tempera-
ture. The microcontroller is integrated into the seat, and requires
just four wires for communication with the rest of the car's elec-
tronics — power, ground, Rx (to receive the desired seat tempera-
ture from a control mounted elsewhere) and Tx (to indicate status).
The desired temperature is maintained via TaskControl (). Task-
St at us() sends, every second, either a single 50ms pulse to indi-
cate that the seat has not yet warmed up, or two consecutive 50ms
pulses to indicate that the seat is at the desired temperature.

#i ncl ude <sal vo. h>

t ypedef unsi gned char t_bool ean;
t ypedef unsigned char t_tenp;

/* Local flag. */
t _bool ean war m = FALSE;

/* Seat tenperature functions. */
extern t _tenmp UserTenp(void);

extern t _tenp Seat Tenp(void);

extern t_boolean Cirl Tenp(t_tenmp user, seat);

Chapter 1 « Introduction 3

/* Moderate-priority (i.e. 8) task (i.e. #1)
/* to maintain seat tenperature. Cirl Tenp()
/* returns TRUE only if the seat is at the

/* the desired (user) tenperature.

voi d TaskControl (void)

while (1) {
warm = Ctrl Tenp(User Tenp(), SeatTenp());
CS_ Yield();
}
}

/* H gh-priority (i.e. 3) task (i.e. #2) to
/* generate pul ses. Systemticks are 10ns.
voi d TaskStatus(void)
{

/* initialize pulse output (low).

TX_PORT &= ~0x01;

while (1) {
OS Del ay(100);
TX_PORT | = 0x01;
OS _Del ay(5);
TX_PORT &= ~0x01;
if (warm {
0S Del ay(5);
TX_PORT | = 0x01;
OS _Del ay(5);
TX_PORT &= ~0x01;
}
}
}

/* Initialize Salvo, create and assign
/* priorities to the tasks, and begin
/* multitasking.
int main(void)

{
CSlnit();
OSCr eat eTask(TaskControl, OSTCBP(1), 8);
OSCr eat eTask(TaskSt at us, OSTCBP(2), 3);
while (1) {
GSSched() ;
}
}

Listing 1: A Simple Salvo Program

Chapter 1 « Introduction Salvo User Manual

*/
*/
*/
*/

*/
*/

*/

*/
*/
*/

It's important to note that when this program runs, temperature
control continues while TaskStatus() is delayed. The calls to
OS_Del ay() do not cause the program to loop for some amount of
time and then continue. After all, that would be a waste of proces-
sor resources (i.e. instruction cycles). Instead, those calls simply

instruct Salvo to suspend the pulse generator and ensure that it re-
sumes running after the specified time period. TaskControl ()
runs whenever TaskSt at us() is suspended.

Apart from creating a simple Salvo configuration file and tying
Salvo's timer to a 10ms periodic interrupt in your system, the C
code above is all that is needed to run these two tasks concurrently.
Imagine how easy it is to add more tasks to this application to en-
hance its functionality.

See Chapter 4 ¢ Tutorial for more information on programming
with Salvo.

What Resources Does Salvo Require?

Salvo User Manual

The amount of ROM Salvo requires will depend on how much of
Salvo you are using. A minimal multitasking application on an 8-
bit RISC processor might use a few hundred instructions. A full-
blown Salvo application on the same processor will use around 1K
instructions.

In conventional RTOSes, a large amount of RAM is dedicated to
the individual task stacks. Since Salvo does not need or maintain
task tasks, its RAM requirements are commensurately (much)
smaller, since C compilers may use the stack for local/auto vari-
ables, function parameters, etc. Also because of this fundamental
design aspect of Salvo, Salvo can run on targets that have limited
hardware call/return stacks* instead of a more common general-
purpose stack.

The amount of RAM Salvo requires is also dependent on your par-
ticular configuration. In an 8-bit RISC application,® each task will
require 4-12 (typically 7) bytes, each event 3-4 bytes,® and 4-6
more bytes are required to manage all the tasks, events and delays.
That's it!

In all cases, the amount of RAM required is primarily dependent
on the size of pointers (i.e. 8, 16 or 32 bits) to ROM and RAM in

A hardware call/return stack is used only to store the caller function’s return
address, and is limited to some depth (e.g. 16 levels on PIC17 processors). A
hardware call/retun stack cannot be used for local (auto variables), for
example. Additionally, processors with hardware call/return stacks do not
implement PUSH and POP instructions.

5 PIC16 series (e.g. PIC16C64). Pointers to ROM take two bytes, and pointers
to RAM take one byte.

Message queues require additional RAM.

Chapter 1 « Introduction 5

your application, i.e. it's application-dependent. In some applica-
tions (e.g. CISC processors) additional RAM may be required for
general-purpose register storage.

If you plan to use the delay and timeout services, Salvo requires
that you call its timer service at a regular rate. While there are non-
interrupt-driven ways of achieving this, this requirement is often
satisfied by calling the timer service via a single interrupt. How-
ever, this interrupt need not be dedicated to Salvo — it can be used
for your own purposes, t0o.

The number of tasks and events is limited only by the amount of
available memory.

See Chapter 6 « Frequently Asked Questions (FAQ) for more in-
formation.

How Is Salvo Different?

Salvo is a cooperative RTOS that doesn't need a stack.” Virtually
all other RTOSes use a stack, and many are preemptive as well as
cooperative. This means that compared to other RTOSes, Salvo
differs primarily in these ways:

* «Salvo is a cooperative RTOS, so you must
explicitly manage task switching®.

e+ Task switching can only occur at the task
level, i.e. directly inside your tasks, and not
from within a function called by your task, or
elsewhere. This is due to the absence of a
general-purpose stack and the concomitant
ability of the RTOS to save task & state
information on the stack. This may have a small
impact on the structure of your program.

* « Compared to other cooperative or preemptive
RTOSes, which need lots of RAM memory
(usually in the form of a general-purpose stack),
Salvo needs very little. For processors without
much RAM, Salvo may be your only RTOS
choice.

By "doesn’t need a stack" we mean that Salvo does not need RAM to store the
data that a conventional RTOS usually stores on the (general-purpose) stack,
including return addresses, local/auto variables, saved registers, and other
(usually compiler-dependent) task-specific data.

We'll explain this term later, but for now it means being in one task and
relinquishing control of the processor so that another task may run.

6 Chapter 1 « Introduction Salvo User Manual

Salvo is able to provide most of the performance and features of a
full-blown RTOS while using only a fraction as much memory.
With Salvo you can quickly create powerful, fast, sophisticated
and robust multitasking applications.

What Do | Need to Use Salvo?

Salvo User Manual

A working knowledge of C is recommended. But even if you're a
C beginner, you shouldn't have much difficulty learning to use
Salvo.

Some knowledge of RTOS fundamentals is useful, but not re-
quired. If working with an RTOS is new to you, be sure to review
Chapter 2 « RTOS Fundamentals.

You will need a good ANSI-C-compliant compiler for the proces-
sor(s) you're using. It must be capable of compiling the Salvo
source code, which makes use of many C features, including (but
not limited to):

* earrays,

e e unions,

e ¢ bit fields,

e e structures,

e e gtatic variables,

* « multiple source files,

e e indirect function calls,

* « multiple levels of indirection,

» e« passing of all types of parameters,

* e+ multiple bytes of parameter passing,

» e extensive use of the C preprocessor,

* e pointers to functions, arrays, structures,
unions, etc., and

* e support for variable arguments lists? (via
va_arg(), etc.)

Listing 2: C Compiler Feature Requirements

A compiler with the ability to perform in-line assembly is a plus.
The more fully-featured the in-line assembler, the better.

9 This is not absolutely necessary, but is desireable. va_ar g() is part of the

ANSI C standard.

Chapter 1 « Introduction 7

Lastly, your compiler should be capable of compiling to object
(*. 0) modules and libraries (*.1i b), and linking object modules
and libraries together to form a final executable (usually *. hex).

We recommend that you use a compiler that is already certified for
use with Salvo. If your favorite compiler and/or processor are not
yet supported and it meets Salvo’s requirements, you can probably
do a port to them in a few hours. Chapter 10 ¢ Porting will guide
you through the process. Always check with the factory for the lat-
est news concerning supported compilers and processors.

Which Processors and Compilers does Salvo
Support?

Please visit Pumpkin’s website for up-to-date information.

How Is Salvo Distributed?

Salvo is supplied on downloadable over the Internet as a Windows
95 /98 /ME /NT /2000 / XP installer program. After you install
Salvo onto your computer you will have a group of subdirectories
that contain the Salvo source code, Salvo libraries, Salvo exam-
ples, and various other support files.

What Is in this Manual?

Chapter 1 « Introduction is this chapter.

Chapter 2 « RTOS Fundamentals is an introduction to RTOS pro-
gramming. If you're only familiar with traditional "superloop" or
"foreground / background" programming architectures, you should
definitely review this chapter.

Chapter 3 ¢ Installation covers how to install Salvo onto your com-
puter.

Chapter 4 « Tutorial is a guide to using Salvo. It contains examples
to introduce you to all of Salvo's functionality and how to use it in
your application. Even programmers familiar with other RTOSes
should still review this chapter.

Chapter 5 « Configuration explains all of Salvo's configuration pa-
rameters. Beginners and experienced users need this information to

8 Chapter 1 « Introduction Salvo User Manual

Salvo User Manual

optimize Salvo's size and performance to their particular applica-
tion.

Chapter 6 « Frequently Asked Questions (FAQ) contains answers
to many frequently asked questions.

Chapter 7 Reference is a guide to all of Salvo's user services
(callable functions).

Chapter 8 « Libraries lists the available freeware and standard li-
braries and explains how to use them.

Chapter 9 » Performance has actual data on the size and speed of
Salvo in various configurations. It also has tips on how to charac-
terize Salvo's performance in your particular system.

Chapter 10 « Porting covers the issues you'll face if you're porting
Salvo to a compiler and/or processor that is not yet formally certi-

fied or supported by Salvo.

Chapter 11 « Tips, Tricks and Troubleshooting has information on
a variety of problems you may encounter, and how to solve them.

Appendix A « Recommended Reading contains references to mul-
titasking and related documents.

Appendix B « Other Resources has information on other resources
that may be useful to you in conjunction with Salvo.

Appendix C ¢ File and Program Descriptions contains descriptions
of all of the files and file types that are part of a Salvo installation.

Chapter 1 « Introduction 9

10

Chapter 1 « Introduction

Salvo User Manual

Chapter 2 « RTOS Fundamentals

Introduction

Salvo User Manual

Note If you're already familiar with RTOS fundamentals you
may want to skip directly to Chapter 3 ¢ Installation.

* "I'vebuilt polled systems. Yech. Worse are
applications that must deal with several
different things more or less concurrently,
without using multitasking. The software in both
situationsisinvariably a convoluted mess.
Twenty years ago, | naively built a steel
thickness gauge without an RTOS only to later
have to shoehorn one in. Too many
asynchronous things wer e happening; the in-
line code grew to outlandish complexity.” Jack
G. Ganssle!?

Most programmers are familiar with traditional systems that em-
ploy a looping construct for the main part of the application and
use interrupts to handle time-critical events. These are so-called
foreground / background (or superloop) systems, where the inter-
rupts run in the foreground (because they take priority over every-
thing else) and the main loop runs in the background when no
interrupts are active. As applications grow in size and complexity
this approach loses its appeal because it becomes increasingly dif-
ficult to characterize the interaction between the foreground and
background.

An alternative method for structuring applications is to use a soft-
ware framework that manages overall program execution accord-
ing to a set of clearly defined rules. With these rules in place, the
application's performance can be characterized in a relatively
straightforward manner, regardless of its size and complexity.

Many embedded systems can benefit from using an approach in-
volving the use of multiple, concurrent tasks communicating
amongst themselves, all managed by a kernel, and with clearly-

10 "Interrupt Latency", Embedded Systems Programming, Vol. 14 No. 11,
October 2001, p. 73.

11

Basic Terms

12

defined run-time behavior. This is the RTOS approach to pro-
gramming. These and other terms are defined below.

Note This chapter is only a quick introduction to the operation
and use of an RTOS. Appendix A « Recommended Reading con-
tains references for further, in-depth reading.

A task is a sequence of instructions, sometimes done repetitively,
to perform an action (e.g. read a keypad, display a message on an
LCD, flash an LED or generate a waveform). In other words, it's
usually a small program inside a bigger one. When running on a
relatively simple processor (e.g. Z80, 68HCI11, PIC), a task may
have all of the system's resources to itself regardless of how many
tasks are used in the application.

An interrupt is an internal or external hardware event that causes
program execution to be suspended. Interrupts must be enabled for
an interrupt to occur. When this occurs, the processor vectors to a
user-defined interrupt service routine (ISR), which runs to comple-
tion. Then program execution picks up where it left off. Because of
their ability to suspend program execution, interrupts are said to
run in the foreground, and the rest of the program runs in the back-
ground.

A task's priority suggests the task's importance relative to other
tasks. It may be fixed or variable, unique or shared with other
tasks.

A task switch occurs when one task suspends running and another
starts or resumes running. It may also be called a context switch,
because a task's context (generally the complete contents of the
stack and the values of the registers) is usually saved for re-use
when the task resumes.

Preemption occurs when a task is interrupted and another task is
made ready to run. An alternative to a preemptive system is a CO-
operative system, in which a task must voluntarily relinquish con-
trol of the processor before another task may run. It is up to the
programmer to structure the task so that this occurs. If a running
task fails to cooperate, then no other tasks will execute, and the
application will fail to work properly.

Chapter 2 « RTOS Fundamentals Salvo User Manual

Salvo User Manual

Preemptive and cooperative context switching are handled by a
kernel. Kernel software manages the switching of tasks (also called
scheduling) and intertask communication. A kernel generally en-
sures that the highest-priority eligible task is the task that's running
(preemptive scheduling) or will run next (cooperative scheduling).
Kernels are written to be as small and as fast as possible to guaran-
tee high performance in the overlying application program.!!

A delay is an amount of time (often specified in milliseconds) dur-
ing which a task's execution can be suspended. While suspended, a
task should use as few of the processor's resources as possible to
maximize the performance of the overall application, which is
likely to include other tasks that are not concurrently suspended.
Once the delay has elapsed (or expired), the task resumes execut-
ing. The programmer specifies how long the delay is, and how of-
ten it occurs.

An event is an occurrence of something (e.g. a key was pressed, an
error occurred or an expected response failed to occur) that a task
can wait for. Also, just about any part of a program can signal the
occurrence of an event, thus letting others know that the event hap-
pened.

Intertask communication is an orderly means of passing informa-
tion from one task to another following some well-established pro-
gramming concepts. Semaphores, messages, message queues and
event flags can be used to pass information in one form or another
between tasks and, in some cases, ISRs.

A timeout is an amount of time (often specified in milliseconds)
that a task can wait for an event. Timeouts are optional — a task can
also wait for an event indefinitely. If a task specifies a timeout
when waiting for an event and the event doesn't occur, we say that
a timeout has occurred, and special handling is invoked.

A task's state describes what the task is currently doing. Tasks
change from one state to another via clearly defined rules. Com-
mon task states might be ready / eligible, running, delayed, wait-
ing, stopped and destroyed / uninitialized.

The timer is another piece of software that keeps track of elapsed
time and/or real time for delays, timeouts and other time-related
services. The timer is only as accurate as the timer clock provided
by your system.

11 Some kernels also provide I/O functions and other services such as memory

management. Those are not discussed here.

Chapter 2 « RTOS Fundamentals 13

A system is idling when there are no tasks to run.

The operating system (OS) contains the kernel, the timer and the
remaining software (called services) to handle tasks and events
(e.g. task creation, signaling of an event). One chooses a real-time
operating system (RTOS) when certain operations are critical and
must be completed correctly and within a certain amount of time.
An RTOS-enabled application or program is the end product of
combining your tasks, ISRs, data structures, etc, with an RTOS to
form single program.

Now let's examine all these terms, and some others, in more detail.

Foreground / Background Systems

14

The simplest program structure is one of a main loop (sometimes
called a superloop) calling functions in an ordered sequence. Be-
cause program execution can switch from the main loop to an ISR
and back, the main loop is said to run in the background, whereas
the ISRs run in the foreground. This is the sort of programming
that many beginners encounter when learning to program simple
systems.

w [_
ISR1 2 4 I -

superloop
functions

time
Figure 1: Foreground / Background Processing
In Figure 1 we see a group of functions repeated over and over [1,
5, 13] in a main loop. Interrupts may occur at any time, and even at

multiple levels. When an interrupt occurs (high-priority interrupt at
[2] and [8], low-priority interrupt at [6]), processing in the function

Chapter 2 « RTOS Fundamentals Salvo User Manual

Reentrancy

Salvo User Manual

is suspended until the interrupt is finished, whereupon the program
returns to the main loop or to a previous interrupted ISR. The main
loop functions are executed in strictly serial manner, all at the same
priority, without any means of changing when or even if the func-
tion should execute. ISRs must be used in order to respond quickly
to external events, and can be prioritized if multiple interrupt levels
are supported.

Foreground / background systems are relatively simple from a pro-
gramming standpoint as long as there is little interaction amongst
the functions in the main loop and between them and the ISRs. But
they have several drawbacks: Loop timing is affected by any
changes in the loop and/or ISR code. Also, the response of the sys-
tem to inputs is poor because information made available by an
ISR to a function in the loop cannot be processed by the function
until its turn to execute. This rigidly sequential nature of program
execution in the super loop affords very little flexibility to the pro-
grammer, and complicates time-critical operations. State machines
may be used to partially solve this problem. As the application
grows, the loop timing becomes unpredictable, and a variety of
other complicating factors arise.

One such factor is reentrancy. A reentrant function can be used
simultaneously in one or more parts of an application without cor-
rupting data. If the function is not written to be reentrant, simulta-
neous calls may corrupt the function's internal data, with
unpredictable results in the application. For example, if an applica-
tion has a non-reentrant pri ntf () function and it is called both
from main loop code (i.e. the background) and also from within an
ISR (i.e. the foreground), there's an excellent chance that every
once in a while the resultant output of a call to

printf("Here we are in the main |oop.\n");
from within the main loop and a call to

printf("Now we are servicing an interrupt.\n");
from within an ISR at the same time might be

Here we aNow we are servicing an interrupt.

Listing 3: Reentrancy Errors with printf()

Chapter 2 « RTOS Fundamentals 15

Resources

This is clearly in error. What has happened is that the first instance
of printf() (called from within the main loop) got as far as print-
ing the first 9 characters ("Here we a") of its string argument be-
fore being interrupted. The ISR also included a call to printf(),
which re-initialized its local variables and succeeded in printing its
entire 36-character string ("Now we ...interrupt.\n"). After the
ISR finished, the main-loop printf () resumed where it had left
off, but its internal variables reflected having successfully written
to the end of a string argument, and no further output appeared
necessary, so it simply returned and the main loop continued exe-
cuting.

Note Calling non-reentrant functions as if they were reentrant
rarely results in such benign behavior.

Various techniques can be employed to avoid this problem of a
non-reentrant print f (). One is to disable interrupts before calling
a non-reentrant function and to re-enable them thereafter. Another
is to rewrite printf () to only use local variables (i.e. variables
that are kept on the function's stack). The stack plays a very impor-
tant role in reentrant functions.

A resource is something within your program that can be used by
other parts of the program. A resource might be a register, a vari-
able or a data structure, or it might be something physical like an
LCD or a beeper. A shared resource is a resource that may be used
by more than one part of your program. If two separate parts of a
program are contending for the same resource, you'll need to man-
age this by mutual exclusion. Whenever a part of your program
wants to use the resource it must obtain exclusive access to it in
order to avoid corrupting it.

Multitasking and Context Switching

16

Many advantages can be realized by splitting a foreground / back-
ground application into one with multiple, independent tasks. In
order to multitask, such that all tasks appear to run concurrently,
some mechanism must exist to pass control of the processor and its
resources from one task to another. This is the job of the scheduler,
part of the kernel that (among its other duties) suspends one task
and resumes another when certain conditions are met. It does this
by storing the program counter for one task and restoring the pro-

Chapter 2 « RTOS Fundamentals Salvo User Manual

gram counter for another. The faster the scheduler is able to switch
tasks, the better the performance of the overall application, since
the time spent switching tasks is time spent without any tasks run-
ning.

A context switch must appear transparent to the task itself. The
task's "world view" before the context switch that suspends it and
after the context switch that resumes it must be the same. This
way, task A can be interrupted at any time to allow the scheduler to
run a higher-priority task, task B. Once task B is finished, task A
resumes where it left off. The only effect of the context switch on
task A is that it was suspended for a potentially long time as a re-
sult of the context switch. Hence tasks that have time-critical op-
erations must prevent context switches from occurring during those
critical periods.

From a task's perspective, a context switch can be "out of the
blue", in the sense that the context switch was forced upon it for
reasons external to the task, or it can be intentional due to the pro-
grammer's desire to temporarily suspend the task to do other
things.

Most processors support general-purpose stacks and have multiple
registers. Just restoring the appropriate program counter will not be
enough to guarantee the continuity of a task's execution. That's be-
cause the stack and the register values will be unique to that task at
the moment of the context switch. A context switch saves the en-
tire task's context (e.g. program counter, registers, stack contents).
Most processor architectures require that memory must be allo-
cated to each task to support context switching.

Tasks and Interrupts

Salvo User Manual

As is the case with foreground / background systems, multitasking
systems often make extensive use of interrupts. Tasks must be pro-
tected from the effects of interrupts, ISRs should be as fast as pos-
sible, and interrupts should be enabled most of the time. Interrupts
and tasks coexist simultaneously — an interrupt may occur right in
the middle of a task. The disabling of interrupts during a task
should be minimized, yet interrupts will have to be controlled to
avoid conflicts between tasks and interrupts when shared resources
are accessed by both.

Chapter 2 « RTOS Fundamentals 17

3 9
A A
8 10
7 vy 11
high-priority 9 4
task
A
6
1 v 5
low-priority
task

time
Figure 2: Interrupts Can Occur While Tasks Are Running

In Figure 2 a low-priority task is running [1] when an interrupt oc-
curs [2]. In this example, interrupts are always enabled. The inter-
rupt [3] runs to completion [4], whereupon the low-priority task [5]
resumes its execution. A context switch occurs [6] and the high-
priority task [7] begins executing. The context switch is handled by
the scheduler (not shown). The high-priority task is also inter-
rupted [8-10] before continuing [11].

Interrupt latency is defined as the maximum amount of time that
interrupts are disabled, plus the time it takes to execute the first
instruction of an ISR. In other words, it's the worst-case delay be-
tween when an interrupt occurs and when the corresponding ISR
begins to execute.

Preemptive vs. Cooperative Scheduling

18

There are two types of schedulers: preemptive and cooperative. A
preemptive scheduler can cause the current task (i.e. the task that's
currently running) to be preempted by another one. Preemption
occurs when a task with higher priority than the current task be-
comes eligible to run. Because it can occur at any time, preemption
requires the use of interrupts and stack management to guarantee
the correctness of the context switch. By temporarily disabling
preemption, programmers can prevent unwanted disruptions in
their programs during critical sections of code.

Chapter 2 « RTOS Fundamentals Salvo User Manual

« | |

8
high-priority)
task
1 S 12
low-priority 7 9
task
v 6 10 Tll
scheduler

time
Figure 3: Preemptive Scheduling

Preemptive Scheduling

Salvo User Manual

Figure 3 illustrates the workings of a preemptive scheduler. A low-
priority task [1] is running when an external event occurs [2] that
triggers an interrupt. The task's context and some other information
for the scheduler are first saved [3] in the ISR, and the interrupt is
serviced [4]. In this example the high-priority task is waiting for
this particular event and should run as soon as possible after the
event occurs. When the ISR is finished [5], it proceeds to the
scheduler [6], which starts [7] the high-priority task [8]. When it is
finished, control returns to the scheduler [9, 10], which then re-
stores the low-priority task's context and allows it to resume where
it was interrupted [11, 12].

Preemptive scheduling is very stack-intensive. The scheduler
maintains a separate stack for each task so that when a task re-
sumes execution after a context switch, all the stack values that are
unique to the task are properly in place. These would normally be
return addresses from subroutine calls, and parameters and local
variables (for a language like C). The scheduler may also save a
suspended task's context on the stack, since it may be convenient
to do so.

Preemptive schedulers are generally quite complex because of the
myriad of issues that must be addressed to properly support context
switching at any time. This is especially true with regard to the
handling of interrupts. Also, as can be seen in Figure 3, a certain

Chapter 2 « RTOS Fundamentals 19

time lag exists between when an interrupt happens and when the
corresponding ISR can run. This, plus the interrupt latency, is the
interrupt response time (t4 - t;). The time between the end of the
ISR and the resumption of task execution is the interrupt recovery
time (t; — ts). The system's event response time is shown as (t7 - t).

Cooperative Scheduling

20

A cooperative scheduler is likely to be simpler than its preemptive
counterpart. Since the tasks must all cooperate for context switch-
ing to occur, the scheduler is less dependent on interrupts and can
be smaller and potentially faster. Also, the programmer knows ex-
actly when context switches will occur, and can protect critical re-
gions of code simply by keeping a context-switching call out of
that part of the code. With their relative simplicity and control over
context switching, cooperative schedulers have certain advantages.

3
« [
9

high-priority

task 2 4

1 v 5

low-priority 8 10

task

6, 7 1

scheduler

time
Figure 4: Cooperative Scheduling

Figure 4 illustrates the workings of a cooperative scheduler. As in
the previous example, the high-priority task will run after the inter-
rupt-driven event occurs. The event occurs while the low-priority
task is running [1, 5]. The ISR is serviced [2-4] and the scheduler
is informed of the event, but no context switch occurs until the
low-priority task explicitly allows it [6]. Once the scheduler has a
chance to run [7], it starts and runs the high-priority task to com-
pletion [8-10]. The scheduler [11] will then start whichever eligible
task has the highest priority.

Chapter 2 « RTOS Fundamentals Salvo User Manual

In comparison to the preemptive scheduling, cooperative schedul-
ing has the advantage of shorter interrupt response and recovery
times and greater overall simplicity. However, the responsiveness
is worse because a high-priority eligible task cannot run until a
lower-priority one has relinquished control of the processor via an
explicit context switch.

More on Multitasking

Task Structure

Salvo User Manual

You can think of tasks as little programs that run within a bigger
program (your application). In fact, by using a multitasking RTOS
your application can be viewed as a framework to define tasks and
to control how and when they run. When your application is run-
ning, it means that a bunch of little programs (the tasks) are all
running in a manner that makes it appear as if they execute simul-
taneously. Of course only one task can actually run at a particular
instant. In order to take full advantage of the multitasking abilities
of the RTOS, you want to define your tasks such that at any par-
ticular time, the processor is making the best use of its processing
power by running whichever task is most important. Once your
task priorities are correctly defined, the scheduler will take care of
the rest.

What does a task in a multitasking application actually look like?
A task is generally an operation that needs to occur over and over
again in your application. The structure is really very simple, and
consists of an optional initialization, and then a main loop that is
repeated unconditionally. When used with a preemptive scheduler,
a task might look like this:

Initialize();
while (1) {

}

Listing 4: Task Structure for Preemptive Multitasking

because a preemptive scheduler can interrupt a task at any time.
With a cooperative scheduler a task might look like this:

Initialize();
while (1) {

TaskSwi t ch() :

Chapter 2 « RTOS Fundamentals 21

Simple Multitasking

Listing 5: Task Structure for Cooperative Multitasking

The only difference between the two versions is the need to explic-
itly call out the context switch in the cooperative version. In coop-
erative multitasking it's up to each task to declare when it is willing
to potentially relinquish control of the processor to another task.
Such context switches are usually unconditional — a trip through
the scheduler may be required even if the current task is the only
task eligible to run. In preemptive multitasking this would never
occur, as the scheduler would force a context switch only when a
higher-priority task had become eligible to run.

Note Context switches can occur multiple times inside a task,
both in preemptive and cooperative multitasking systems.

The simplest form of multitasking involves "sharing" the processor
equally between two or more tasks. Each task runs, in turn, for
some period of time. The tasks round-robin, or execute one after
the other, indefinitely.

This has limited utility, and suffers from the problems of a super-
loop architecture. That's because all tasks have equal, unweighted
access to the processor, and their sequence of execution is likely to
be fixed.

Priority-based Multitasking

22

Adding priorities to the tasks changes the situation dramatically.
That's because by assigning task priorities you can guarantee that
at any instant, your processor is running the most important task in
your system.

Priorities can be static or dynamic. Static priorities are priorities
assigned to tasks at compile time that do not change while the ap-
plication is running. With dynamic priorities a task can change its
priority during runtime.

Is should be apparent that if the highest-priority task were allowed
to run continuously, then the system would no longer be multitask-
ing. How can multiple tasks with different priorities coexist in a
multitasking system? The answer lies in how tasks actually behave
— they're not always running! Instead, what a certain task is doing

Chapter 2 « RTOS Fundamentals Salvo User Manual

Task States

Salvo User Manual

at any particular time depends on its state and on other factors, like
events.

An RTOS maintains each task in one of a number of task states.
Figure 5 illustrates the different states a task can be in, and the al-
lowed transitions between states. Running is only one of several
exclusive task states. A task can also be €ligible to run, it can be
delayed, it can be stopped or even destroyed / uninitialized, and it
can be waiting for an event. These are explained below.

eligible

"
et o) g

Figure 5: Task States

Before a task is created, it is in the uninitialized state. It returns to
that state when and if it is destroyed. There's not much you can do
with a destroyed task, other than create another one in its place, or
recreate the same task again. A task transitions from the destroyed
state to the stopped state when it is created via a call to the RTOS
service that creates a task.

An eligible task is one that is ready to run, but can't because it's not
the task with the highest priority. It will remain in this state until
the scheduler determines that it is the highest-priority eligible task
and makes it run. Stopped, delayed and/or waiting tasks can be-
come eligible via calls to the corresponding RTOS services.

A running task will return to the eligible state after a simple con-
text switch. However, it may transition to a different state if either
the task calls an RTOS service that destroys, stops, delays or waits
the task, or the task is forced into one of these states via a call to an
RTOS service from elsewhere in your application.

Chapter 2 « RTOS Fundamentals 23

A delayed task is one that was previously running but is now sus-
pended and is waiting for a delay timer to expire. Once the timer
has expired, the RTOS timer makes the task eligible again.

A stopped task was previously running, and was then suspended
indefinitely. It will not run again unless it is (re-)started via a call
to the RTOS service that starts a task.

A waiting task is suspended and will remain that way until the
event it is waiting for occurs (See "Event-driven Multitasking" be-
low).

It's typical for a multitasking application to have its various tasks
in many different states at any particular instant. Periodic tasks are
likely to be delayed at any particular instant. Low-priority tasks
may be eligible but unable to run because a higher-priority task is
already running. Some tasks are likely to be waiting for an event.
Tasks may even be destroyed or stopped. It's up to the scheduler to
manage all these tasks and guarantee that each tasks runs when it
should. The scheduler and other parts of the RTOS ensure that
tasks transition from one state to the next properly.

Note The heart of a priority-based multitasking application, the
scheduler, is concerned with only one thing — running the highest-
priority task that's eligible to run. Generally speaking, the sched-
uler interacts only with the running task and tasks that are eligible
to run.

An RTOS is likely to treat all tasks in a particular state in the same
manner, and thereby improve the performance of your application.
For example, it shouldn't expend any processor cycles on tasks that
are stopped or destroyed. After all, they're just "sitting there" and
will remain so indefinitely, or until your program makes them eli-
gible to run.

Delays and the Timer

24

Most embedded programmers are familiar with the simple delay
loop construct, e.g.:

for (i =0; i < 100; i++)
asn("nop"); /* do nothing for 100 sonethings */

Listing 6: Delay Loop

Chapter 2 « RTOS Fundamentals Salvo User Manual

Salvo User Manual

The trouble with doing delays like the one shown in Listing 6 is
that your application can't do any useful background processing
while the loop is running. Sure, interrupts can occur in the fore-
ground, but wouldn't it be nice to be able to do something else dur-
ing the delay?

Another problem with the code in Listing 6 is that it is compiler-,
processor- and speed-dependent. The compiler may or may not
optimize the assembly instructions that make up this loop, leading
to variations in the actual delay time. Changing the processor may
change the delay time, too. And if you increase the processor
clock, the delay will decrease accordingly. In order to circumvent
these problems delay loops are often coded in assembly language,
which severely limits code portability.

An RTOS provides a mechanism for tracking elapsed time through
a system timer. This timer is often called in your application via a
periodic interrupt. Each time it is called, the timer increments a
counter that holds the number of elapsed system ticks. The current
value of the system ticks is usually readable, and perhaps writeable
too, in order to reset it.

The rate at which the timer is called is chosen to yield enough
resolution to make it useful for time-based services, e.g. to delay a
task or track elapsed time. A fluid level monitor can probably
make do with a system tick rate of 1Hz (i.e. 1s system ticks),
whereas a keypad reader might need a system tick rate of 100Hz
(i.e. 10ms system ticks) in order to specify delays for the key de-
bounce algorithm. An unduly fast system tick rate will result in
substantial overhead and less processing power left over for your
application, and should be avoided.

There must also be enough storage allocated to the system ticks
counter to ensure that it will not overflow during the longest time
period that you expect to use it. For example, a one-byte timer and
a 10ms system tick period will provide a maximum specifiable task
delay of 2.55s. In this example, attempting to calculate an elapsed
time via the timer will result in erroneous results if successive
reads are more than 2.55s apart. Task delays fall under similar re-
strictions. For example, a system with 10ms system ticks and sup-
port for 32-bit delays can delay a task up to a whopping 497 days!

Since the use of delays is common, an RTOS may provide built-in
delay services, optimized to keep overhead to a minimum and to
boost performance. By putting the desired delay inside a task, we
can suspend the task while the delay is counting down, and then

Chapter 2 « RTOS Fundamentals 25

resume the task once the delay has expired. Specifying the delay as
a real amount of time will greatly improve our code's portability,
too. The code for delaying a task via the RTOS looks quite differ-
ent than that of Listing 6:

0S_Del ay(100); /* delay for 100 ticks @50Hz */

Listing 7: Delaying via the RTOS

In Listing 7, the call to the RTOS service OS_Del ay() changes the
state of the task from running to delayed. Since the task is no
longer running, nor is it even eligible to run (remember, it's de-
layed), a context switch also occurs, and the highest-priority eligi-
ble task (if there is one) starts running.

In Listing 7 OS_Del ay() also specifies a delay of 100 system ticks.
If the system in has a system tick rate of 50Hz, then the task will
be delayed for (100 ticks x 20ms) — two full seconds — before
resuming execution once it becomes the highest-priority eligible
task. Imagine how much processing other eligible tasks can do in
two full seconds!

An RTOS can support multiple, simultaneously delayed tasks. It's
up to the RTOS designer to maximize performance — i.e. minimize
the overhead associated with the execution of the timer — regard-
less of how many tasks are delayed at any time. This timer over-
head cannot be eliminated; it can only be minimized.

The resolution and accuracy of the system timer may be important
to your application. In a simple RTOS, the resolution and the accu-
racy of the timer both equal the system tick period. For example,
delaying a task by n system ticks will result in a delay ranging
from just over n-1 to just under n system ticks of real time (e.g.
milliseconds). This is due to the asynchronous nature of the system
timer — if you delay a task immediately after the (interrupt) call to
the timer, the first delay tick will last nearly a full system tick. If,
on the other hand, you delay a task immediately prior to a system
tick, the first delay tick will be very short indeed.

Event-driven Multitasking

You may have noticed that a delayed task is actually waiting for
something — it's waiting for its delay timer to expire. The expira-
tion of a delay timer is an example of an event, and events may

26 Chapter 2 « RTOS Fundamentals Salvo User Manual

cause a task to change state. Therefore events are used to control
task execution. Examples of events include:

* e an interrupt,

* ean error occurring,

* e+ atimer timing out,

e e+ aperiodic interrupt,

* e aresource being freed,

* «an I/O pin changing state,

* e« akey on akeypad being pressed,

e+ an RS-232 character being received or
transmitted and

* e+ information being passed from one part of
your application to another.

Listing 8: Examples of Events

In short, an event can be any action that occurs either internal or
external to your processor. You associate an event with the rest of
your application (primarily tasks, but also ISRs and background
code) through the RTOS event services. The interaction between
events and tasks follows certain simple rules:

» « Creating an event makes it available to the rest
of your system. You cannot signal an event, nor
can any task(s) wait on the event, until it has
been created. Events can be created with
different initial values.

e« Once an event has been created, it can be
signaled. When an event is signaled, we say that
the event has occurred. Events can be signaled
from within a task or other background code, or
from within an ISR. What happens next is
dependent on whether there are one or more
tasks waiting on the event.

* «Once an event has been created, one or more
tasks can wait it. A task can only wait one event
at a time, but any number of tasks can all wait
the same event. If one or more tasks are waiting
an event and the event is signaled, the highest-
priority task or the first task to wait the event
will become eligible to run, depending on how
the RTOS implements this feature. If multiple
waiting tasks share the same priority, the RTOS

Salvo User Manual Chapter 2 « RTOS Fundamentals 27

28

will have a well-defined scheme!2 to control
which task becomes eligible.

One reason for running tasks in direct response to events is to guar-
antee that at any time the system can respond as quickly as possi-
ble to an event. That's because waiting tasks consume no!3
processing power — they'll remaining waiting indefinitely, until the
event they're waiting on finally occurs. Furthermore, you can tailor
when the system acts on the event (i.e. run the associated task)
based on its relative importance, i.e. based on the priority of the
task(s) associated with the event.

The key to understanding multitasking's utility is to know how to
structure the tasks in your application. If you're used to superloop
programming, this may be difficult at first. That's because a com-
mon mode of thinking goes along the lines of "First I need to do
this, then that, then the other thing, etc. And I must do it over and
over again, checking to see if or when certain events have hap-
pened." In other words, the superloop system monitors events in a
sequential manner and acts accordingly.

For event-driven multitasking programming, you may want to
think along these lines: "What events are happening in my system,
both internally and externally, and what actions do I take to deal
with each event?" The difference here is that the system is purely
event-driven. Events can occur repetitively or unpredictably. Tasks
run in response to events, and a task's access to the processor is a
function of its priority.14 A task can react to an event as soon as
there are no higher-priority tasks running.

Note Priorities are associated with tasks, not events.

In order to use events in your multitasking application, you must
first ask yourself:

e e+ what does my system do?

* +how do I divide up its actions into separate
tasks?

e < what does each task do?

e < when is each task done?

e < what are the events?

12 Generally LIFO or FIFO, ie. the most recent task or the first task,
respectively, to wait the event will become eligible when the event is signaled.
13

14

Unless they’re waiting with a timeout, which requires the timer.
Task priorities are easily incorporated into event-based multitasking.

Chapter 2 « RTOS Fundamentals Salvo User Manual

* e+ which event(s) cause each task to run?

Note Events need not be associated with tasks one-to-one. Tasks
can interact with multiple events, and vice versa. Also, tasks that
do not interact with any events are easily incorporated — but they
are usually assigned low priorities, so that they only run when the
system has nothing else to do.

Events and Intertask Communications

Semaphores

Salvo User Manual

An RTOS will support a variety of ways to communicate with
tasks. In event-based multitasking, for a task to react to an event,
the event must trigger some sort of communication with the task.
Tasks may also wish to communicate with each other. Sema-
phores, messages and message queues are used for intertask com-
munication and are explained below.

Common to all these intertask communications are two actions:
that of signaling (also called posting or sending) and waiting (also
called pending or receiving). Each communication also requires an
initialization (Creating).

Note All operations involving semaphores, messages and mes-
sage queues are handled through calls to the operating system.

There are two types of semaphores: binary semaphores and count-
ing semaphores. A binary semaphore can take on only two values,
0 or 1. A counting semaphore can take on a range of values based
on its size — for example, an 8-bit counting semaphore's value can
range from 0 to 255. Counting semaphores can also be 16-bit or
32-bit. Figure 6 illustrates how we will represent semaphores and
their values:

Sem Sem
04 [1y
Sem Sem
0 f...n

Figure 6: Binary and Counting Semaphores

Chapter 2 « RTOS Fundamentals 29

Event Flags

30

Before it is used, a semaphore must be created with an initial
value. The appropriate value will depend on how the semaphore is
used.

Event flags are one such use for binary semaphores — they indicate
the occurrence of an event. If a semaphore is initialized to 0, it
means that the event has not yet occurred. When the event occurs,
the semaphore is set to 1 by signaling the semaphore.

/Sem \
R

time
Figure 7: Signaling a Binary Semaphore

Figure 7 shows an ISR, task or other background code signaling
[1] a binary semaphore. Once a semaphore (binary or counting)
has reached its maximum value, further signaling is in error.

In addition to signaling a semaphore, a task can also wait the
semaphore. Only tasks can wait semaphores — ISRs and other
background code cannot. Figure 8 illustrates the case of an event
having already occurred when the task waits the semaphore.

o e
1
/ wing |

3 5

time
Figure 8: Waiting a Binary Semaphore When the Event
Has Already Occurred

In Figure 8, the binary semaphore is initialized to 0 [1]. Some time
later, the event occurs, signaling the semaphore [2]. When the task
finally runs [3] and waits the semaphore, the semaphore will be
reset [4] so that it can be signaled again and the task will continue
running [5].

Chapter 2 « RTOS Fundamentals Salvo User Manual

Note A semaphores is always initialized without any waiting
tasks.

If the event has not yet occurred when the task waits the sema-
phore, then the task will be blocked. It will remain so (i.e. in the
waiting state) until the event occurs. This is shown in Figure 9.

/w/
3> g [5 v cigie /71 6 [e |

2

time
Figure 9: Signaling a Binary Semaphore When a Task is
Waiting for the Corresponding Event

In Figure 9, an event has not yet been signaled [1] when a running
task [2] waits the binary semaphore. Since the semaphore is not
set, the task is blocked and must wait [3] indefinitely. The operat-
ing system knows that this task is blocked because it is waiting for
a particular event. When the semaphore is eventually signaled from
outside the task [4], the operating system makes the task eligible
again [5] and it will run when it becomes the most eligible task [6].
The semaphore remains cleared because a task was waiting for it
when it was signaled. Contrast this to Figure 7, where a semaphore
is signaled with no tasks waiting for it.

It is also possible to combine event flags using the conjunctive
(logical AND) or disjunctive (logical OR) combination of the
event flags. The event is signaled when all (AND) or at least one
(OR) of the event flags are set.

Note One or more tasks can concurrently wait an event. Which
task becomes eligible depends on the operating system. For exam-
ple, some operating systems may make the first task to wait the
event eligible (FIFO), and others may make the highest-priority
task eligible. Some operating systems are configurable to choose
one scheme over the other.

Task Synchronization

Since tasks can be made to wait on an event before continuing, bi-
nary semaphores can be used as a means of Synchronizing program

Salvo User Manual Chapter 2 « RTOS Fundamentals 31

execution. Multitask synchronization is also possible — Figure 10
shows two tasks synchronizing their execution via two separate
binary semaphores.

(waiting semaphore #1 /W/v signal semaphore D
7

1

/l/» ;ignal semaphore #1 /L4/> waitingsemaphore#255
2

—»
time
Figure 10: Synchronizing Two Tasks with Event Flags

In Figure 10, binary semaphores #1 and #2 are initialized to 0 and
1, respectively. The upper task begins by waiting semaphore #1,
and is blocked [1]. The lower task begins running [2], and when it
is ready to wait for the upper task it signals semaphore #1 [3] and
then waits semaphore #2 [4], and is blocked [5] since it was initial-
ized to 0. The upper task then begins running [6] since semaphore
#1 was signaled, and when it is ready to wait for the lower task it
signals semaphore #2 [7] and then waits semaphore #1, and is
blocked [1]. This continues indefinitely. Listing 9 shows the pseu-
docode for this example.

initialize binary semaphore #1 to O;
initialize binary semaphore #2 to 1;

Upper Task()
{

while (1) {
/* wait for LowerTask() */
wai t binary semaphore #1;
do stuff;
signal binary semaphore #2;
}
}

Lower Task()

while (1) {
do stuff;
signal binary semaphore #1;
/* wait for UpperTask() */
wai t binary semaphore #2;

Listing 9: Task Synchronization with Binary
Semaphores

32 Chapter 2 « RTOS Fundamentals Salvo User Manual

Resources

Salvo User Manual

Semaphores can also be used to manage resources via mutual ex-
clusion. The resource is available if the binary semaphore is 1, and
is not available if it is 0. A task that wishes to use the resources
must acquire it by successfully waiting the binary semaphore.
Once it has acquired the resource, the binary semaphore is 0, and
therefore any other tasks wishing to use the resource must wait un-
til it is released (by signaling the binary semaphore) by the task
that has acquired the resource.

initialize binary semaphore to 1;
TaskUpdat eTi meDat e()
while (1) {

prepare tine & date string;

wai t binary semaphore;

wite tine & date string to display;
si gnal binary semaphore;

}
}

TaskShowAl ert ()

while (1) {
wai t binary semaphore;
wite alert string to display;
signal binary semaphore;

}
}

Listing 10: Using a Binary Semaphore to Control Access
to a Resource

In Listing 10 a binary semaphore is used to control access to a
shared resource, a display (e.g. an LCD). In order to enable access
to it, the semaphore must be initialized to 1. A task wishing to
write to the display must acquire the resource by waiting the sema-
phore. If the resource is not available, the task will be blocked until
the resource is released. After acquiring the resource and writing to
the display, the task must then release the semaphore by signaling
it.

Resources can also be controlled with counting semaphores. In this
case, the value of the counting semaphore represents how many of
the resources are available for use. A common example is that of a
ring buffer. A ring buffer has space for melements, and elements
are added to and removed from it by different parts of an applica-
tion. Figure 11 shows a scheme to transmit character strings via

Chapter 2 « RTOS Fundamentals 33

34

RS-232 using a counting semaphore to control access to a ring
bufter.

TxISR
T ring buffer signals
of size m semaphore s
from to RS-232
application transmitter
task
. Sem
walits
semaphore 3 m

Figure 11: Using a Counting Semaphore to Implement a
Ring Buffer

In Figure 11 a counting semaphore is initialized to m[1] to repre-
sent the number of spaces available in the empty ring buffer [2].
The ring buffer is filled at its tail!> by the task [3] and emptied
from its head by the ISR [4]. Before adding a character to the
buffer the task must wait the semaphore. If it is blocked, it means
that the buffer is full and cannot accept any more characters. If the
buffer is not full, the semaphore is decremented, the task places the
character at the tail of the buffer and increments the tail pointer.
Once there are characters in the buffer!®, for each character the Tx
ISR will remove it from the buffer, transmit it and increment the
semaphore by signaling it. The corresponding pseudocode is
shown!7 in Listing 11.

initialize counting semaphore to m
TaskFi | | TxBuffer()

while (1) {
wai t semaphore;
pl ace char at TxBuff[tail pointer];
increnent tail pointer;
}
}

| SRTxChar ()

send char at TxBuff[head pointer] out RS-232;
i ncrenent head pointer;
si gnal senaphore;

15 The tail pointer points to the next available free space for insertion into the

ring buffer. The head pointer points to the first available element for removal
from the ring buffer.
16

17

This is usually signified by enabling transmit interrupts.

The control of Tx interrupts, which varies based on transmitter configurations,
is not shown.

Chapter 2 « RTOS Fundamentals Salvo User Manual

Messages

Salvo User Manual

Listing 11: Using a Counting Semaphore to Control
Access to a Resource

By using a task to fill the ring buffer, the application need not poll
the buffer's status at regular intervals to determine when to insert
new characters. Nor does the application need to wait in a loop for
room to insert characters into the buffer. If only part of a string is
inserted before the task is blocked (i.e. the string is larger than the
available room in the buffer), the task will automatically resume
inserting additional characters each time the ISR signals the count-
ing semaphore. If the application sends strings infrequently, a low
task priority will probably suffice. Otherwise a high task priority
may be necessary.

Note The RAM required for the semaphore that is used to man-
age a resource is separate from the RAM allocated to the resource
itself. The RTOS allocates memory for the semaphore — the user
must allocate memory for the resource. In this example, 8-bit
counting semaphores limit the size of the ring buffer to 256 charac-
ters. The semaphore will require one byte of RAM irrespective of
the actual (user-declared) size of the ring buffer itself.

Messages provide a means of sending arbitrary information to a
task. The information might be a number, a string, an array, a func-
tion, a pointer or anything else. Every message in a system can be
different, as long as both the sender and the recipient of the par-
ticular message understand its contents. Even the type of message
can even change from one message to the next, as long as the
sender and recipient are aware of this! As with semaphores, the
operating system provides the means to create, signal and wait
messages.

In order to provide general-purpose message contents, when a
message is sent and received, the actual content of the message is
not the information itself, but rather a pointer to the information. A
pointer is another word for the address (or location) of the infor-
mation, i.e. it tells where to find the information. The message's
recipient then uses the pointer to obtain the information contained
in the message. This is called dereferencing the pointer.!$

18 In C, &is the address of operator, and * is the unary operator for indirection.

Therefore if var is a variable and p points to it, then p=&var and *p is equal
tovar.

Chapter 2 « RTOS Fundamentals 35

36

If a message is initialized to be empty, it contains a null pointer. A
null pointer is a pointer with a value of 0. By convention, a null
pointer doesn't point to anything; therefore it carries no other in-
formation with it. A null pointer cannot be dereferenced.

Signaling (i.e. sending) a message is more complex than signaling
a semaphore. That's because the operating system's message-
signaling function requires a message pointer as an argument. The
pointer passed to the function must correctly point to the informa-
tion you wish to send in the message. This pointer is normally non-
zero, and is illustrated in Figure 12.

39Bh
i /Msg \

39Dh

39Eh
2

—|wn|oD|~

39Fh
3A0h
3Alh

olels|—

1

Figure 12: Signaling a Message with a Pointer to the
Message's Contents

In Figure 12, a C-language character string!® [1] is sent in a mes-
sage [2] by signaling the message with a pointer. The string resides
at a particular physical address. The message does not contain the
first character of the string — it contains the address of the first
character of the string (i.e. a pointer to the string), and the pointer's
value is 39Ah. The pseudocode for sending this message is shown
in Listing 12.

string[] = "testing";
p = address(string);
signal nmessage with p;

Listing 12: Signaling a Message with a Pointer

To receive a message's contents, a task must wait the message. The
task will be blocked until the message arrives. The task then ex-
tracts the contents of the message (i.e. the pointer) and uses the
pointer in whatever manner it chooses. In Listing 13, the receiving
task capitalizes the string that the message points to.

TaskCaps()

while (1) {
wait nessage containing string pointer p;

19 In C, character strings end with the NUL character (\ 0").

Chapter 2 « RTOS Fundamentals Salvo User Manual

Message Queues

while ((p) is not null) { 20
if ("a' <= (p) <="'2")
(p) = (p) - 32
i ncrement p;

}
}
}

Listing 13: Receiving a Message and Operating on its
Contents

A message can contain at most one item of information (i.e. a
pointer) at a time. If the message is empty, it can be signaled. If it's
full, the message cannot be sent.

Messages can be used like binary semaphores. A message contain-
ing a null pointer is equivalent to a binary semaphore of value 0,
and a message containing a non-zero pointer is equivalent to a bi-
nary semaphore of value 1. This is useful if binary semaphores are
not explicitly supported by the RTOS.

Message queues are an extension of messages. A message queue
can contain multiple messages (up to a predetermined number) at
any time. Sending messages can continue until the message mail-
box is full. A task that waits the message queue will receive mes-
sages until the message queue is empty.

An RTOS will need to allocate some additional RAM to manage
each message queue. This RAM will be used to keep track of the
number of messages in the message queue, and the order in which
the messages exist in the message queue.

Summary of Task and Event Interaction

Salvo User Manual

Here is a summary of the rules governing the interaction of tasks
and events (i.e. semaphores, messages and message queues).

* + An events must be initialized. It is initialized
without any waiting tasks.

* A task cannot wait an event until the event has
been initialized.

e« Multiple tasks can wait a single event.

* A task can only wait one event at a time.

20 "(pointer)" is pseudocode for "what is pointed to by the pointer."

Chapter 2 « RTOS Fundamentals 37

Conflicts

Deadlock

38

* « A semaphore's value can range from O to its
maximum value, depending on its size.

* + A message contains a pointer to some
information.

* « Message queues can hold multiple messages at
once.

* + An ISR, a task or other background code can
signal an event.

* +Only a task can wait an event.

» A task will be blocked (i.e. it will change to
the waiting state) if the event it waits is not
available.

* + Which waiting task becomes eligible when an
event is signaled is dependent on how the
operating system implements event services.

e [fan event has already been signaled, no task
is waiting it, and it is signaled again, then either
an error has occurred or the signaling task can
be blocked. This is dependent on how the
operating system implements event services.

A variety of conflicts may occur within a multitasking environ-
ment. They are described below.

Deadlock occurs with two or more tasks when each task is waiting
for a resource controlled by another task. Since all of the affected
tasks are waiting, there is no opportunity for any of the resources
to become available. Therefore all the tasks will be deadlocked, i.e.
they will wait indefinitely.

The solution is for all tasks wishing to acquire the resources to

* e+ always acquire the resources in a
predetermined order,

* e acquire all the resources before continuing,
and

* e release the resources in the opposite order.

Alternatively, by using a timeout one can break a deadlock. When
attempting to acquire the resource, an optional time period can be

Chapter 2 « RTOS Fundamentals Salvo User Manual

Priority Inversions

specified. If the resource is not acquired within that time period,
the task continues, but with an error code that indicates that it
timed out waiting for the resource. Special error handling may then
be invoked.

Priority inversions occur when a high-priority task is waiting for a
resource controlled by a low-priority task. The high-priority task
must wait until the low-priority task releases the resource, where-
upon it can continue. As a result, the priority of the high-priority
task is effectively reduced to that of the low-priority task.

There are a variety of ways to avoid this problem (e.g. priority in-
heritance), most of which involve dynamically changing the prior-
ity of a task that controls a resource based on the priority of tasks
wishing to acquire the resource.

RTOS Performance

The code to implement a multitasking RTOS may be larger than
what's required in a superloop implementation. That's because each
task requires a few extra instructions to be compatible with the
scheduler. Even so, a multitasking application is likely to have
much better performance and be more responsive than one with a
superloop. That's because a well-written RTOS can take advantage
of the fact that tasks that are not running often need not consume
any processing power at all. This means that instead of spending
instruction cycles testing flags, checking counters and polling for
events, your multitasking application makes the most of the proc-
essor's power by using it directly where you need it most — on the
highest-priority task that's eligible to run.

A Real-World Example

Salvo User Manual

Let's look at an interesting example application — the controller for
a remote soda-can vending machine. It must indicate (via LEDs on
the buttons) if any selections are empty, handle the insertion of
coins and bills, properly interpret the customer's selection, release
the right item to the customer, and make change properly. A mod-
ern, microprocessor-controlled vending machine might also regu-
late internal temperatures (e.g. for soda cans), be connected to a
network to relay out-of-stock information to a remote location, and
be tied into a security system to deter vandalism. And of course all

Chapter 2 « RTOS Fundamentals 39

of this has to be done without error regardless of how many unpre-
dictable things the customer does in the quest to quench his or her
hunger or thirst.

The Conventional Superloop Approach

40

The refrigerated, vandal-resistant vending machine in our example
has a user interface consisting of an array of item-selection buttons
and slots for bills and coins. The main loop for a pseudo-code ver-
sion of a traditional superloop implementation might look like this:

Initialize();
do forever

{
Cont rol Tenps() ;

ShowEnpti es();
Accept Currency() ;

fl agSel ecti onGood = FALSE;
ReadBut t ons() ;

if (flagSel ecti onGood) {
Rel easeltem();
MakeChange() ;

}

if (Tilt()) {
Cal |l Police();

}
}

Listing 14: Vending Machine Superloop

where some ISRs (not shown) are employed to do things like de-
bounce the button presses. Listing 14 also shows neither the indi-
vidual functions (e.g. Rel easelten()) nor the global variables
required to pass information between the functions, e.g. between
ReadBut t ons() and Rel easel ten().

Let's examine Listing 14 in more detail. In the superloop we call
Control Tenps() once each time through the loop. On an 8-bit,
8MHz processor likely to be used in such an application, we might
expect Cont r ol Tenps() to be called once every 200 microseconds
when there's no user activity. This is a huge waste of processing
power, as we know that we really only need to call it once a min-
ute. We're calling Cont rol Tenps() 5,000 times more often than
necessary! While this may be acceptable in a vending machine, it's
unlikely to be in a more demanding application.

Chapter 2 « RTOS Fundamentals Salvo User Manual

One approach to fixing this would be to dedicate a periodic inter-
rupt to set a globally visible bit every second. Then we could check
this bit and call Cont r ol Tenps() when the bit is set high. This ap-
proach isn't too clever, because we're still doing an operation (test-
ing the bit) every 200 microseconds. Another approach would be
to move Control Tenps() completely into an ISR that's called
every second, but that's ill-advised, especially if Cont r ol Tenps()
is a large and complex function.

In our example, Rel easel t en() will run only when money's in the
machine and a button has been pressed. In other words, it's waiting
for an event — an event characterized by the presence of the proper
amount of money AND a valid selection button being pressed.

As illustrated in Listing 14, foreground / background superloop
software designs puts most of the required processing in a single
main loop that the processor executes over and over again. Exter-
nal events and time-critical processing are handled in the fore-
ground via ISRs. Note that no single operation in the superloop has
priority over any other. The execution of the functions proceeds in
a rigidly serial manner, with the use of many hierarchical loops.
When adding more functionality to a system like this, the main
loop is likely to grow larger and slower, perhaps more ISRs will be
needed, and system complexity will increase in your attempt to
keep everything working as a whole.

For instance, in the above example there's no way for the customer
to cancel a purchase. How would you modify the code to handle
this additional requirement? You could write an expanded state
machine to handle various scenarios, or use lots of timer interrupts
to control how often various functions can run. But do you think
someone else would understand what you wrote? Or even you, two
years from now?

The Event-Driven RTOS Approach

Salvo User Manual

If we start to talk about understanding, modifying and maintaining
foreground / background code of moderate to severe complexity, it
loses its appeal. That's because there are no clear relationships
among the various functions in the superloop, nor between the
functions and the flag variables, nor between the ISRs and the su-
per loop. Let's try a different, task- and event-based approach.

Here's a list of tasks we can identify from the example above:

Chapter 2 « RTOS Fundamentals 41

42

* + Monitor and control internal temperature —
Cont rol Tenps()

e+ Display empty bins via LEDs —
ShowEnpt i es()

e+ Accept or reject currency, and total it —
Accept Currency()

e+ Debounce and read buttons — ReadBut t ons()
* + Make change — MakeChange()

e« Release selected item to customer —
Rel easeltem()

e« Attempt to protect the vending machine from
vandalism — Cal | Pol i ce()

Let's examine each of these tasks in a little more detail. We'll look
at how important each one is, from 1 (most important) to 10 (least
important), and when each task should run.

Cont rol Tenps() is obviously important, as we want to keep the
sodas cool. But it probably doesn't have to run more often than,
say, once a minute, to accurately monitor and be able to control the
temperature. We'll give it a priority of 4.

ShowEnpti es() isn't too important. Moreover, the status of the
empty bins only changes each time an item is released to the cus-
tomer. So we'll give it a priority of 8, and we'd like it to run ini-
tially and once for every time an item is released.

ReadBut t ons() should have a reasonably high priority so that
there's no noticeable lag when the customer presses the machine's
buttons. Since button presses are completely asynchronous, we
want to test the array of buttons regularly for activity. Let's give it
a priority of 3, and run it every 40 milliseconds.

Since Accept Currency() is also part of the user interface, we'll
give it the same priority as ReadBut t ons() and we'll run it every
20 milliseconds.

The machine's manufacturer does not consider MakeChange() to
be all that important, so we'll give it a priority of 10. We'll link it to
Rel easel t en(), since change must be made only after the selected
item is delivered to the customer.

Rel easel ten() is interesting because we only need it once the

proper amount of money has been accepted and an item button is
pressed. To respond quickly we'll give it a priority of 2, and we'd

Chapter 2 « RTOS Fundamentals Salvo User Manual

like it to run when the above combination of money and button
press occurs.

The machine's manufacturer makes a big point of how vandal-
resistant it is. It's even capable of detecting an attack (through
built-in tilt sensors) and calling the local security service. We'll
give Cal | Pol i ce() the highest priority of 1, and we'll check the
tilt sensors every 2 seconds for an attack.

Step By Step
Our vending machine example requires seven tasks with six differ-

ent priorities, and a timer resolution of 20ms. To create this multi-
tasking application from these functions, we'll need to:

e e initialize the operating system,

* +modify the structure of the tasks so as to be
compatible with the operating system and the
events,

* e create prioritized tasks from the task functions,

* ¢ link the real-world events to events that the
operating system understands,

e e create a system timer to keep track of elapsed
time,

» e start the various tasks and

* e« begin multitasking.

Initializing the Operating System

Initializing the operating system is usually straightforward, e.g.

InitializeMultitasking();

This creates the necessary (empty) structures the operating system
will use to manage task execution and events. At this point all of
the system's tasks are in the uninitialized / destroyed state.

Structuring the Tasks

The tasks written for a multitasking application look similar to
those written for a superloop application. The big difference lies in
the overall program structure. The multitasking tasks are not con-
tained in any loops or larger functions — they're all independent

Salvo User Manual Chapter 2 « RTOS Fundamentals 43

Prioritizing the Tasks

44

functions. Rel easel ten(), which releases an item once a set of
conditions has been met, might look like this in pseudocode:

Rel easeltem()
{

do forever {
Wi t For Message(messageSel ection, item;

Rel ease(item;

}
}

Listing 15: Task Version of Releaseltem()

In Listing 15 Rel easel t en{) waits forever for a (particular) mes-
sage and does nothing until the message arrives. While it's waiting
for the message to arrive, Rel easel t em() is in the waiting state.
When the message is sent, Rel easel ten() becomes eligible to
run, and when it runs, it extracts the contents of the message (in
this case, a code for the desired item, e.g. "B3") and releases it to
the customer. Rel easel ten() is not inside any larger loop, nor is
it called by any other functions (except indirectly by the scheduler,
below).

Cal | Pol i ce() has a similar "stand-alone" look to it:

Cal | Pol i ce()
{

do forever {
Del ay(1000);

if (Tilt()) {
SendMsgToPol i ceHY) ;

}
}
}

Listing 16: Task Version of CallPolice()

Cal | Poli ce() enters an infinite loop where it delays itself for
1000 x 20ms, or 2 seconds, and then sends a message to the police
headquarters if the vending machine's tilt sensors detect an attack.
It repeats this sequence indefinitely. While delayed, Cal | Pol i ce()
is in the delayed state.

An operating system call assigns a priority to a task, and prepares
the task for multitasking. For example,

Chapter 2 « RTOS Fundamentals Salvo User Manual

Cr eat eTask(ShowEnpties(), 8)
Listing 17: Prioritizing a Task

tells the operating system that it should give ShowEnpti es() a pri-
ority of 8 and add it to the tasks whose execution it will manage.
ShowEnpt i es() is now in the stopped state.

Interfacing with Events

In Listing 15, Rel easel ten() is using a message to handle an
event — namely the release of an item. That message needs to be
initialized:

Creat eEvent (nessageSel ection, enpty);

Listing 18: Creating a Message Event

By initializing nessageSel ecti on to enpt y (i.e. no valid selection
has been made), Rel easel t en() will only release an item once the
required events (enough money inserted and appropriate button
pressed) have occurred.

Adding the System Timer

An RTOS needs some way to keep track of real time — this is usu-
ally provided via some sort of timer function that the application
must call at a regular, predefined rate. In this case that rate is S0Hz
or every 20ms. Calling the system timer is often accomplished
through an interrupt, e.g.:

I nterrupt Every20ns()

Syst enli mer () ;
}

Listing 19: Calling the System Timer

Starting the Tasks

Applications must create all of their tasks and events before any of
them are actually used. By providing an explicit means of starting
tasks, the RTOS enables you to manage system startup in a pre-
dictable way:

St art Task(Control Tenps());
St art Task(Showenpti es());
Start Task(Accept Currency());

Salvo User Manual Chapter 2 « RTOS Fundamentals 45

Enabling Multitasking

Putting It All Together

St art Task(ReadBut t ons()) ;
St art Task(MakeChange()) ;
St art Task(Rel easeltenm());
Start Task(Cal | Police());

Listing 20: Starting all Tasks

Since multitasking has not yet started, the order in which tasks are
started is immaterial and is not in any way dependent on their
priorities. At this point all of the tasks are in the eligible state.

Once everything is in place, events have been initialized and the
tasks have been started (i.e. they are all ready to execute), multi-

tasking can begin:

StartMul titasking();

Listing 21: Multitasking Begins

The scheduler will take the eligible task with the highest priority
and run it — i.e. that task will be in the running state. From now on,
the scheduler will ensure that the highest-priority task is the only

one running at any time.

Listing 22 is a complete listing of the task- and event-driven vend-

ing machine application in pseudocode:

#i ncl ude "operatingsystem h"

extern AlertPoliceHQ)
extern ButtonPressed()
extern Displ ayltenCount s()
extern InterpretSel ection()
extern NewCoi nsOrBills()
extern PriceOr ()

ext ern ReadDesiredTenp()
ext ern Refund()

ext ern Rel easeToCust oner ()
extern Set Act ual Temp()
extern Tilt()

Cont r ol Tenps()

do forever {
Del ay(500);

ReadAct ual Termp() ;
Set Desi redTenmp() ;

Chapter 2 « RTOS Fundamentals

Salvo User Manual

Salvo User Manual

ShowEnpt i es()
Di spl ayl t enCount s();

do forever {
Wi t For Semaphor e(semaphor el t enRel eased) ;

Di spl ayl t enCount s();

}
}

Accept Currency()
{

do forever {
Del ay(1);

noney += NewCoi nsOrBills();

}
}

ReadBut t ons()
{

do forever {
Del ay(2);

button = ButtonPressed();
if (button) {
item= InterpretSel ection(button);
Si gnal Message(nmessageSel ection, item;

}

MakeChange()
{

do forever {
Wi t For Message(messageCent sLeft Over, change);

Ref und(change) ;

}
}

Rel easeltem()
{

Cr eat eEvent (semaphor el t enRel eased, 0);
Cr eat eEvent (nessageCent sLeft Over, enpty);

do forever {
Wi t For Message(messageSel ection, item;

Chapter 2 « RTOS Fundamentals 47

if (money >= PriceO(item) {
Rel easeToCust omer (itenj;
Si gnal Semaphor e(semaphor el t enRel eased) ;
Si gnal Message(nmessageCent sLeft Over,
noney - PriceO(item);
money = 0;

Cal | Police()
{

do forever {
Del ay(1000);

if (Tilt()) {
Al ert PoliceHQ);

}
}
}

I nterrupt Every20ns()

{
Syst enli ner () ;

}

mai n()

{
money = 0;
InitializeMultitasking();

Cr eat eTask(Cont rol Tenps(), 4)

Cr eat eTask(ShowEnpti es(), 8)
Creat eTask(Accept Currency(), 3)
Cr eat eTask(ReadBut t ons(), 3)
Cr eat eTask(MakeChange(), 10)
Creat eTask(Rel easeltemn(), 2)
Creat eTask(Cal |l Police(), 1)

Creat eEvent (nessageSel ection, enpty);

St art Task(Control Tenps());
St art Task(Showenpti es());

St art Task(Accept Currency());
St art Task(ReadBut tons());

St art Task(MakeChange()) ;
Start Task(Rel easeltem());

Chapter 2 « RTOS Fundamentals Salvo User Manual

Start Task(Cal | Police());

StartMul titasking();
}

Listing 22: RTOS-based Vending Machine

The RTOS Difference

The program in Listing 22 has an entirely different structure than
the superloop one in Listing 14. Several differences are immedi-
ately apparent:

* «It's somewhat longer — this is mainly due to the
overhead of making calls to the operating
system.

* « There are clearly-defined runtime priorities
associated with each task.

e+ The tasks themselves have simple structures
and are easy to understand. Those that
communicate with other tasks or ISRs use
obvious mechanisms (e.g. semaphores and
messages) to do so. Initialization can be task-
specific.

* « The use of global variables is minimized.

e« There are no delay loops.

* «It's very easy to modify, add or delete a task
without affecting the others.

* + The overall behavior of the application is
largely dependent on the task priorities and
intertask communication.

Perhaps most importantly, the RTOS handles the complexity of the
application automatically — tasks run on a priority basis, task
switching and state changes are handled automatically, delays re-
quire a minimum of processor resources, and the mechanisms of
intertask communications are hidden from view.

There are other differences that become more apparent during run-
time. If we were to look at a timeline showing task activity, we
would see

* < Every 2 seconds Cal | Pol i ce() wakes up to
check for tampering and then returns to the
delayed state,

Salvo User Manual Chapter 2 « RTOS Fundamentals 49

50

e e+ Every second Cont rol Tenps() wakes up to
adjust the internal temperature and then returns
to the delayed state,

* +Every 40ms ReadBut t ons() wakes up to
debounce any button presses and then returns to
the delayed state,

e < Every 20ms Accept Currency() wakes up to
monitor the insertion of coins and bills and then
returns to the delayed state, and

e e+ Showenpties(), MakeChange() and
Rel easel t en({) do nothing until a valid
selection has been made, whereupon they
briefly "come to life," deliver the selected item,
refund any change and show full/empty item
statuses, respectively, before returning to the
waiting state.

In other words, for the vast majority of the time it's running, the
vending machine's microcontroller has very little to do because the
scheduler sees only delayed and waiting tasks. If the vending ma-
chine's manufacturer wanted to promote "Internet connectivity for
enhanced stock management, remote querying and higher profits"
as an additional feature, adding an extra task to transmit sales data
(e.g. which sodas are purchased at what time and date and at what
outside temperature) and run a simple web server would be as easy
as creating another task to run in addition to the ones above and
assigning it an appropriate priority.

Chapter 2 « RTOS Fundamentals Salvo User Manual

Chapter 3 « Installation

Introduction

Salvo is provided in a self-extracting executable. Each installer
will install all the files needed to build Salvo applications for the
intended target and compiler, as well as additional files like Salvo
Compiler Reference Manuals. All of the Salvo files are contained
in compressed and encrypted form within the installer.

Note This section assumes you are installing Salvo onto a PC or
PC compatible running Microsoft Windows XP. The installation
for other Windows releases is similar.

Running the Installer

Salvo User Manual

1. Launch the distribution-specific installer sal vo-
lite|tiny| SE| LE| Pro-target-version.exe on your PC. The
Welcome screen appears:

3' Salvo Pro for TI's MSP430 4.1.0-rcl Setup

Welcome to the Salvo Pro for Tl's
MSP430 Setup Wizard

This wizard will guide you through the installation of Salvo
Pro for TI's MSP430.

Salvo is Pumpkin's rovalty-free embedded RTOS, used
around the woarld in many different products, Salva's
paower ful feature set, high performance and minimal
mernory footprint make ermbedded programming easy and
efficient. Sakvo is available for 2 wide range of target
processors and embedded development tools.

With Salvo Pro, you can build Salwo applications using
standard libraries, using the Sako source code, or via
custom libraries that vou generate, Advanced configuration
options are available via source-code builds.

Click Mext to continue,

Cancel I

Figure 13: Welcome Screen

51

Note Most of the installer's screens contain Next, Back and
Cancd buttons. Click on the Back button for the previous screen.
Click on the Cancel button to abort the installation.

2. After you click on the Next button, the Salvo License Agree-
ment screen appears:

s'Saluo Pro for TI's MSP430 4.1.0-rcl Setup

PU M P K I N License Agreement
Please review the license terms before installing Salva Pro for

PORISTIe TI's MSP430 4,1.0-rcl.

Press Page Down o see the rest of the agreement.

Pumpkin Salvo =
Software License
Agreement v1.2

I

If you accept the terms of the agreement, click 1 Agree to continue, You must accept the
agreement to install Salvo Pro for TI's MSP430 4.1.0-rcl.

Burmpkit, Ine. Salvorprosmespdais A O-riliee | A 1A S0F | S S6E H]

< Back | I Agree I Cancel]

Figure 14: Salvo License Agreement Screen

This screen contains the Pumpkin Salvo License Agreement. Read
this agreement carefully. This document is included in the Salvo
folder once the installation is complete. You must accept the terms
of the License in order to continue installing Salvo. To accept the
License, click on the | Agree button. If you do not accept the Li-
cense, click on the Cancel button and return the software.2!

3. The Choose Components screen appears:

21 Instructions on returning the software are contained in the License and in the
User’s Manual.

Chapter 3 « Installation Salvo User Manual

Salvo User Manual

@ salvo Pro for TI's MSP430 4.1.0-rcl Setup

PU M P K l N Choose Components

Choose which features of Salvo Pro for TI's MSP430 4.1.0-rcl
T you want to install,

Check the components vou want 1o install and uncheck the components you don't want to
install. Click Mext o continue,

Select components to install: | [v] BRI EEN Plug-in
i+ [v] Salvo RA430 Plug-In

i+ [v] Salvo Core

—Diescription -

Space required: 37.9MB

(AL THELSE OVET & EarmEornent i see) s

Purmpkit, Ihc, Rl S e S e

< Back i Mext = I Cancel l

Figure 15: Choose Components Screen

Normally you should leave these selections at their default values.
The components typically include the Salvo core (i.e. all the com-
piler- and target-independent components of Salvo), as well as
compiler- and target-specific files.

Tip A description of the contents and function of each individu-
ally selectable component is available by expanding the tree and
positioning the mouse over the component of interest.

This screen provides an elegant way of restoring individual Salvo
components without doing a complete re-install. For example, if
you accidentally delete a Salvo library for a particular compiler,
you can choose to re-install just the Salvo libraries for said com-
piler via this screen.

Tip Installing components for toolsets you do not have installed
does not normally cause problems. Therefore it is recommended
that you leave all components selected (default).

4. The Choose Install Location screen appears:

Chapter 3 « Installation 53

54

@ salvo Pro for TI's MSP430 4.1.0-rcl Setup

PU M P K l N Choose Install Location

Choose the folder in which to install Salvo Pro for TI's MSP430
REAL- Tl O8N TV R 4.1.D-I’El.

Setup will install Salvo Pro for T1's MSP430 4.1.0-rcl in the following folder. Ta install in a
different folder, click Browse and select another folder, Click Mext to continue,

—Destination Folder

Browese. .. I

Space required: 37.9MB
Space available: 50.5G8

Puirrpkit Ine salyo-pro-rpepda0-4 Lrclewe. 114507 SH2EERM —— L

< Back | Met = I Cancel |

Figure 16: Choose Destination Location Screen

This screen allows you to set the directory where Salvo will be in-
stalled. The installer will place several?? directories, some with
nested subdirectories, in the destination directory. You can leave
the destination directory at its default (C: \ Punpki n\ Sal vo) or you
can change it by clicking on the Browse... button and selecting a
different destination directory.

Tip In order to avoid potential compiler problems with long path-
names and spaces in path names, choosing the default path name is

recommended. Choosing a deeply nested directory (e.g.
C.\ Program Fi | es\ Punpki n\ My Pr o-

j ect s\ Programmi ng\ Tool s \ RTOS\ Sal vo\v4. 1. 0) may cause
problems with some tools due to exceedingly long pathnames for
Salvo files. Also, spaces (' ') in pathnames should be avoided as
some legacy compilers do not support them.

5. After clicking on the Next button the Choose Start Menu
Folder screen appears:

22 See Figure 20: Typical Salvo Install Directory Contents.

Chapter 3 « Installation Salvo User Manual

Salvo User Manual

@ salvo Pro for TI's MSP430 4.1.0-rcl Setup

PU M P K I N Choose Start Menu Folder

Choose a Start Menu folder for the Salvo Pro for TI's MSP430
T 4. 1.0-rcl shartouts,

Select the Start Menu falder in which you waould like to create the program's shortcuts, You
can also enter & name to create a new folder,

o Pro for TI

Abacast -
ACCessories
Administrative Tools

Adobe

Ahead Nero

Alfiurm

ATECH FLASH PRO-QXP
Atech Flash PRO-Gear XM-4U
Atmel AVR Tools

Big MSIS Test

Capture Professional v4

Chipcon LI

Purnpking Inc. salvorpro-mspds0-41 0-relexe L1/AS/0F 51202 A

< Back | Install I Cancel |

Figure 17: Choose Start Menu Folder Screen

6. Click on Install to continue. The installation begins, and ends
with the Installation Complete screen:

3' Salvo Pro for TI's MSP430 4.1.0-rcl Setup

PU M P K I N Installation Complete

Files marked as 'Skipped' were not installed because newer

TR versions already exist in the destination locations. Click Nesxt to

Completed
e e e
Extract: salvotick.c... 100% :]

Extract: salvotid.c.., 100%

Extract: salvotimer.c.,, 100%

Extract: salvoutil.c... 100%

Extract: salvoversion.c... 100%

Cutput folder: CH\PumpkintSalvoiSre

Extract: Makefile,.. 100%

Extract: Makefile2... 100%

Extract: salvotargets.mk... 100%

Create shortout; C:3Documents and SettingshadministratoriStart MenuProgramsiPu. ..
Created uninstaller: C\PumpkintSalvo'Remave Salva Pro for TI's MSP430,exe

Completed ‘_:1

Puirmpkin, Ing, salyorprostmspda-d il 0reliewe 11507 Sile6e B

= Back | Mext = I Cancel I

Figure 18: Installation Complete Screen

Chapter 3 « Installation 55

Network Installation

56

This screen lists all the files in the Salvo distribution installed to
your PC. Individual files are marked as Extract (file was installed)
or Skipped (file was skipped because a newer destination file with
the same name was detected).

Tip The output of this screen's window is scrollable via the eleva-
tor on the right.

7. Once the installation of the files is completed, click on the Next
button. You will be greeted with the Finish screen:

ﬁSaluo Pro for TI's MSP430 4.1.0-rcl Setup

Completing the Salvo Pro for Tl's
MSP430 4.1.0-rc1 Setup Wizard

Salvo Pro for TI's MSP430 has been installed on vour
Computer,

Thank vou for purchasing Salvo Pro for TI's MSP430,

Click Finish to close this Wizard,

isit http: Sfwesewe, pumpkininc.com for the latest Salvo updates

= Back | Firish I Eancel

Figure 19: Finish Screen

If you are working in a networked environment with code sharing
(e.g. for revision control) and need to install Salvo on a shared
network disk, run the installer on a Wintel PC and choose a direc-
tory on a network drive as the destination directory. You may find
it convenient to create the shortcuts in the Salvo Start Menu pro-
grams folder on each machine that is accessing Salvo over the
network.

Note Network installations must comply with the terms of the
Salvo License Agreement. See the License for more information.

Chapter 3 « Installation Salvo User Manual

Installing Salvo on non-Wintel Platforms

If you are developing Salvo applications on a non-Wintel platform,
you will still need access to a Wintel machine in order to run the
installer. The installer will place all of Salvo's files into the se-
lected destination directory (the default is C:\ Punpki n\ Sal vo),
with multiple subdirectories. You can then copy the entire subdi-
rectory to another machine via a network or a mass storage device
(e.g. Zip, Jaz, tape, etc.).

Note The Salvo License Agreement allows only one copy of the
Salvo directories per installation. You must remove the entire
Salvo directory from the Wintel machine after you have trans-
ported it to your non-Wintel development environment. See the
License for more information.

Alternatively, if you are working in a networked environment with
cross-platform file sharing, you can run the installer on a Wintel
PC and select a (remote) directory on your non-Wintel platform as
the destination directory for the installation. All of the Salvo files
will be installed to the remote directory. After the installation is
complete you may want to remove the Start Menu items from the
Wintel PC if you will not be using them.

A Completed Installation

Salvo User Manual

Your Salvo directory should look similar to this after a typical in-
stallation:

|
B Lo —[Blx]
File Edit View Favorites Tools Help ‘
+Back v = - 21| QSearch RFolders ¢4 B W X = | Ev
Address [cpumpkimEalvelLb =] 8w
Folders 2 E‘;] | Mame * Size]T pe]Modiﬁed ‘
=14 Pumpkin =] L _JIAR430-v1 File Folder 11/14/2007 16:47
: =y . |_JIAR430-v2 File Folder 11/14/2007 16:47
=] Salve Lib
1 Doc _J1AR430-v3 File Falder 11/14/2007 16:47
= E \ _J1AR430-v4 File Falder 11/14/2007 16:47
| r-:l Hample 1| select aniterm to view its CIRA430-v 1 File Folder 11/14/2007 16:47
: Ml description. _IRA430-v2 File Folder 11/14/2007 16:47
P
i mllne L]
: BaLb See also;
| ELlsc || WeDocuments !
& object(s) ([Disk free space: 50.5 GB) i 10 bytes i@ Iy CompLiter A

Figure 20: Typical Salvo Install Directory Contents
(Lib Subdirectory View)

Chapter 3 « Installation 57

Uninstalling Salvo

The setup program automatically provides an uninstaller for each
Salvo distribution. To use the uninstaller, run the appropriate Re-
move Salvo item as shown below:

|
Fle Edit View Favorites Tools Help |i
#Back v = ~ [l | Qsearch Throlders 3| W X = |Er
Address |@C:\Pumpk\m\SaIv0 LI &G0
= o | A | Name * | Size | Type | Modified
ﬁ L [1Doc File Folder 11/14/2007 17158
- DExampIe File Folder 11/14/2007 16:47
Salve e File Folder 11/14/2007 16:47
_lInc File Felder 11/14/2007 17:18
Select an item to view [ts CLib File Folder 11/14/2007 17:18
description. _1Src File Folder 11/14/2007 17:18
EPumpkin Web Site 1KB Intermet Shortcut 1171472007 17:18
See also! {Remove Salvo Pro for TI's MSP430.exe S9KB Application 11/14/2007 17:18
Iy Documents
¢ Kiahwork Dlacas |4 | _’i
5 object(s) 586 KB &y computer A

Figure 21: Location of the Uninstaller(s)

You will be greeted with a confirmation screen:

Salvo Pro for TI's MSP430 4.1.0-rcl Uninstall

@ Are ol sure yoll want to completely remarve Salvo Pra for TT's MSP430 4.1.0-rc1 and &ll of its components?

fes | [i¥ls} |

Figure 22: Confirming the Uninstall Operation

Click on the Yes button to begin uninstalling the specified Salvo
distribution:

58

Chapter 3 ¢ Installation Salvo User Manual

salvo Pro for TI's MSP430 4.1.0-r¢1 Uninstall

PU M P K [N Uninstallation Complete

Uninstall was completed successfully.

BEAL Tl SOSTWAR]

Cormpleted
Remove folder: CPumpkin\SalvoiLibhlaR430-v3Y ;!

Eemove folder: ChPumpkiniSalvoliLibhlaR430-v4Y

Eemove folder: C\PumpkiniSalvolSrciiakeilar430y,

Remove folder: CPumpkiniSalvoiInciRAa430Y

Rermaove folder: CPumpkiniSalvo\SroiRad30y

Eemove folder: ChPumpkiniSalvoiLib\Rad30-v1Y

Remove folder: CHPumpkiniSalvoiLib\RAa430-v2Y

Remove folder: CAPumpkin\SalvolSroiake R ad30y,

Eemove folder: CAPUumpkiniSalvoiinc,

Delete file: CPumpkiniSalvoiRemove Salvo Pro for TI's MSP430.log
Delete file: CPumpkiniSalvoiRemove Salva Pro for TI's MSP430.exe

Completed EI

=
i

Purmpkin, Inc, salvorpro-rspdEn-4 1 0-relexe . 1171507
= Bach | Close I Cancel |

Figure 23: Uninstallation Complete Screen

Finally, the uninstaller will display the following screen upon suc-
cessfully removing the specified Salvo distribution from your PC:

3' Salvo Pro for TI's MSP430 4.1.0-rcl Uninstall

@ Salvo Pro for Tl's MSP430 4. 1.0-rc 1 was successfully removed from yolr computer.

Figure 24: Uninstall Complete Screen

Click on the OK button to finish uninstalling Salvo.

Note The uninstaller will not remove any non-Salvo files in
Salvo directories, nor will it delete any non-empty directories. If,
after a Salvo uninstallation, files and/or directories still exist in the
Salvo tree, you are advised to inspect those directories and delete
the files and/or directories as required.

Uninstalling Salvo on non-Wintel Machines

If you are using Salvo on another platform (e.g. Linux), simply de-
lete the Salvo destination directory and all of its subdirectories.

Salvo User Manual Chapter 3 « Installation 59

Installations with Multiple Salvo Distributions

Installer Behavior

The Salvo installer is designed to support multiple Salvo distribu-
tions of different types all in one directory (usually
C: \ Punpki n\ Sal vo).23 For example, you could have Salvo Lite for
TI's MSP430 as well as Salvo Pro for 8051 family installed to-
gether in C: \ Punpki n\ Sal vo.

The Salvo installers replace files shared across all of the distribu-
tions only when the files to be installed are newer than the existing
ones. When installed, a shared file is generally made read-only.
Shared files include the target-independent Salvo header file and
source files. Files that are unique to a distribution (e.g. project files
and Salvo libraries) are always installed, i.e. overwritten by the
installer.

Installing Multiple Salvo Distributions

Normally, no extra precautions are required when installing addi-
tional Salvo distributions onto a PC containing one or more exist-
ing Salvo distributions. By virtue of the installer's behavior, only
the latest shared files should remain on the PC after each installer
has finished.

Uninstalling with Multiple Salvo Distributions

Since an uninstaller will remove shared files, it is necessary to
uninstall all of the Salvo distributions on the PC, and then re-install
the desired ones.

Copying Salvo Files

60

Salvo users are strongly discouraged from copying any of Salvo's
shared files to locations outside of the files' normal installation di-
rectories. Having duplicate Salvo files can lead to unpredictable
behavior, and can greatly complicate debugging.

23 Asof Salvo v3.2.2.

Chapter 3 « Installation Salvo User Manual

Users with revision control systems who wish to add Salvo to their
file repositories can do so by adding them in-place, and by retriev-
ing them from a single source (e.g. a file server).

Modifying Salvo Files

Salvo User Manual

Modifying Salvo's shared files can also lead to unpredictable be-
havior, and is therefore strongly discouraged. Generally speaking,
only Salvo Pro users should modify Salvo's shared files, and only
when a problem with the file(s) has been officially announced, and
a solution provided. Once an updated Salvo distribution is avail-
able, it should automatically replace the modified file with an up-
dated one.

Chapter 3 « Installation 61

62

Chapter 3 ¢ Installation

Salvo User Manual

Chapter 4 « Tutorial

Introduction

In this chapter we'll use a two-part, step-by-step tutorial to help
you create a Salvo application from scratch. The first part is an in-
troduction to using Salvo to write a multitasking program in C. In
the second part we'll compile it to a working application.

Part 1. Writing a Salvo Application

Let's create a multitasking Salvo application step-by-step, intro-
ducing various concepts and Salvo features as we go. We'll start
with a minimal application in C and build on it. We'll explain the
purpose and use of each new Salvo feature, and describe in-depth
what's happening in the application.

Tip Each one of the C listings below is provided as a complete
application in the Punpki n\ Sal vo\ Exanpl e\ .\ Tut\ Tut5 direc-
tory of each Salvo distribution, complete with projects, source
code and executables. You may find them useful to gain more in-
sight into their operation.

Tutl: Initializing Salvo and Starting to Multitask

Salvo User Manual

Each working Salvo application is a combination of calls to Salvo
user services and application-specific code. Let's start using Salvo
by creating a multitasking application.

A minimal Salvo application is shown in Listing 23.

#i ncl ude "main. h"
#i ncl ude <sal vo. h>

int main(void)
{
Init();
CSlnit();

while (1) {

63

0SInit()

OSSched()

In Depth

64

GSSched() ;

}
}

Listing 23: A Minimal Salvo Application

This elementary program calls two Salvo user services whose
function prototypes are declared in sal vo. h. GSInit() is called
once, and OSSched() is called over and over again from within an
infinite loop.

Tip These tutorials utilize awhile (1) { } construct in C to cre-
ate an infinite loop. The for (;;) { } anddo { } while (1)
constructs are functionally equivalent in terms of creating an infi-
nite loop. All three are interchangeable for this puirpose.

Tip All user-callable Salvo functions are prefixed by "Os" or
U%_".

Note The Init() function in mai n() is provided for device ini-
tialization.?* It and the header file mai n. h have nothing to do with
the Salvo code per se, but are provided for completeness.

CSl ni t () initializes all of Salvo's data structures, pointers and
counters, and must be called before any other calls to Salvo func-
tions. Failing to call OSI ni t () first before any other Salvo routines
may result in unpredictable behavior.

OSSched() is Salvo's multitasking scheduler. Only tasks which are
in the eligible state can run, and each call to OSSched() results in
the most eligible task running until the next context switch within
that task. In order for multitasking to continue, OSSched() must be
called repeatedly.

Tip In order to make best use of your processor's call ... return
stack (whether hardware- or software-based), you should call GSS-
ched() directly from mai n().

Since there are no tasks eligible to run, the scheduler in Listing 23
has very little to do.

24 E.g. oscillator select and digital I/O crossbar select on Cygnal C8051F005
single-chip microcontroller.

Chapter 4 « Tutorial Salvo User Manual

Tut2: Creating, Starting and Switching tasks

Salvo User Manual

Multitasking requires eligible tasks that the scheduler can run. A
multitasking Salvo application with two tasks is shown in Listing
24,

#i ncl ude "main. h"
#i ncl ude <sal vo. h>

voi d TaskA(void)

while (1) {
OS Yield();
}
}

voi d TaskB(void)

while (1) {
OS Yield();
}
}

int main(void)

{
nit();

CSlnit();

OSCr eat eTask(TaskA, OSTCBP(1), 10);
OSCr eat eTask(TaskB, OSTCBP(2), 10);

while (1) {
OSSched() ;
}
}

Listing 24: A Multitasking Salvo Application with two
Tasks

TaskA() and TaskB() do nothing but run and context switch over
and over again. Since they both have the same priority (10), they
run one after the other, continuously, separated by trips through the
scheduler.

In order for multitasking to function properly, a running task must
return control to the scheduler. This occurs via a context switch (or
task switch) inside the task. Because it is designed to work without
a stack, Salvo only supports context switching at the task level.

Warning A Salvo context switch at a call ... return level below
that of the task (e.g. within a subroutine called by the task) will
cause unpredictable behavior.

Chapter 4 « Tutorial 65

0S_Yield()

OSCreateTask()

66

To multitask in Salvo, you must create and start tasks. Tasks are
functions that consist of an optional initialization / preamble fol-
lowed by an infinite loop containing at least one context switch.
Salvo tasks cannot take any parameters. When the task is created
via OSCr eat eTask(), you explicitly assign an unused task control
block (tcb) to it and it is placed in the stopped state. A task can be
created in many parts of your program. Tasks are often created
prior to the start of multitasking, but they may also be created af-
terwards.

In order for a task to be able to run, it must be in the eligible state.
OSSt art Task() can make a stopped task eligible. However, in the
interest of keeping the Salvo code size small, OSCr eat eTask()
automatically starts the task that it has created.25> Therefore a sub-
sequent call to OSSt art Task() is unnecessary if a Salvo task has
been created normally. Once a task is made eligible, it will run by
the scheduler as soon as it becomes the most eligible task, i.e. the
eligible task with the highest priority.

Tip When a group of eligible tasks all share the same priority,
they will execute one after the other in a round-robin fashion.

A stopped task can be started in many parts of your program.
Tasks can only be started after they are created. A task may be
started after multitasking begins.

Every task must context-switch at least once. OS_Yield() is
Salvo's unconditional context switcher. A common place to find
OS_Yi el d() would be at the bottom of, but still within, a task's
infinite loop.

Note All Salvo user services with conditional or unconditional
context switches are prefixed by "0s_".

To create a task, call OSCreat eTask() with a task starting ad-
dress,?¢ a tcb pointer and a priority as parameters. The starting ad-
dress is usually the start of the task, specified by the task's name.
Each task needs its own, unique tcb. The tcb contains all of the in-
formation Salvo needs to manage a task, like its start/resume ad-
dress, state, priority, etc. There are OSTASKS tcbs available for use,
numbered from 1 to OSTASKS. The Salvo OSTCBP() macro is a

25 Optionally, the task can be left in the stopped state by using

OSDONT_START_TASK.

26 InC, thisis equivalent to the name of the task (function).

Chapter 4 « Tutorial Salvo User Manual

In Depth

Salvo User Manual

shorthanded?” way of specifying a pointer to a particular Salvo tcb,
e.g. OSTCBP(2) is a pointer to the second tcb. The task priority is
between 0 (highest) and 15 (lowest), and need not be unique to the
task. Once created, a task is in the stopped state.

The default behavior for OSCr eat eTask() is to also start the Salvo
task with the specified tcb pointer by making it eligible. It may be
a while before the task actually runs, depending on the priority of
the task, the states of any higher-priority tasks, and when the
scheduler will run again.

Tip Many Salvo services return error codes that you can use to
detect problems in your application. See Chapter 7 « Reference for
more information.

Listing 24 illustrates some of the basic concepts of an RTOS —
tasks, task scheduling, task priorities and context switching. Tasks
are functions with a particular structure — infinite loops are com-
monly used. A task will run whenever it is the most eligible task,
and the scheduler decides which task is eligible based on the task
priorities. Since Salvo is a cooperative RTOS, each task must re-
linquish control back to the scheduler or else no other tasks will
have a chance to run. In this example, this is accomplished via
0S_Yiel d(). In the following examples, we'll use other context
switchers in place of OS_Yi el d() .

While it's perhaps not immediately apparent, Listing 24 also illus-
trates another basic RTOS concept — that of the task state. In Salvo,
all tasks start out as destroyed — this is the state of an uninitialized
task. Creating a task changes its state to stopped, and starting a task
makes it eligible — i.e. it is now in the eligible state. When the task
is actually executing it's said to be running. In this example, after
being created and started, each task alternates between eligible and
running over and over again. And there's a short time period during
iteration of the main f or () loop where neither task is running, i.e.
they're both eligible — that's when the scheduler is running.

Task scheduling in Salvo follows two very simple rules: First,
whichever task has the highest priority will run the next time the
scheduler is called. Second, all tasks with the same priority will
run in a round-robin manner as long as they are the most eligible
tasks. This means that they will run one after the other until they
have all run, and then the cycle repeats itself.

27 gOst cbArea[n- 1] is the longhanded way.

Chapter 4 « Tutorial 67

Tut3: Adding Functionality to Tasks

68

Listing 25 shows a multitasking application with two tasks that do
more than just context switch. We'll use more descriptive task
names this time.

#i ncl ude "main. h"
#i ncl ude <sal vo. h>

unsi gned int counter;
voi d TaskCount (void)

while (1) {
count er ++;

os Yield():
}
}

voi d TaskShow(void)
I nit PORT();

while (1) {
PORT = (PORT & ~OxFE)| ((counter >> 8) & OxFE);

OS Yield();
}
}

int main(void)

{
Init();

oslnit();

OSCr eat eTask(TaskCount, OSTCBP(1), 10);
OSCr eat eTask(TaskShow, OSTCBP(2), 10);

counter = O;

while (1) {
OSSched() ;
}
}

Listing 25: Multitasking with two Non-trivial Tasks

The two tasks in Listing 25 run independently of each other, and
they both access a shared global variable, a 16-bit counter. The
counter is initialized*® before multitasking begins. The first task

28 Strictly speaking, this initialization is unnecessary, as all ANSI compilers will
set count er to 0 before mai n() .

Chapter 4 « Tutorial Salvo User Manual

In Depth

Salvo User Manual

increments the counter every time it has a chance to run. The other
task takes the counter and outputs the upper 7 bits to an 8-bit port
(PORT) with 8 LEDs connected to it. This goes on indefinitely.

Note Since Salvo is a cooperative RTOS, only one task can ac-
cess the global variable count er at a time in this example.

In Listing 25, neither task actually runs until multitasking begins
with the call to the Salvo scheduler. Each time OSSched() is
called, it determines which task is most eligible to run, and trans-
fers program execution to that particular task. Since both tasks
have the same priority, and are equally eligible to run, it is up to
Salvo to decide which task will run first.

In this particular example, TaskCount () will run first.2? It will
start by incrementing the counter, and will then context-switch via
0S_Yi el d() . This macro will make a note of where program exe-
cution is in TaskCount () (it's at the end of the for () loop), and
then return program execution to the scheduler. The scheduler then
examines TaskCount () to see if it's still eligible to continue run-
ning. In this case it is, because we made no changes to it, so it will
run again when it becomes the most eligible task.

The scheduler finishes its work, and is then called again because
it's in an infinite for () loop. This time, because Salvo round-
robins tasks of equal priority, the scheduler decides that Task-
Show() is the most eligible task, and makes it run. First, PORT is
configured as an output port and initialized.3® Then TaskShow()
enters its infinite loop for the first time, PORT is initialized to 0x00
(the counter is now 0x0001), and once again OS_Yi el d() returns
program execution to the scheduler after noting where to "return
to" in TaskShow() . TaskShow() also remains eligible to run again.

After finishing its work, the scheduler is now called for the third
time. Once again, TaskCount () is the most eligible task, and so it
runs again. But this time it resumes execution where we last left it,
i.e. at the end of the f or () loop. Since it's an infinite loop, execu-
tion resumes at the top of the loop. TaskCount () increments the
counter, and relinquishes control back to the scheduler.

29
30

Because it was started first, and both tasks have the same priority.

In this example, each pin on I/O port PORT can be configured as an input or as
an output. At power-up, all pins are configured as inputs, hence the need to
configure them as outputs via I ni t PORT() .l ni t PORT() also sets the 8-bit
I/O port's initial value to 0x00.

Chapter 4 « Tutorial 69

The next time the scheduler is called, TaskShow() resumes where
it left off, goes to the top of its for () loop, writes to PORT, and
yields back to the scheduler. This entire process of resuming a task
where it left off, running the task, and returning control back to the
scheduler is repeated indefinitely, with each task running alter-
nately with every call to the scheduler.

When the program in Listing 25 runs, it gives the outward appear-
ance of two separate things occurring simultaneously. Both tasks
are free-running, i.e. the faster the processor, the faster they'll run.
A counter appears to be incremented and sent to a port simultane-
ously. Yet we know that two separate tasks are involved, so we
refer to this program as a multitasking application. It's not very
powerful yet, and its functionality could be duplicated in many
other ways. But as we add to this application we'll see that using
Salvo will allow us to manage an increasingly sophisticated system
with a minimal coding effort, and we'll be able to maximize the
system's performance, too.

Tut4: Using Events for Better Performance

70

The previous example did not use one of an RTOS' most powerful
tools — intertask communications. It's also wasting processing
power, since TaskShow() runs continuously, but PORT changes
only once in every 512 calls to TaskCount (). Let's use intertask
communication to make more efficient use of our processing
power.

Listing 26 is shown below. We've used some #def i ne preproces-
sor directives to improve legibility.

#i ncl ude "mai n. h"
#i ncl ude <sal vo. h>

#defi ne TASK_COUNT_P OSTCBP(1) /* task #1 */
#def i ne TASK SHOW P OSTCBP(2) /* task #2 */
#def i ne PRI O_COUNT 10 /* task priorities*/
#defi ne PRI O_SHOW 0 /* " */

#def i ne Bl NSEM_UPDATE_PORT_P OSECBP(1) /* bi nsem
#1 */

unsi gned int counter;
voi d TaskCount (void)

while (1) {
count er ++;

if (!(counter & Ox01FF)) {

Chapter 4 « Tutorial Salvo User Manual

OSCreateBinSem()

Salvo User Manual

OSSi gnal Bi nSen(Bl NSEM_UPDATE_PORT _P) ;

}
Cs_Yiel d();
}
voi d TaskShow(void)
| ni t PORT() ;
while (1) {

OS_Wai t Bi nSen(Bl NSEM_UPDATE_PORT_P,
OSNO_TI MEQUT) ;

PORT = (PORT & ~OxFE)| ((counter >> 8) & OxFE);

}
}
int main(void)
{
Init();
GSlnit();
OSCr eat eTask(TaskCount ,
TASK_COUNT_P, PRI O _CQUNT) ;
OSCr eat eTask(TaskShow,
TASK_SHOW P, PRI O _SHOW ;
OSCr eat eBi nSen(Bl NSEM_UPDATE_PORT_P, 0);
counter = 0O;
while (1) {
GSSched() ;
}
}

Listing 26: Multitasking with an Event

In Listing 26 we communicate between two tasks in order to up-
date the port only when an update is required. We'll use a binary
semaphore to represent this event. We initialize it to 0, meaning
the event has not yet occurred. TaskCount () signals the binary
semaphore whenever the upper 7 bits of the counter change. Task-
Show() waits for the event to occur, and then copies the upper 7
bits of the counter to PORT.

OSCr eat eBi nSen() creates a binary semaphore with the specified
ecb pointer and initial value. A binary semaphore is created with-
out any tasks waiting for it. A binary semaphore must be created
before it can be signaled or waited.

Chapter 4 « Tutorial 71

OSSignalBinSem()

OS_WaitBinSem()

In Depth

12

A binary semaphore is signaled via OSSi gnal Bi nSenq() . If no task
is waiting the binary semaphore, then it is simply incremented. If
one or more tasks are waiting the binary semaphore, then the high-
est-priority waiting task is made eligible after signaling the binary
semaphore.

A task will wait a binary semaphore until the binary semaphore is
signaled. If the binary semaphore is zero when the tasks waits it,
then the task switches to the waiting state and returns through the
scheduler. It will keep waiting for the binary semaphore until the
binary semaphore is signaled and the task is the highest-priority
task waiting for the binary semaphore. That's because more than
one task can wait for a particular event.

If, on the other hand, the binary semaphore is 1 when the task
waits it, then the binary semaphore is reset to 0 and the task con-
tinues its execution without context switching.

Tip The "0s_" prefix in OS_Wai t Bi nSen() should remind you
that a context switch will unconditionally occur in every call to
OS_Wai t Bi nSent(), regardless of the value of the binary sema-
phore. If the binSem is set (i.e. equal to 1) and the task is the high-
est-priority eligible task, then execution will continue in the task. If
not, execution in the task will resume at a later time when both of
these conditions are met.

Tip You must always specify a timeout3! when waiting a binary
semaphore via OS_Wai t Bi nSen() . If you want the task to wait for-
ever for the binary semaphore to be signaled, use the predefined
value OSNO_TI MEQOUT.

Note In this example, OS_WaitBi nSen() is used in place of
0S_Yi el d(). In fact, the macro OS_Wai t Bi nSen() includes a call
to OS_Yi el d(). You do not need to call OS_Yi el d() when using a
conditional context switcher like OS_Wai t Bi nSem() — it does it for
you.

In order to improve the performance of our application, we'd like
to update PORT only when the counter's upper 7 bits change. To do
this we will use a signaling mechanism between the two tasks,
called a binary semaphore. Here, the binary semaphore is a flag

31 The timeout parameter is required regardless of whether or not your

application is built with Salvo code (source files or libraries) that supports
timeouts. This makes it possible to rebuild applications for timeouts without
any user source code changes.

Chapter 4 « Tutorial Salvo User Manual

Salvo User Manual

that's initialized to zero to mean that there's no need to update the
port. When the binary semaphore is signaled, i.e. it is set to a value
of 1, it means that a PORT update is required.

Inter-task communication is achieved by using the binary sema-
phore to alert the waiting task (in this case, TaskShow()) that a
PORT update is required. This is done in TaskCount () by calling
GSSi gnal Bi nSen() with the parameter being a pointer to the bi-
nary semaphore, and by having TaskShow() wait the binary sema-
phore.

Note TaskCount () does not know which task(s) is(are) waiting
on the binary semaphore, and TaskShow() does not know how the
binary semaphore is signaled.

The first time TaskShow() runs through the scheduler it calls
OS_Wai t Bi nSent() . Since the binary semaphore was initialized to
zero, TaskShow() yields control back to the scheduler and changes
its state from eligible to waiting. Now there is only one eligible
task, TaskCount (), and the scheduler runs it repeatedly.

When TaskCount () finally signals the binary semaphore, Task-
Show() is made eligible again and will run once TaskCount () re-
turns through the scheduler. After all, since the counter's upper 7
bits change only every 512 calls to TaskCount (), there's no point
in running it more often than that. By using a binary semaphore,
TaskShow() runs only when it needs to update PORT. The rest of
the time, it is waiting and does not consume any processing power
(instruction cycles).

The performance of this application is roughly twice as good (i.e.
the counter increments at twice the speed) as that of Listing 25.
That's because a waiting task consumes no processor power what-
soever while it waits — recall that the scheduler only runs tasks that
are eligible. Since TaskShow() is waiting for the binary semaphore
over 97% of the time,>? it runs only on the rare occasion that the
counter's upper byte has changed. The rest of the time, the sched-
uler is running TaskCount () .

It should be apparent that the calls to OS_Wai t Bi nSen() and OS-
Si gnal Bi nSen() above implement some powerful functionality.
In this example, these Salvo event services control when Task-
Show() will run by using a binary semaphore for intertask commu-
nications. Here the binary semaphore is a simple flag (1 bit of

32 Measured on Test System A.

Chapter 4 « Tutorial 73

information). Salvo supports the use of binary and counting sema-
phores, as well as other mechanisms, to pass more information
(e.g. a count, or a pointer) from one task to another.

Listing 26 is a complete Salvo program — nothing is missing.
There's nothing "running in the background", nothing checking to
see if a waiting task should be made eligible, etc. In other words,
there's no polling going on — all of Salvo's actions are event-driven,
which contributes to its high performance. TaskShow() goes from
waiting to eligible in the call to OSSi gnal Bi nSent(), and from
running to waiting via OS_Wi t Bi nSen() . With Salvo, you have
complete control over what the processor is doing at any one time,
and so you can optimize your program's performance without un-
wanted interference from the RTOS.

Tut5: Delaying a Task

74

One thing missing from the previous example is any notion of real-
time performance — it just runs “open loop”. If we add other tasks
of equal or higher priority to the application, the rate at which the
counter increments will decline. Let's look at how an RTOS can
provide real-time performance by adding a task that runs at 2Hz,
regardless of what the rest of the system is doing. We'll do this by
repetitively delaying a task.

Being able to delay a task for a specified time period can be a very
useful feature. A task will remain in the delayed state, ineligible to
run, until the delay time specified has expired. It's up to the kernel
to monitor delays and return a delayed task to the eligible state.

The application in Listing 27 blinks the LED on the least signifi-
cant bit of PORT at 1Hz by creating and running a task which de-
lays itself 500ms after toggling the port bit, and does this
repeatedly. This program is located in Punp-
ki n\ Sal vo\ Exanpl e\ ..\ Tut\ Tut 5 in every Salvo distribution.

#i ncl ude "mai n. h"
#i ncl ude <sal vo. h>

#defi ne TASK _COUNT_P OSTCBP(1) /* task #1 */
#def i ne TASK _SHOW P OSTCBP(2) [/* "" #2 */
#define TASK BLINK P OSTCBP(3) /* "" #3 */
#def i ne PRI O _COUNT 10 /* task priorities*/
#defi ne PRI O_SHOW 0 /> " */
#define PRI O BLINK 2 f/x "¢ */

#defi ne Bl NSEM _UPDATE_PORT_P OSECBP(1) /* binSem
#1 */

Chapter 4 « Tutorial Salvo User Manual

Salvo User Manual

unsi gned int counter;
voi d TaskCount (void)

while (1) {
count er ++;

if (!'(counter & Ox01FF)) {
GSSi gnal Bi nSen{ Bl NSEM_UPDATE_PORT_P) ;

}

oS Yield():
}
}

voi d TaskShow(void)

while (1) {
OS_W4i t Bi nSen(Bl NSEM_UPDATE_PORT_P,
OSNO_TI MEQUT) ;

PORT = (PORT & ~OxFE)| ((counter >> 8) & OxFE);

}
}

voi d TaskBlink(void)

{
I nit PORT();

while (1) {
PORT ~= 0x01;

OS_Del ay(50);
}
}

void main(void)
{
Init();
CSlnit();
OSCr eat eTask(TaskCount ,
TASK_COUNT_P, PRI O _COUNT);
OSCr eat eTask(TaskShow,
TASK_SHOW P, PRI O_SHOW ;

OSCr eat eTask(TaskBl i nk,
TASK_BLINK_P, PRI O BLI NK);

OSCr eat eBi nSen(Bl NSEM_UPDATE_PORT_P, 0);
counter = O;
enabl e_interrupts();

while (1) {
GSSched() ;

Chapter 4 « Tutorial 75

OSTimer()

76

Listing 27: Multitasking with a Delay

Additionally, interrupts are required to call OSTi ner () at the de-

sired system tick rate of 100Hz. The code to do this is located in
the source file tut5 sr.c that acconpanies the pro-

j ect . An example for the PIC16 is shown below:33

#i ncl ude <sal vo. h>

#define TMRO_RELOAD 156 /* for 100Hz ints @4Miz
*/

void interrupt IntVector(void)

if (TOIE & TOIF) {
TOIF = 0;
TMRO -= TMRO_RELOAD;

CSTiner () ;
}
}

Listing 28: Calling OSTimer() at the System Tick Rate

In order to use delays in a Salvo application, you must add the
Salvo system timer to it. In the above example we've added a 10ms
system timer by calling OSTi mer () at a periodic rate of approxi-
mately 100Hz. The periodic rate is derived by a timer overflow,
which causes an interrupt. Interrupts must be enabled in order for
OSTi mer () to be called — hence the call to enabl e_i nterrupt s()
just prior to starting multitasking. Since delays are specified in
units of the system tick rate, the blink task is delayed by 50*10ms,
or 500ms.

In order to use Salvo delay services, you must call OSTi mer () at a
regular rate. This is usually done with a periodic interrupt. The rate
at which your application calls OSTi mer () will determine the reso-
lution of delays. If the periodic interrupt occurs every 10ms, by
calling OSTi ner () from within the ISR you will have a system tick
period of 10ms, or a rate of 100Hz. With a tick rate defined, you
can specify delays to a resolution of one timer tick period, e.g. de-
lays of 10ms, 20ms, ... 1s, 2s, ... are possible.

Note Salvo's timer features are highly configurable, with delays
of up to 32 bits of system ticks, and with an optional prescalar.

33 Intvect or () is also used in tutorial # 6, below. | nt Vect or () (and hence

the contents of t ut 5_i sr. c) are target- and compiler-specific.

Chapter 4 « Tutorial Salvo User Manual

0S_Delay()

In Depth

Salvo User Manual

Consult Chapter 5 « Configuration and Chapter 6 ¢ Frequently
Asked Questions (FAQ) for more information.

With OSTi mer () in place and called repetitively at the system tick
rate, you can now delay a task by replacing OS_Yi el d() with a call
to OS_Del ay(), which will force the context switch and delay the
task for the number of system ticks specified. The task will auto-
matically become eligible once the specified delay has expired.

In Listing 27, each time TaskBlink() runs, it delays itself by
500ms and enters the delayed state upon returning to the scheduler.
When TaskBl i nk()'s delay expires 500ms later it is automatically
made eligible again, and will run after the current (running) task
context-switches. That's because TaskBl i nk() has a higher prior-
ity than either TaskCount () or TaskShow(). By making Task-
Bli nk() the highest-priority task in our application, we are
guaranteed a minimum of delay (latency) between the expiration of
the delay timer and when TaskBl i nk() toggles bit 0 of PORT.
Therefore TaskBlink() will run every 500ms with minimal la-
tency, irrespective of what the other tasks are doing.

Tip If TaskBl i nk() had the same priority as TaskCount () and
TaskShow(), it would occasionally remain eligible (and would not
run) while both TaskCount () and TaskShow() ran before it. Its
maximum latency would increase. If TaskBlink() had a lower
priority, it would never run at all.

The initialization of PORT was moved to TaskBl i nk() because of
TaskBl i nk()'s priority. It will be the first task to run, and there-
fore PORT will be initialized as an output before TaskShow() runs
for the first time.

Salvo monitors delayed tasks once per call to OSTi mer (), and the
overhead is independent of the number of delayed tasks.34

This illustrates that the system timer is useful for a variety of rea-
sons. A single processor resource (e.g. a periodic interrupt) can be
used in conjunction with OSTi mer () to delay an unlimited number
of tasks. More importantly, delayed tasks consume only a very
small amount of processing power while they are delayed, much
less than running tasks.

34 Except when one or more task delays expire simultaneously.

Chapter 4 « Tutorial 77

Signaling from Multiple Tasks

78

A multitasking approach to programming delivers real benefits
when priorities are put to good use and program functionality is
clearly delineated along task lines.

Review the code in Listing 29 to see what happens when we lower
the priority of the always-running task, TaskCount (), and have
TaskShow() handle all writes to PORT. This program is located in
Punpki n\ Sal vo\ tut\t u6\ mai n. c.

#i ncl ude "mai n. h"
#i ncl ude <sal vo. h>

#define TASK _COUNT_P OSTCBP(1) /* task #1 */
#def i ne TASK _SHOW P OsTCBP(2) [/* "" #2 */
#define TASK BLINK P OSTCBP(3) /* "" #3 */
#def i ne PRI O _COUNT 12 /* task priorities*/
#defi ne PRI O_SHOW 0 /> " */
#define PRI O BLINK 2 f/x "¢ */

#defi ne MSG_UPDATE PORT_P OSECBP(1) /* sem#1 */
unsi gned int counter;

char CODE_B
char CODE_C

B
‘-

voi d TaskCount (void)
{

counter = O;

while (1) {
count er ++;

if (!(counter & Ox01FF)) {
GOSSi gnal Msg(MSG_UPDATE_PORT _P,
(OstypeMsgP) &CODE_O) ;

0S Yield();
}
}

voi d TaskShow(void)
{
OSt ypeMsgP nsgP;
I nit PORT();
while (1) {
OS_Wai t Msg(MSG_UPDATE_PORT_P, &nsgP,
OSNO_TI MEQUT) ;

if (*(char *)nmsgP == CODE_C) {
PORT = (PORT & ~OxFE)| ((counter >> 8)&0xFE);

Chapter 4 « Tutorial Salvo User Manual

el se {
PORT ~= 0x01;
}
}
}

voi d TaskBlink(void)

{
CStypeErr err;

while (1) {
OS_Del ay(50);

err = OSSi gnal Msg(MSG_UPDATE_PORT_P,
(OstypeMsgP) &CODE_B);

if (err == OSERR_EVENT_FULL) {
0S_Set Pri o(PRI O_SHOM1) ;
GSSi gnal Msg(MSG_UPDATE_PORT_P,
(CstypeMsgP) &CODE B);
0SSet Pri o(PRI O_BLI NK) ;

}
}
}

void main(void)
Init();
CSlnit();

OSCr eat eTask(TaskCount ,
TASK_COUNT_P, PRI O _CQOUNT) ;

OSCr eat eTask(TaskShow,
TASK_SHOW P, PRI O_SHOW ;

OSCr eat eTask(TaskBl i nk,
TASK_BLI NK, PRI O BLI NK) ;

OSCr eat eMsg(MSG_UPDATE_PORT_P, (OstypeMsgP) 0);
enabl e_interrupts();

while (1) {
GSSched() ;
}
}

Listing 29: Signaling from Multiple Tasks

In Listing 29 we've made two changes to the previous program.
First, TaskShow() now handles all writes to PORT. Both Task-
Count () and TaskBl i nk() send a unique message to TaskShow()
(the character ‘C' for "count" or ‘B' for "blink", respectively)
which it then interprets to either show the counter on the port or

Salvo User Manual Chapter 4 « Tutorial 79

OSCreateMsg()

OSSignalMsg()

OS_WaitMsg()

OS_SetPrio()

OSSetPrio()

In Depth

80

toggle the least significant bit of the port. Second, we've lowered
the priority of TaskCount () by creating it with a lower priority.

OSCr eat eMsg() is used to initialize a message. Salvo has a defined
type for messages, and requires that you initialize the message
properly. A message is created without any tasks waiting for it. A
message must be created before it can be signaled or waited.

Note Salvo services require that you interface your code using
predefined types, e.g. OStypeMsgP for message pointers. You
should use Salvo's predefined types wherever possible. See
Chapter 7 » Reference for more information on Salvo's predefined

types.

In order to signal a message with OSSi gnal Msg() , you must spec-
ify both a ecb pointer and a pointer to the message contents. If no
task is waiting the message, then the message gets the pointer,
unless the message is already defined, in which case an error has
occurred. If one or more tasks are waiting the message, then the
highest-priority waiting task is made eligible. You must correctly
typecast the message pointer so that it can be dereferenced prop-
erly by whichever tasks wait the message.

A task waits a message via OS_Wai t Msg(). The message is re-
turned to the task through a message pointer. In order to extract the
contents of the message, you must dereference the pointer with a
typecast matching what the message pointer is pointing to.

A task can change its priority and context-switch immediately
thereafter using OS_Set Pri o() .

A task can change its priority using OSSet Pri o() . The new prior-
ity will take effect as soon as the task yields to the scheduler.

TaskShow() is now the only task writing to PORT. A single mes-
sage is all that is required to pass unique information from two dif-
ferent tasks (which run at entirely different rates) to TaskShow() .
In this case, the message is a pointer to a 1-byte constant. Since
messages contain pointers, casting and proper dereferencing are
required to send and receive the intended information in the mes-
sage.

In Listing 29, the following scenario is possible: Immediately after
TaskCount () signals the message, TaskBl i nk()'s delay expires
and TaskBl i nk() is made eligible to run. Since TaskBl i nk() has
the highest priority, the message will still be present when Task-

Chapter 4 « Tutorial Salvo User Manual

Wrapping Up

Salvo User Manual

Bl i nk() signals the message. Therefore OSSi gnal Msg() will re-
turn an error. The LED's PORT pin will fail to toggle ...

This example illustrates the use of return values for Salvo services.
By testing for the abovementioned error condition, we can guaran-
tee the proper results by temporarily lowering TaskBl i nk()'s pri-
ority and yielding to the scheduler before signaling the message
again. TaskShow() will temporarily be the highest-priority task,
and it will "claim" the message. As long as TaskCount () does not
signal messages faster than once every three context switches, this
solution remains a robust one.3’

In a more sophisticated application, e.g. a car's electronics, one can
imagine TaskShow() being replaced with a task that drives a
dashboard display divided into distinct regions. Four tasks would
monitor information (e.g. rpm, speed, oil pressure and water tem-
perature) and would pass it on by signaling a message whenever a
parameter changed. TaskShow() would wait for this message.
Each message would indicate where to display the parameter, what
color(s) to use (e.g. red on overtemperature) and the parameter's
new value. Since visual displays generally have low refresh rates,
TaskShow() could run at a lower priority than the sending tasks.
These tasks would run at higher priority so as to process the infor-
mation they are sampling without undue interference from the slow
display task. For example, the oil-pressure-monitoring task might
run at the highest priority, since a loss of oil pressure means certain
engine destruction. By having the display functionality in a task
instead of in a callable function, you can fine-tune the performance
of your program by assigning an appropriate priority to each of the
tasks involved.

By lowering TaskCount () 's priority we've changed the behavior of
our application. PORT updates now take precedence over the
counter incrementing. This means that PORT updates will occur
sooner after the message is signaled. The counter now increments
only when there's nothing else to do. You can dramatically and
predictably alter the behavior of your program by changing just the
priority when creating a task.

As a Salvo user you do not have to worry about scheduling, tasks
states, event management or intertask communication. Salvo han-

35 An alternative solution to this problem would be to use a message queue with

room for two messages in it.

Chapter 4 « Tutorial 81

Food For Thought

dles all of that for you automatically and efficiently. You need only
create and use the tasks and events in the proper manner to get all
of this functionality, and more.

Note Chapter 7 « Reference contains working examples with
commented C source code for every Salvo user service. Refer to
them for more information on how to use tasks and events.

Now that you're writing code with task- and event-based structures
like the ones Salvo provides, you may find it useful or even neces-
sary to change the way you approach new programs. Instead of
worrying about how many processor resources, ISRs, global vari-
ables and clock cycles your application will require, focus instead
on the tasks at hand, their priorities and purposes, your applica-
tion's timing requirements and what events drive its overall behav-
ior. Then put it all together with properly prioritized tasks that use
events to control their execution and to communicate inside your
program.

Part 2: Building a Salvo Application

Note If you have not done so already, please follow the instruc-
tions in Chapter 3 ¢ Installation to install all of Salvo's components
onto your computer. You may also find it useful to refer to
Chapter 5 « Configuration and Chapter 7 « Reference for more in-
formation on some of the topics mentioned below. Lastly, you
should review the Salvo Application Note that covers building ap-
plications with your compiler. Refer to your compiler's Salvo
Compiler Reference Manual for particulars.

Now that you are familiar with how to write a Salvo application,
it's time to build an executable program. Below you will find gen-
eral instructions on building a Salvo application.

Working Environment

82

Salvo is distributed as a collection of source code files, object files,
library files and other support files. Since all source code is pro-
vided in Salvo Pro, Salvo can be compiled on many development
platforms. You will need to be proficient with your editor / com-

Chapter 4 « Tutorial Salvo User Manual

piler / integrated development environment (IDE) in order to suc-
cessfully compile a Salvo application.

You should be familiar with the concepts of including a file inside
another file, compiling a file, linking one or more files, working
with libraries, creating an executable program, viewing the debug-
ging output of your compiler, and placing your program into mem-

ory.

Please refer to your editor's / compiler's / IDE's documentation on
how to include files into source code, compile source code, link to
separate object modules, and compile and link to libraries.

Many IDEs support an automatic make-type utility. You will
probably find this very useful when working with Salvo. If you do
not have a make utility, you may want to investigate obtaining one.
Both commercial and freeware / shareware make utilities exist, for
command-line hosts (e.g. DOS) and Windows 95 /98 / 2000 / NT.

Creating a Project Directory

Salvo User Manual

In creating an application with Salvo you'll include Salvo source
files in your own source code, and you'll probably also link to
Salvo object files or Salvo libraries. We strongly recommend that
you do not modify any Salvo files directly,3¢ nor should you dupli-
cate any Salvo files unnecessarily. Unless you intend to make
changes to the Salvo source code, you should not change any of
Salvo's files.

By creating a working directory for each new Salvo application
you write, you'll be able to:

* e+ minimize hard disk usage,

* e+ manage your files better,

* e+ make changes to one application without
affecting any others, and

e compile unique versions of Salvo libraries for
different projects.

Note Complete projects for certain tutorial programs can be
found in Punpki n\ Sal vo\ Tut .

36 Salvo source files are installed as read-only.

Chapter 4 « Tutorial 83

Including salvo.h

Salvo's main header file, sal vo. h, must be included in each of
your source files that use Salvo. You can do this by inserting

#i ncl ude <sal vo. h>

into each of your source files that calls Salvo services. You may
also need to configure your development tools to add Salvo's home
directory (usually C:\ Punpki n\ Sal vo) to your tools' system in-
clude path — see Setting Search Paths, below.

Note Using

#i ncl ude "sal vo. h"

1s not recommended.

Tip If you include a project header file (e.g. mypr oj ect . h) in all
of your source files, you may want to include sal vo. h in it.

Including sal vo. h will automatically include your project-
specific version of sal vocf g. h (see Setting Configuration Options,
below). You should not include sal vocf g. h in any of your source
files — just including sal vo. h is enough.

Note sal vo. h has a built-in "include guard" which will prevent
problems when multiple references to include sal vo. h are con-
tained in a single source file.

Configuring your Compiler

Setting Search Paths

84

In order to successfully compile your Salvo application you must
configure your compiler for use with the Salvo source files and
libraries. You have several options available to you when combin-
ing your code with the Salvo source code in order to build an ap-
plication.

First, you must specify the appropriate search paths so that the
compiler can find the necessary Salvo include (*. h) and source
(*. c) files.

Chapter 4 « Tutorial Salvo User Manual

Tip All of Salvo's supported compilers support explicit search
paths. Therefore you should never copy Salvo files from their
source directories to your project directory in order to have the
compiler find them by virtue of the fact that it's in the current di-
rectory.

At the very least, your compiler will need to know where to find
the following files:

* esalvo. h, located in Punpki n\ Sal vo\i nc

e esalvocfg. h, located in your current project
directory

You may also need to specify the Salvo source file directory
(Punpki n\ Sal vo\ Src) if you have Salvo Pro and plan to include
Salvo source files in your own source files (see below).

Using Libraries vs. Using Source Files

Using Libraries

Salvo User Manual

Different methods for incorporating Salvo into your application are
outlined below. Linking to Salvo libraries is the simplest method,
but has limitations. Including the Salvo source files in your project
is the most flexible method, but isn't as simple, and requires Salvo
Pro. Creating custom Salvo libraries from the source files is for
advanced Salvo Pro users.

Tip You may find Figure 25: Salvo Library Build Overview and
Figure 26: Salvo Source-Code Build Overview useful in
understanding the process of building a Salvo application.

Just like a C compiler's library functions — e.g. rand() in the stan-
dard library (stdlib.h) or printf() in the standard I/O library
(st di 0. h) — Salvo has functions (called user services) contained in
libraries. Unlike a compiler's library functions, Salvo's user ser-
vices are highly configurable — i.e. their behavior can be controlled
based on the functionality you desire in your application. Each
Salvo library contains user functions compiled for a particular set
of configuration options. There are many different Salvo libraries.

Note Configuration options are compile-time tools used to con-
figure Salvo's source code and generate libraries. Therefore the

Chapter 4 « Tutorial 85

Using Source Files

Setting Configuration

86

functionality of a precompiled library cannot be changed through
configuration options. To change a library's functionality, it must
be regenerated (i.e. re-compiled) with Salvo Pro and new configu-
ration options.

In order to facilitate getting started, all Salvo distributions contain
libraries with most of Salvo's functionality already included. As a
beginner, you should start by using the libraries to build your ap-
plications. This way, you don't have to concern yourself with the
myriad of configuration options.

Tip The easiest and quickest way to create a working application
is to link your source code to the appropriate Salvo library. The
compiler-specific Salvo Application Notes describe in detail how
to create applications for each compiler.

Complete library-based projects for all the tutorial programs can be
found in Punpki n\ Sal vo\tut\tul-tu6. See Appendix C ¢ File
and Program Descriptions for more information.

Salvo is configurable primarily to minimize the size of the user
services and thus conserve ROM. Also, its configurability aids in
minimizing RAM usage. Without it, Salvo's user services and vari-
ables might be too large to be of any use in many applications. All
of this has its advantages and disadvantages — on the one hand, you
can fine-tune Salvo to use just the right amount of ROM and RAM
in your application. On the other hand, it can be a challenge learn-
ing how all the different configuration options work.

There are some instances where it's better to create your applica-
tion by adding the Salvo source files as nodes to your project.
When you use this method, you can change configuration options
and re-build the application to have those changes take effect in the
Salvo source code. Only Salvo Pro includes source files. The rest
of this chapter covers this approach.

Options

Salvo is highly configurable. You'll need to create and use a con-
figuration file, sal vocf g. h, for each new application you write.
This simple text file is used to select Salvo's compile-time configu-
ration options, which affect things like how many tasks and events

Chapter 4 « Tutorial Salvo User Manual

your application can use. All configuration options have default
values — most of them may be acceptable to your application.

Note Whenever you redefine a configuration option in sal -
vocf g. h, you must recompile all of the Salvo source files in your
application.

The examples below assume that you are creating and editing sal -
vocf g. h via a text editor. Each configuration option is set via a C-
language #def i ne statement. For example, to configure Salvo to
support 16-bit delays, you would add

#def i ne OSBYTES_OF DELAYS 2
to your project's sal vocf g. h file. Without this particular line, this
configuration option would be automatically set to its default (in
this case, 8-bit delays).

Note The name and value of the configuration option are case-
sensitive. If you type the name incorrectly, the intended option will
be overridden by the Salvo default.

Identifying the Compiler and Target Processor

Normally, Salvo automatically detects which compiler and target
processor you are using. It does this by detecting the presence of
certain predefined symbols provided by the compiler.

Specifying the Number of Tasks

Salvo User Manual

Memory for Salvo's internal task structures is allocated at compile
time. You must specify in sal vocf g. h how many tasks you would
like supported in your application, e.g.:

#def i ne OSTASKS 4

You do not need to use all the tasks that you allocate memory for,
nor must you use their respective tcb pointers (numbered from
OSTCBP(1) to OSTCBP(OSTASKS)) consecutively. If you attempt to
reference a task for which no memory was allocated, the Salvo
user service will return a warning code.

Tip Tasks are referred to in Salvo by their tcb pointers. It's rec-
ommended that you use descriptive designations in your code to

Chapter 4 « Tutorial 87

refer to your tasks. This is most easily done by using the #def i ne
statement in your project's main header (. h) file, e.g.:

#def i ne TASK_CHECK_TEMP_P37 OSTCBP(1)
#defi ne TASK_MEAS SPEED P OSTCBP(2)
#define TASK DISP_ RPM P OSTCBP(3)

Your program will be easier to understand when calling Salvo task
services with meaningful names like these.

Specifying the Number of Events

Memory for Salvo's internal event structures is also allocated at
compile time. You must specify in sal vocf g. h how many events
you would like supported in your application, e.g.:

#def i ne OSEVENTS 3

Events include semaphores (binary and counting), messages and
message queues.

You do not need to use all the events that you allocate memory for,
nor must you use their respective ecb pointers (numbered from
OSECBP(1) to OSECBP(OSEVENTS)) consecutively. If you attempt
to reference an event for which no memory was allocated, the
Salvo user service will return a warning code.

If your application does not use events, leave OSEVENTS undefined
in your sal vocf g. h, or set it to 0.

Tip You should use descriptive names for events, too. See the tip
above on how to do this.

Specifying other Configuration Options

You may also need to specify other configuration options, depend-
ing on which of Salvo's features you plan to use in your applica-
tion. Many of Salvo's features are not available until they are
enabled via a configuration option. This is done to minimize the
size of the code that Salvo adds to your application. For small pro-
jects, a small sal vocf g. h may be adequate. For larger projects and
more complex applications, you will need to select the appropriate

37 The P suffix is there to remind you that the object is a Pointer to something.

Chapter 4 « Tutorial Salvo User Manual

configuration option(s) for all the features you wish to use. Other
configuration options include:

* -« the size of delays, counters, etc. in bytes,
* «the size of semaphores and message pointers,
and

* +memory-locating directives specific to the
compiler.

Tip If you attempt to use a Salvo feature by calling a Salvo func-
tion and your compiler issues an error message suggesting that it
can't find the function, this may be because the function has not
been enabled via a configuration option.

In a sophisticated application, some of the additional configuration
options might be:

#def i ne OSBYTES_OF_DELAYS 3
#def i ne OSTI MER_PRESCALAR 20
#def i ne OSLOC_ECB bank3

The values for the options will either be numeric constants, prede-
fined constants (e.g. TRUE and FALSE), or definitions provided for
the compiler in use (e.g. bank3, used by the HI-TECH PICC com-
piler to locate variables in a particular bank of memory).

salvocfg.h Example — Salvo's Tut5 Application

Salvo User Manual

Because the tutorial program is relatively simple, only a few con-
figuration options need to be defined in sal vocf g. h. By starting
with an empty sal vocfg. h, we begin with all configurations at
their default values.

For three tasks and one event, we'll need the following #def i ne
directives.

#defi ne OSTASKS 3
#def i ne OSEVENTS 1

Next, Punpki n\ Sal vo\ Tut\ Tut5 uses binary semaphores as a
means of intertask communications. Binary Semaphore code is

disabled by default, so we enable it with:

#def i ne OSENABLE_BI NARY_SEMAPHORES TRUE

Chapter 4 « Tutorial 89

Lastly, because we're using delays, we need to specify the size of
possible delays.

#defi ne OSBYTES_OF DELAYS 1

This configuration option must be specified because Salvo defaults
to no support for delays, which keeps RAM requirements to a
minimum. Since TaskBl i nk() delays itself for 50 system ticks, a
single byte is all that is required. With a byte for delays, each task
could delay itself for up to 255 system ticks with a single call to
0S_Del ay() .

Note The #def i nes in sal vocf g. h may appear in any order.

This four-line sal vocf g. h is typical for small- to medium-sized
programs of moderate complexity. The complete Salvo configura-
tion file for this program can be found in Punp-
ki n\ Sal vo\ Tut\ Tut 5. It is shown (with C comments removed3?)
in Listing 30.

#def i ne OSBYTES OF DELAYS 1
#def i ne OSENABLE_BI NARY SEMAPHORES TRUE
#def i ne OSEVENTS 1
#def i ne OSTASKS 3

Listing 30: salvocfg.h for Tutorial Program

Linking to Salvo Object Files

90

You can create an application by compiling and then linking your
application to some or all of Salvo's *. ¢ source files. This method
is recommended for most applications, and is compatible with
make utilities. It is relatively straightforward, but has the disadvan-
tage that your final executable may contain all of the Salvo func-
tionality contained in the linked files, regardless of whether your
application uses them or not.

Note Some compilers are capable of "smart linking" whereby
functions that are linked but not used do not make it into the final
executable. In this situation there is no downside to linking your
application to all of Salvo's source files.

38 And without the additional configuration options that match those of the

associated freeware library.

Chapter 4 « Tutorial Salvo User Manual

Salvo User Manual

Chapter 7 « Reference contains descriptions of all the Salvo user
services, and the Salvo source files that contain them. As soon as
you use a service in your code, you'll also need to link to the ap-
propriate source file. This is usually done in the compiler's IDE by
adding the Salvo source files to your project. If you use the service
without adding the file, you will get a link error when you make
your project.

The size of each compiled object module is highly dependent on
the configuration options you choose. Also, you can judiciously
choose which modules to compile and link to — for example, if
don't plan on using dynamic task priorities in your application, you
can modify sal vocf g. h appropriately and leave out pri o. c, for a
reduction in code size.

Tip The compiler-specific Salvo Application Notes describe in
detail how to create applications for each compiler.

Complete source-code-based projects for certain tutorial programs
can be found in Punpki n\ Sal vo\ Tut. See Appendix C ¢ File and
Program Descriptions for more information.

Chapter 4 « Tutorial 91

92

Chapter 4 « Tutorial

Salvo User Manual

Chapter 5 « Configuration

Introduction

The Salvo source code contains configuration options that you can
use to tailor its linkable object code to the specific needs of your
application. These options are used to identify the compiler you're
using and the processor you're compiling for, to configure Salvo
for the number of tasks and events your application will require,
and to enable or disable support for certain services. By selecting
various configuration options you can fine-tune Salvo's abilities
and performance to best match your application.

Note All configuration options are in the form of C preprocessor
#define statements. They are therefore compile-time options.
This means that they will not take effect until / unless you recom-
pile each Salvo source code file that is affected by the configura-
tion option.

The Salvo Build Process

Library Builds

Salvo User Manual

Salvo applications are typically built in one of two ways — as a li-
brary build, or as a source-code build. Understanding Salvo's build
process will aid in your understanding of how Salvo's configura-
tion options are applied.

Note See your compiler's Salvo Compiler Reference Manual and
the associated Salvo Application Note(s) for detailed information
on creating and building Salvo projects.

Source-code builds are available in all Salvo distributions.

In a library build, a Salvo application is built from user source
code (C and Assembly), from a precompiled Salvo library and
from Salvo's sal vonem c. The user C source code makes calls to
Salvo services that are contained in the Salvo library. Additionally,
Salvo's global objects (i.e. its task control blocks, etc.) are in Punp-

93

94

ki n\ Sal vo\ Src\ sal vonem c. Since the size of these objects is
dependent on the application's numbers of tasks, events, etc., it
must be re-compiled each time the project's Salvo configuration —
defined in the project's sal vocf g. h file — is changed.

Figure 25 presents an overview of the Salvo library build process.

In a library build, the configuration options in the project's sal -
vocf g. h can only affect the user C source files and Salvo's sal vo-
mem c. None of the Salvo services — contained in the Salvo library
— are affected by the configuration options in sal vocf g. h.

It is essential that the configuration options used to build the Salvo
library match those applied to the user's C source files and to sal-
vomem.c. Therefore part of the sal vocfg. h for a library build
(OSUSE_LI BRARY, OSLI BRARY_XYZ) is used to recreate the entire set
of Salvo configuration options in place when the library was com-
piled. This is done automatically for the user by defining configu-
ration options in sal vol i b. h based on the sal vocf g. h settings,
and by setting any undefined configuration options to their default
values in sal vo. h. The remaining configuration options in sal -
vocf g. h simply set the sizes of Salvo's various global objects (e.g.
the number of task control blocks). sal vocl cN. h is included in the
mix if a custom library is used.

For a successful library build, the chosen library must match the
library options specified in sal vocf g. h. See Chapter 8 « Libraries
and your compiler's Salvo Compiler Reference Manual for more
information on sal vocf g. h for library builds.

Chapter 5 « Configuration Salvo User Manual

Salvo User Manual

%B

User C Source

Files

sal vo. h

sal vocfg. h

Salvo's
salvomem.c

sal vo. h

sal vocfg. h

salvolib. h

salvolib.h

‘sal vocl cN. h‘

‘sal vocl cN. h‘

salvoXyz. h

mai n. c,

\

'

/

sal vomrem ¢

/

C Preprocessor

!

%B

User Assembly
Files

adc. asm

!

Assembler

User Salvo
Configuration
File

OSUSE_LI BRARY
OSLI BRARY_TYPE
OSLI BRARY_CONFI G

CBTASKS
CSEVENTS

sal vocfg. h

Figure 25: Salvo Library Build Overview

N\

!

Salvo Library
File

!

Salvo Application
File

mai n. hex

Chapter 5 « Configuration

Object Files Object File Object Files
mai n. obj , sal vomem obj adc. obj ,

e

sal voXyz.lib

95

Source-Code Builds

96

Source-code builds are only available in Salvo Pro distributions.

In a source-code build, a Salvo application is built from user
source code (C and Assembly) and from Salvo source code (C and
Assembly, where applicable), including Salvo's sal vomem c. The
user C source code makes calls to Salvo services that are contained
in the Salvo source code. Again, Salvo's global objects (i.e. its task
control blocks, etc.) are in \ Punpki n\ Sal vo\ Sr c\ sal vonem c. In
a source-code build, all of Salvo's source-code modules must be re-
compiled each time the project's Salvo configuration — defined in
the project's sal vocf g. h file — is changed.

Figure 26 presents an overview of the Salvo source-code build
process.

In a source-code build, the configuration options in the project's
sal vocf g. h affect the user C source files and all of Salvo's C
source files, where the desired user services are contained.

Each configuration option that the user wishes to set to a non-
default value must be defined in sal vocf g. h. All other configura-
tion options are automatically set to their default values in
sal vo. h. As in a library build, certain configuration options (e.g.
OSTASKS) set the sizes of Salvo's various global objects (e.g. the
number of task control blocks).

Chapter 5 « Configuration Salvo User Manual

i&

User C Source
Files

ﬂh

Salvo C Source
Files

sal vo. h
sal vocfg. h B B
User Assembly Salvo Assembly

sal vomem c, Files File
sal vosched. c,

\ /

C Preprocessor

sal vo. h

| sal vocfg. h L |

nain. c,

adc. asm

L N/

Assembler

T /N

sal voport Xyz. asm

Object Files Object Files Object Files Object File
mai n. obj , sal vomem obj , adc. obj , sal voport Xyz. obj

sal vosched. obj ,

NS

!

Salvo User Manual

User Salvo
Configuration
File

QSTASKS
OSEVENTS
OSBYTES_OF_DELAYS|
OSENABLE . -

OsDI SABLE . . .
QSUSE. . .

sal vocfg. h

Figure 26: Salvo Source-Code Build Overview

Salvo Application
File

mai n. hex

Chapter 5 « Configuration

97

Benefits of Different Build Types

Library builds have the advantage that all of the Salvo services are
available in the library, and the linker will add only those neces-
sary when building the application. The disadvantage is that if a
different library configuration is required, both the sal vocfg. h
and the project file must be edited to ensure a match between the
desired library and the library that linker sees.

With a source-code build, Salvo can be completely reconfigured
just by simply adding or changing entries in sal vocf g. h, and by
adding the required Salvo source files to the project.

Note Salvo Pro is required for source-code builds.

Another benefit of library builds is that rebuilding a project within
a Makefile-driven system is faster, since the library need not be
rebuilt when allowable changes (e.g. changing the number of
tasks) are made to sal vocf g. h.

Configuration Option Overview

98

This section describes the Salvo configuration options. Each de-
scription includes information on:

» « the name of the configuration option,

» « the purpose of the configuration option,

» « the allowed values for the configuration
option,

e« the default value for the configuration option,

e+ the compile-time action that results from the
configuration option,

* e related configuration options,

» e« which user services are enabled by the
configuration option,

* < how it affects memory requirements?® and

* e notes particular to the configuration option.

You can fine-tune Salvo's capabilities, performance and size by
choosing configuration options appropriate to your application.

39 ROM requirements are described as small (e.g. a few lines of code in a single

function) to considerable (e.g. a few lines of code in nearly every function).

Chapter 5 « Configuration Salvo User Manual

Note All configuration options are contained in the user file
sal vocfg. h, and should not be placed in any other file(s).
sal vocfg. h should be located in the same directory as your
application's source files. See Chapter 4 « Tutorial for more
information on sal vocf g. h.

Caution Whenever a configuration option is changed in
sal vocf g. h, you must recompile all of the Salvo files in your
application. Failing to do so may result in unpredictable behavior
or erroneous results.

Configuration Options for all Distributions

The configuration options described in this section can be used
with:

* Salvo Lite

* Salvo tiny

* Salvo SE

* Salvo LE

* Salvo Pro

* Salvo Developer

and are listed in alphabetical order.

These configuration options affect the Salvo header (*. h) files, as
well as sal vomem c.

Salvo User Manual Chapter 5 « Configuration 99

OSCOMPILER: Identify Compiler in Use

Notes

100

Name: OSCOWPI LER

Purpose: To identify the compiler you're using to
generate your Salvo application.

Allowed Values: see sal vo. h

Default Value: OSUNDEF, or automatically defined for cer-
tain compilers.

Action: Configures Salvo source code for use with
the selected compiler.

Related: OSTARGET

Enables: -

Memory Required: n/a

This configuration option is used within the Salvo source code
primarily to implement non-ANSI C directives like in-line assem-
bly instructions and #pr agma directives.

Salvo automatically detects the presence of nearly all of Salvo's
supported compilers, and sets OSCOVPI LER accordingly.*® There-
fore it is usually unnecessary to define OSCOWPILER in sal -
vocfg. h.

If you are working with an as-yet-unsupported compiler, use
OSUNDEF and refer to Chapter 10 ¢ Porting for further instructions.

40 asCOVPI LER can be overridden by setting it in sal vocf g. h.

Chapter 5 « Configuration Salvo User Manual

OSEVENTS: Set Maximum Number of Events

Name: OSEVENTS

Purpose: To allocate memory at compile time for
event control blocks (ecbs), and to set an
upper limit on the number of supported

events.

Allowed Values: 0 or greater.

Default Value: 0

Action: Configures Salvo source code to support
the desired number of events.

Related: OSENABLE_BI NARY SEMAPHORES,

OSENABLE_EVENT _FLAGS,
OSENABLE_EVENTS, OSENABLE_MESSAGES,
OSENABLE_MESSAGE. QUEUES,
OSENABLE_SEMAPHORES, OSEVENT FLAGS,
OSTASKS, OSMESSAGE. QUEUES

Enables: event-related services

Memory Required: ~ When non-zero, requires a configuration-
dependent amount of RAM for each ecb.

Notes Events (event flags, all semaphores, messages and message
queues) are numbered from 1 to OSEVENTS.

Since event memory is allocated at compile time, the ecb memory
will be used whether or not the event is actually created via OSCr e-
at eBi nSenj Ef | ag| Msg| MsgQ Sent) .

On a typical 8-bit processor, the amount of memory required by
each event is 2-4 bytes*! depending on which configuration options
are enabled.

41 For the purposes of these size estimates, pointers to ROM memory are

assumed to be 16 bits, and pointers to RAM memory are assumed to be 8 bits.
This is the situation for the PIC16 and PIC17 family of processors.

Salvo User Manual Chapter 5 « Configuration 101

OSEVENT_FLAGS: Set Maximum Number of Event Flags

Notes

102

Name: OSEVENT_FLAGS

Purpose: To allocate memory at compile time for
event flag control blocks (efcbs), and to
set an upper limit on the number of sup-
ported event flags.

Allowed Values: 1 or greater.

Default Value: 1 if OSENABLE_EVENT_FLAGS is TRUE, 0
otherwise

Action: Configures Salvo source code to support
the desired number of event flags.

Related: OSENABLE_EVENT _FLAGS, OSLOC_EFCB,

Enables: -

Memory Required: ~ When non-zero, requires a configuration-
dependent amount of RAM for each efcb.

This configuration parameter allocates RAM for event flag control
blocks. Event flags require no other additional memory.

Event flags are numbered from 1 to OSEVENT_FLAGS.

Since event flag memory is allocated at compile time, the efcb
memory will be used whether or not the event flag is actually cre-
ated via OSCr eat eEFl ag() .

On a typical 8-bit processor, the amount of memory required by

each event flag control block is represented by
OSBYTES_OF EVENT FLAGS.

Chapter 5 « Configuration Salvo User Manual

OSLIBRARY_CONFIG: Specify Precompiled Library

Configuration

Notes

See Also

Salvo User Manual

Name: OSLI BRARY_CONFI G

Purpose: To guarantee that an application's source
files are compiled using the same sal -
vocf g. h as was used to create the speci-
fied precompiled library.

Allowed Values: OSA, 0SD, OSE, OSM, CSS, OST, OSY

Default Value: not defined

Action: Sets the configuration options inside sal -
vol i b. h to match those used to generate
the library specified.

Related: OSLI BRARY_TYPE, OSLI BRARY_ GLOBALS,

OSLI BRARY_VARI ANT, OSUSE_LI BRARY
Enables: -
Memory Required: n/a

OSLI BRARY_CONFI G is used in conjunction with
OSLI BRARY_GLOBALS, OSLI BRARY OPTION, OSLI BRARY TYPE,
OSLI BRARY_VARI ANT and OSUSE_LI BRARY to properly specify the
precompiled Salvo library you're linking to your project.

Library configurations might refer to, for example, whether the
library is configured to support delays and/or events.

Please see your compiler's Salvo Compiler Reference Manual and
Chapter 8 « Libraries for complete instructions on the use of
OSLI BRARY_CONFI G.

OSUSE_LI| BRARY.

Chapter 5 « Configuration 103

OSLIBRARY_GLOBALS: Specify Memory Type for Global
Salvo Objects in Precompiled Library

Notes

See Also

104

Name: OSLI BRARY_GLOBALS

Purpose: To guarantee that an application's source
files are compiled using the same sal -
vocf g. h as was used to create the speci-
fied precompiled library.

Allowed Values: C5A ...

Default Value: not defined

Action: Sets the configuration options inside sal -
vol i b. h to match those used to generate
the library specified.

Related: OSLI BRARY_TYPE, OSLI BRARY_CONFI G,

OSLI BRARY_VARI ANT, OSUSE_LI BRARY
Enables: -
Memory Required: n/a

OSLI BRARY_GLOBALS is used in conjunction with
OSLI BRARY_CONFI G OSLI BRARY_CPTI ON, OSLI BRARY_TYPE,
OSLI BRARY_VARI ANT and OSUSE_LI BRARY to properly specify the
precompiled Salvo library you're linking to your project.

Library globals might refer to, for example, whether the library
expects Salvo's global objects to be placed in internal or external
RAM.

Please see your compiler's Salvo Compiler Reference Manual and

Chapter 8 + Libraries for complete instructions on the use of
OSLI BRARY_GLOBALS.

OSUSE_LI BRARY.

Chapter 5 « Configuration Salvo User Manual

OSLIBRARY_OPTION: Specify Precompiled Library

Option

Notes

See Also

Salvo User Manual

Name: OSLI BRARY_OPTI ON

Purpose: To guarantee that an application's source
files are compiled using the same sal -
vocf g. h as was used to create the speci-
fied precompiled library.

Allowed Values: OSA ... or OSNONE

Default Value: not defined

Action: Sets the configuration options inside sal -
vol i b. h to match those used to generate
the library specified.

Related: OSLI BRARY_CONFI G, OSLI BRARY GLOBALS,

OSLI BRARY_VARI ANT, OSUSE_LI BRARY
Enables: -
Memory Required: n/a

OSLI BRARY_OPTI ON is used in conjunction with
OSLI BRARY_CONFI G OSLI BRARY GLOBALS, OSLI BRARY TYPE,
OSLI BRARY_VARI ANT and OSUSE_LI BRARY to properly specify the
precompiled Salvo library you're linking to your project.

Library options might refer to, for example, whether the library
contains and/or supports embedded debugging information.

Please see your compiler's Salvo Compiler Reference Manual and
Chapter 8 « Libraries for complete instructions on the use of
OSLI BRARY_OPTI ON.

OSUSE_LI| BRARY.

Chapter 5 « Configuration 105

OSLIBRARY_TYPE: Specify Precompiled Library Type

Notes

See Also

106

Name: OSLI BRARY_TYPE
Purpose: To guarantee that an application's source
files are compiled using the same sal -

vocf g. h as was used to create the speci-
fied precompiled library.

Allowed Values: OSF or OSL

Default Value: not defined

Action: Sets the configuration options inside sal -
vol i b. h to match those used to generate
the library specified.

Related: OSLI BRARY_CONFI G, OSLI BRARY GLOBALS,

OSLI BRARY_VARI ANT, OSUSE_LI BRARY
Enables: -
Memory Required: n/a

OSLI BRARY_TYPE is used in conjunction with OSLI BRARY_CONFI G,
OSLI BRARY_GLOBALS, OSLI BRARY_OPTI ON, OSLI BRARY_VARI ANT
and OSUSE_LI BRARY to properly specify the precompiled Salvo li-
brary you're linking to your project.

Library types normally refer to whether the library is a freeware
library (OSF) or a standard library (OSL).

Please see your compiler's Salvo Compiler Reference Manual and
Chapter 8 + Libraries for complete instructions on the use of
OSLI BRARY_TYPE.

OSUSE_LI BRARY.

Chapter 5 « Configuration Salvo User Manual

OSLIBRARY_VARIANT: Specify Precompiled Library
Variant
Name: OSLI BRARY_VARI ANT

Purpose: To guarantee that an application's source
files are compiled using the same sal -
vocf g. h as was used to create the speci-
fied precompiled library.

Allowed Values: OSA ... and OSNONE

Default Value: not defined

Action: Sets the configuration options inside sal -
vol i b. h to match those used to generate
the library specified.

Related: OSLI BRARY_CONFI G, OSLI BRARY GLOBALS,

OSLI BRARY_TYPE, OSUSE_LI BRARY
Enables: —

Memory Required: n/a

Notes OSLI BRARY_VARIANT must be wused in conjunction with
OSLI BRARY_CONFI G OSLI BRARY GLOBALS, OSLI BRARY CPTI ON,
OSLI BRARY_TYPE and OSUSE_LI BRARY to properly specify the pre-
compiled Salvo library you're linking to your project.

Library variants might refer to, for example, whether the library
supports signaling events from within ISRs.

Not all libraries have variants. If a variant does not exist, set
OSLI BRARY_VARI ANT to OSNONE.

Please see your compiler's Salvo Compiler Reference Manual and
Chapter 8 « Libraries for complete instructions on the use of
OSLI BRARY_VARI ANT.

See Also OSUSE_LI BRARY.

Salvo User Manual Chapter 5 « Configuration 107

OSMESSAGE_QUEUES: Set Maximum Number of

Message Queues

Notes

108

Name: OSMESSAGE_QUEUES

Purpose: To allocate memory at compile time for
message queue control blocks (mqcbs),
and to set an upper limit on the number of
supported message queues.

Allowed Values: 1 or greater.

Default Value: 1 if OSENABLE_MESSAGE_QUEUES is TRUE,
0 otherwise

Action: Configures Salvo source code to support
the desired number of message queues.

Related: OSENABLE_MESSAGE_QUEUES, OSLOC_MXCB,
OSLOC_MsGQ

Enables: message-queue-related services

Memory Required: ~ When non-zero, requires a configuration-
dependent amount of RAM for each
mqcb.

This configuration parameter only allocates RAM for message
queue control blocks. It does not allocate RAM for the message
queues themselves — you must do that explicitly.

Message queues are numbered from 1 to OSMESSAGE_QUEUES.
Since message queue memory is allocated at compile time, the
mqcb memory will be used whether or not the message queue is

actually created via OSCr eat eMsgQ() .

On a typical 8-bit processor, the amount of memory required by
each message queue control block is 6 bytes.

Chapter 5 « Configuration Salvo User Manual

OSTARGET: Identify Target Processor

Notes

Salvo User Manual

Name: OSTARGET

Purpose: To identify the processor you're using in
your Salvo application.

Allowed Values: see sal vo. h

Default Value: NONE

Action: Configures Salvo source code for the tar-
get processor.

Related: OSCOWPI LER

Enables: -

Memory Required: n/a

This configuration option is used within the Salvo source code
primarily to implement non-ANSI C directives like in-line assem-
bly instructions and #pr agnma directives.

Nearly all of Salvo's supported compilers automatically override
your settings and define OSTARGET based on the command-line ar-
guments passed to the compiler to identify the processor. Therefore
it is usually unnecessary to define OSTARGET in sal vocf g. h.

If you are working with an as-yet-unsupported compiler, choose
OSUNDEF. See Chapter 10 ¢ Porting for more information.

Chapter 5 « Configuration 109

OSTASKS: Set Maximum Number of Tasks and Cyclic
Timers

Name: OSTASKS

Purpose: To allocate memory at compile time for
task control blocks (tcbs), and to set an
upper limit on the number of supported
tasks and cyclic timers.

Allowed Values: 1 or greater.

Default Value: 0

Action: Configures Salvo source code to support
the desired number of tasks and cyclic
timers.

Related: OSEVENTS

Enables: general and task-related services

Memory Required: ~ When non-zero, requires a configuration-
dependent amount of RAM for each tcb,
and RAM for two tcb pointers.

Notes Tasks and cyclic timers are numbered from 1 to OSTASKS. Each
task and each cyclic timer requires one tcb.

Since task and cyclic timer memory is allocated and fixed at com-
pile time, the tcb memory will be used whether or not the task is
actually created via OSCr eat eTask() or the cyclic timer is created
via OSCr eat eCycTnr ().

The amount of memory required by each task is dependent on sev-
eral configuration options, and will range from a minimum of 4 to
a maximum 12 bytes per task.4?

42 For the purposes of these size estimates, pointers to ROM memory are

assumed to be 16 bits, and pointers to RAM memory are assumed to be 8 bits.
This is the situation for the PIC16 and PIC17 family of processors.

110 Chapter 5 » Configuration Salvo User Manual

OSUSE_LIBRARY: Use Precompiled Library

Name: OSUSE_L| BRARY

Purpose: To simplify linking to a precompiled Salvo
library.

Allowed Values: FALSE: you are not linking to a precom-
piled Salvo library.

TRUE: you are linking to a precompiled
Salvo library.
Default Value: FALSE
Action: If TRUE, the proper configuration options
for the specified library will be used to
build the application.
Related: OSLI BRARY_CONFI G, OSLI BRARY GLOBALS,

OSLI BRARY_OPTI ON, OSLI BRARY_TYPE,
OSLI BRARY_VARI ANT

Enables: -
Memory Required: n/a

Notes Salvo's configuration options are compile-time options. When link-
ing to a precompiled library of Salvo services, the settings for your
own application must match those originally used when the library
was generated. OSUSE_LI BRARY, and the related OSLI BRARY_XYZ
configuration options, take the guesswork out of creating a sal -
vocf g. h header file for library builds.

Warning Failure to have matching configuration options may
lead to compile- and link-time errors that can be difficult to inter-
pret. Because of the large number of configuration options and
their interrelationships, you must use OSUSE LI BRARY and
OSLI BRARY_XYZ when linking to precompiled Salvo libraries.

Configuration options used to create precompiled Salvo libraries
differ from library to library. Please see your compiler's Salvo
Compiler Reference Manual and Chapter 8 « Libraries for com-
plete instructions on the wuse of OSUSE_LIBRARY and
OSLI BRARY_XYZ.

Salvo User Manual Chapter 5 « Configuration 111

Configuration Options for Source Code
Distributions

The configuration options described in this section can only be
used Salvo Pro and are listed in alphabetical order.

These configuration options affect the Salvo header (*.h) and
source (*. c) files.

112 Chapter 5 « Configuration Salvo User Manual

OSBIG_SEMAPHORES: Use 16-bit Semaphores

Name: OSBI G_SEMAPHCRES

Purpose: To select 8- or 16-bit counting sema-
phores.

Allowed Values: FALSE: Counting semaphores range from 0
to 255.

TRUE: Counting semaphores range from 0

to 32,767.

Default Value: FALSE

Action: Changes the defined type OSt ypeSemfrom
8- to 16-bit unsigned integer.

Related: -

Enables: -

Memory Required: ~ When TRUE, requires an additional byte of
RAM for each ecb.

Notes This configuration option can be used to minimize the size of ecbs.

Make OSBI G_SEMAPHORES TRUE only if your application requires
16-bit counting semaphores.

OSBI G_SEMAPHORES, when TRUE, will usually enlarge the size of
ecbs by one byte on 8-bit targets.

Salvo User Manual Chapter 5 « Configuration 113

OSBYTES_OF_COUNTS: Set Size of Counters

Notes

114

Name: %BYTES_O:_COJNTS

Purpose: To allocate the RAM needed to hold the
maximum possible value for counters
used in Salvo, and to enable the code to
run the counters.

Allowed Values: 0,1,2,4
Default Value: 0
Action: If zero, disables all counters. If non-zero,

enables the counters OSct xSws and OSi -
dl eCt xSws, and sets the defined type
OSt ypeCount to be 8-, 16-, or 32-bit un-

signed integer.
Related: OSGATHER_STATI STI CS

Enables: —
Memory Required: =~ When non-zero, requires RAM for all en-
abled counters.

Salvo uses simple counters to keep track of context switches and

notable occurrences. Once a counter reaches its maximum value it
remains at that value.

Chapter 5 « Configuration Salvo User Manual

OSBYTES_OF_DELAYS: Set Length of Delays

Notes

Salvo User Manual

Name: %BYTES_O:_DELAYS

Purpose: To enable delays and timeout services and
to allocate the RAM needed to hold the
maximum specified value (in system
ticks) for delays and timeouts.

Allowed Values: 0,1,2,4
Default Value: 0
Action: If zero, disables all delay and timeout ser-

vices. If non-zero, enables the delay and
timeout services, and sets the defined type
OSt ypeDel ay to be 8-, 16- or 32-bit un-
signed integer.

Related: OSTI MER_PRESCALAR

Enables: OS_Del ay(), OSTi ner ()

Memory Required: =~ When non-zero, requires 1, 2 or 4 addi-
tional bytes of RAM for each tcb and 1
tcb pointer in RAM.

Disabling delays and timeouts will reduce the size of the Salvo
code considerably. It will also reduce the size of the tcbs by 2 to 6
bytes per tcb.

Use of OSTIMER PRESCALAR in conjunction with

OSBYTES_OF_DELAYS can provide for very long delays and time-
outs while minimizing tcb memory requirements.

Chapter 5 « Configuration 115

OSBYTES_OF_EVENT_FLAGS: Set Size of Event Flags

Notes

116

Name:

Purpose:
Allowed Values:
Default Value:
Action:

Related:
Enables:
Memory Required:

OSBYTES_OF EVENT_FLAGS

To select 8-, 16- or 32-bit event flags.
1,2,4

1

Sets the defined type OSt ypeEFI ag to 8-,

16- or 32-bit unsigned integer.
OSENABLE_EVENT_FLAGS

When event flags are enabled, requires 1, 2
or 4 bytes of RAM for each event flag con-
trol block (efcb) and additional ROM
(code) dependent on the target processor.

You can tailor the size of event flags in your Salvo application via
this configuration parameter.

Since each bit is independent of the others, it may be to your ad-
vantage to have a single, large event flag instead of multiple,
smaller ones. For example, the RAM requirements for two 8-bit
event flags will exceed those for a single 16-bit event flag since the
former requires two event control blocks, whereas the latter needs

only one.

Chapter 5 « Configuration Salvo User Manual

OSBYTES_OF_TICKS: Set Maximum System Tick Count

Name: OSBYTES_OF_TI CKS

Purpose: To enable elapsed time services and to al-
locate the RAM needed to hold the
maximum specified system ticks value.

Allowed Values: 0,1,2,4
Default Value: 0
Action: If zero, disables all elapsed time services.

If non-zero, enables the services , and sets
the defined type OSt ypeTi ck to be 8-, 16-
or 32-bit unsigned integer.

Related: OSTI MER_PRESCALAR
Enables: OSGet Ti cks(), OSSet Ti cks(),
OSTi ner ()

Memory Required: ~ When non-zero, requires RAM for the sys-
tem tick counter.

Notes Salvo uses a simple counter to keep track of system ticks. After it
reaches its maximum value the counter rolls over to 0.

Elapsed time services based on the system tick are obtained
through OSGet Ti cks() and OSSet Ti cks().

OSBYTES_OF_TICKS must be greater or equal to
OSBYTES_OF_DELAYS.

Salvo User Manual Chapter 5 « Configuration 117

OSCALL_OSCREATEEVENT: Manage Interrupts when

Creating Events

Notes

118

Name: OSCALL_OSCREATEEVENT

Purpose: For use on target processors without soft-
ware stacks in order to manage for inter-
rupts when calling event-creating
services.

Allowed Values: OSFROM_BACKGROUND: Your application
creates events only in mainline code.

OSFROM_FOREGROUND: Your application
creates events only within interrupts.

OSFROM_ANYWHERE Y our application cre-
ates events both in mainline code and
within interrupts. You must explicitly
control interrupts around
OSCALL_OSCREATEEVENT (see below).

Default Value: OSFROM_BACKGROUND

Action: Configures the interrupt control for all
Salvo event-creating services.

Related: OSCALL_(OSSI GNALEVENT,
OSCALL_OSRETURNEVENT

Enables: -

Memory Required: ~ Small variations in ROM depending on its

value.

OSCALL_OSCREATEEVENT is required only when using a compiler
that does not maintain function parameters and auto variables on a
software stack or in registers. Therefore this configuration parame-
ter and all similar ones are only needed when using certain target
processors and compilers.

Compilers that maintain function parameters and auto variables in
a dedicated area of RAM usually do so because a software stack
and stack pointers do not exist on the target processor. In order to
minimize RAM usage, these compilers*® overlay the parameter and
variable areas of multiple functions as long as the functions do not
occupy the same call graph. This is all done transparently — no
user involvement is required.

The issue is complicated by wanting to call Salvo services from
both mainline (background) and interrupt (foreground) code. In
this case, each service needs its own parameter and auto variable

43 E.g the HI-TECH PICC and V8C compilers.

Chapter 5 « Configuration Salvo User Manual

Salvo User Manual

area separate from that of mainline-only services, and the user
must "wrap" each mainline service with calls to disable and then
re-enable interrupts** in order to avoid data corruption. See the ex-
amples below.

The control of interrupts in each event-creating service like OSCr e-
at eBi nSen() depends on where it is called in your application. In
Figure 27 interrupts will be disabled and re-enabled inside OSCr e-
at eBi nSen() . This is referred to as protecting a critical region of
code, and is typical of RTOS services. In this situation,
OSCALL_OSCREATEEVENT must be set to OSFROM_BACKGROUND.

int main(void)

{
OSCr eat eBi nSen(Bl NSEML_P) ;

}

Figure 27: How to call OSCreateBinSem() when
OSCALL_OSCREATEEVENT is set to
OSFROM_BACKGROUND

In Figure 28 OSCr eat eBi nSen() must not change the processor's
interrupt status, because re-enabling interrupts within an ISR can
cause unwanted nested interrupts. In this situation, set
OSCALL_OSCREATEEVENT to OSFROM_FOREGROUND.

interrupt nyl SR(void)
{

|f (some_condition) {
OSCr eat eBi nSem(Bl NSEM2_P) ;
}

Figure 28: How to call OSCreateBinSem() when
OSCALL_OSCREATEBINSEM is set to
OSFROM_FOREGROUND

In Figure 29, OSCr eat eBi nSen() is called from the background as
well as the foreground. In this situation, OSCALL_OSCREATEEVENT
must be set to OSFROM_ANYWHERE and OSCr eat eBi nSen() must be
preceded by OSPr ot ect () and followed by GSUnpr ot ect () wher-
ever it's called in mainline (background) code.

int main(void)

{

44 See "Interrupt Levels" in the HI-TECH PICC and PICC-18 User's Guide.

Chapter 5 « Configuration 119

120

OSProt ect () ;
OSCr eat eBi nSem(Bl NSEML_P) ;
OSUnpr ot ect () ;

OSProt ect () ;
OSCr eat eBi nSem(Bl NSEM2_P) ;
OSUnpr ot ect () ;

}
interrupt nyl SR(void)

|f (some_condi tion) {
OSCr eat eBi nSem(Bl NSEM2_P) ;
}

Figure 29: How to call OSCreateBinSem() when
OSCALL_CREATEBINSEM is set to
OSFROM_ANYWHERE

Failing to set OSCALL_OSCREATEEVENT properly to reflect where
you are calling OSCr eat eBi nSen() in your application may cause
unpredictable results, and may also result in compiler errors.

With some compilers (e.g. HI-TECH PICC),
OSCALL_OSCREATEEVENT also automatically enables certain special
directives* in the Salvo source code to ensure proper compilation.

45 E.g. #pragma interrupt_| evel O, to allow a function to be called both

from mainline code and from an interrupt. In this situation a function has
"multiple call graphs."

Chapter 5 « Configuration Salvo User Manual

OSCALL_OSGETPRIOTASK: Manage Interrupts when
Returning a Task's Priority
OSCALL_OSGETPRI OTASK manages how interrupts are controlled in
OSGet Pri o() and OSGet Pri oTask() .

See OSCALL_OSCREATEEVENT for more information on interrupt
control for services that can be called from the foreground.

OSCALL_OSGETSTATETASK: Manage Interrupts when
Returning a Task's State
OSCALL_OSGETSTATETASK manages how interrupts are controlled
in OSGet St at e() and OSGet St at eTask() .

See OSCALL_OSCREATEEVENT for more information on interrupt
control for services that can be called from the foreground.

OSCALL_OSMSGQCOUNT: Manage Interrupts when
Returning Number of Messages in Message Queue

OSCALL_OSMSGQCOUNT manages how interrupts are controlled in
OSMsgQCount () .

See OSCALL_OSCREATEEVENT for more information on interrupt
control for services that can be called from the foreground.

OSCALL_OSMSGQEMPTY: Manage Interrupts when
Checking if Message Queue is Empty

OSCALL_OSMSGQEMPTY manages how interrupts are controlled in
OSMsgQENPt Y () -

See OSCALL_OSCREATEEVENT for more information on interrupt
control for services that can be called from the foreground.

Salvo User Manual Chapter 5 « Configuration 121

OSCALL_OSRETURNEVENT: Manage Interrupts when
Reading and/or Trying Events

OSCALL_OSRETURNEVENT manages how interrupts are controlled in
event-reading and event-trying services (e.g. OSReadEFl ag() and
OSTrySen() , respectively).

See OSCALL_OSCREATEEVENT for more information on interrupt
control for event-reading and event-trying services.

OSCALL_OSSIGNALEVENT: Manage Interrupts when
Signaling Events and Manipulating Event Flags

OSCALL_OSSI GNALEVENT manages how interrupts are controlled in
event-signaling services (e.g. OSSi gnal Msg()), OSCl r EFl ag() and
OSSet EFl ag() .

See OSCALL_OSCREATEEVENT for more information on interrupt
control for event-signaling services.

OSCALL_OSSTARTTASK: Manage Interrupts when

Starting Tasks

122

OSCALL_OSSTARTTASK manages how interrupts are controlled in
0SSt art Task() .

See OSCALL_OSCREATEEVENT for more information on interrupt
control for event-signaling services.

Chapter 5 « Configuration Salvo User Manual

OSCLEAR_GLOBALS: Explicitly Clear all Global

Parameters

Name: OSCLEAR GLOBALS

Purpose: To guarantee that all global variables used
by Salvo are explicitly initialized to zero.

Allowed Values: FALSE, TRUE

Default Value: TRUE

Action: If TRUE, configures OSI ni t () to explicitly
fill all global variables (e.g. queue point-
ers, tcbs, ecbs, etc.) with 0.

Related: OSENABLE_EVENTS,
OSENABLE_STACK_CHECKI NG

Enables: OSl ni t Tcb() and OSI ni t Ecb() for some
values of OSCOWPI LER.

Memory Required: When TRUE, requires a small amount of
ROM.

Notes All ANSI C compilers must initialize global variables to zero. OS-

Init() clears Salvo's variables by default. For those applications
where ROM memory is extremely precious, this configuration op-
tion can be disabled, and your application may shrink somewhat as
a result.

Caution If you disable this configuration option you must be
absolutely sure that your compiler explicitly initializes all of
Salvo's global variables to zero. Otherwise your application may
not work properly. Even if your compiler does zero all global vari-
ables, keep in mind that GSInit () will no longer (re-)zero the
global variables, and you will not be able to re-initialize Salvo via
acalltoCsinit().

Salvo User Manual Chapter 5 « Configuration 123

OSCLEAR_UNUSED_ POINTERS: Reset Unused Tcb and

Ecb Pointers

Notes

124

Name: OSCLEAR_UNUSED_PO NTERS
Purpose: To aid in debugging Salvo activity.
Allowed Values: FALSE: Salvo makes no attempt to reset

no-longer used pointers in tcbs and ecbs.
TRUE: Salvo resets all unused tcb and ecb

pointers to NULL.

Default Value: FALSE

Action: When TRUE, enables code to null unused
tcb and ecb pointers.

Related: OSBYTES_OF DELAYS, OSEN-
ABLE_TI MEOUTS,

Enables: -

Memory Required: ~ When TRUE, requires a small amount of

ROM.

This configuration option is primarily of use to you if you are in-
terested in viewing or debugging Salvo internals. It is much easier
to understand the status of the queues, tasks and events if the un-
used pointers are NULLed.

Enabling this configuration option will add a few instructions to
certain Salvo services.

Chapter 5 « Configuration Salvo User Manual

OSCOLLECT_LOST_TICKS: Configure Timer System For
Maximum Versatility

Notes

Salvo User Manual

Name: %CO.LECT_L%T_-“ CKS

Purpose: To avoid delay- and timeout-related tick
errors due to poor task yielding behavior.

Allowed Values: FALSE, TRUE

Default Value: TRUE

Action: Configures Salvo source code to log up to

a maximum number of ticks in the timer
for later delay and timeout processing in
the scheduler.

Related: OSBYTES_OF DELAYS, CSBYTES_OF_TI CKS,
OSENABLE_TI MEOUTS

Enables: -

Memory Required: Target- and compiler-dependent. In most
cases, should reduce ROM requirements
slightly.

When OSCOLLECT_LOST_TI CKS is FALSE, OSTi ner () can log only
a single tick per call for eventual processing in the scheduler OSS-
ched() . If, for example, an application has tasks that fail to yield
back to the scheduler within 2 system ticks, any tasks delayed or
waiting with a timeout during this period will appear to have their
delays or timeouts lengthened by the amount of time the poorly-
behaved task(s) fails to yield to the scheduler.

When OSCOLLECT_LOST_TI CKS is TRUE, OSTi ner () can log up to
255 ticks for eventual processing in the scheduler. In the above ex-
ample, the error in the delays or timeouts of simultaneously de-
layed or waiting tasks will be minimized.

OSCOLLECT_LOST_TI CKS has no effect on the system's free-running

system tick counter OSti mer Ti cks, which is accessed via OSGet -
Ti cks() and OSSet Ti cks().

Chapter 5 « Configuration 125

OSCOMBINE_EVENT_SERVICES: Combine Common
Event Service Code

Notes

126

Name: OSCOVBI NE_EVENT_SERVI CES

Purpose: To minimize code size with multiple event
types enabled.

Allowed Values: FALSE: All event services are implemented

as separate, independent functions.
TRUE: Event services use common code

where possible.

Default Value: FALSE

Action: Changes the structure of the Salvo source
code to produce minimum aggregate or
individual size of event services.

Related: -

Enables: -

Memory Required: ~ When TRUE, reduces ROM requirements
when event services for two or more
event types are used.

The services for creating, signaling and waiting events contain
common source code. When OSCOVBI NE_EVENT_SERVI CES is
TRUE, event services use that common code, e.g. OSCr eat eBi n-
Sen() and OSCreateMsgQ) use the same underlying function.
This means that the incremental increase in size of the object code
is relatively small when another event type is enabled via
OSENABLE_XYZ.

When OSCOVBI NE_EVENT_SERVI CES is FALSE, each event service
is implemented as a separate, independent function, and some code
is therefore duplicated. This is used when generating the Salvo
freeware libraries for maximum versatility.

When creating an application using two or more event types, the
aggregate size of all of the event services will be smaller when
OSCOVBI NE_EVENT_SERVI CES is TRUE.

The C language va_ar g() and related functions are required when
OSCOVBI NE_EVENT _SERVI CES is TRUE.

Setting OSCOVBI NE_EVENT_SERVI CES to TRUE with HI-TECH
8051C and the small or medium memory models will prevent you
from calling any allowed event services (e.g. OSSi gnal Msg())
from an ISR. This restriction is lifted in the large model.

Chapter 5 « Configuration Salvo User Manual

OSCTXSW_METHOD: Identify Context-Switching
Methodology in Use

Name: OSCTXSW_METHOD

Purpose: To configure the inner workings of the
Salvo context switcher.

Allowed Values: OSRTNADDR | S_PARAM OSSaveRt nAddr ()
is passed the task's return address as a pa-
rameter.

OSRTNADDR_| S_VAR: OSSaveRt nAddr ()
reads the tasks's return address through a
global variable.

OSVI A_OSCTXSW OSCt xSw() is used to re-
turn to the scheduler.

OSVI A_OSDI SPATCH: OSCt xSw() is used in
conjunction with OSDi spat ch().

Default Value: Defined for each compiler and target in

port Xyz. h. If left undefined, default is
OSRTNADDR | S_PARAM

Action: Configures Salvo source code for use with
the selected compiler and target proces-
sor.

Related: OSRTNADDR_CFFSET

Enables: -

Memory Required: When set to OSRTNADDR | S_VAR, requires
a small amount of RAM. ROM require-
ments vary.

Notes This configuration option is used within the Salvo source code to
implement part of the context switcher OS_Yi el d().

Warning Unless you are porting Salvo to an as-yet-unsupported
compiler, do not override the value of OSCTXSW METHOD in the
porting file sal voport Xyz. h appropriate for your compiler. Un-
predictable results will occur.

If you are working with an as-yet-unsupported compiler, refer to
the Salvo source code and Chapter 10 « Porting for further instruc-
tions.

Salvo User Manual Chapter 5 « Configuration 127

OSCUSTOM_LIBRARY_CONFIG: Select Custom Library

Configuration File

Notes

128

Name: OSCUSTOM LI BRARY_CONFI G

Purpose: To simply the generation and use of cus-
tom Salvo libraries.

Allowed Values: 0, 1 through 2046

Default Value: 0 (i.e. no custom library is selected)

Action: Configures Salvo source code to include
the specified custom library configuration
file.

Related: sal vocl c1. h through sal vocl ¢20. h

Enables: -

Memory Required: n/a

OSCUSTOM LI BRARY_CONFI G is used to ensure that the Salvo con-
figuration for projects built with custom libraries matches the con-
figuration that was in effect when the library was generated.

This configuration option need only be used when creating and us-
ing custom user libraries. There is no need to use
OSCUSTOM LI BRARY_CONFI G when the freeware or standard librar-
ies supplied in a Salvo distribution are used.

See Chapter 8 e« Libraries for detailed information on using
OSCUSTOM LI BRARY_CONFI G,

46 Values in excess of 20 will result in an error message when building a Salvo

library or application. Can be extended to larger values if need be — see
sal vo/inc/sal volib. h.

Chapter 5 « Configuration Salvo User Manual

OSDISABLE_ERROR_CHECKING: Disable Runtime Error

Checking

Notes

Salvo User Manual

Purpose: To turn off runtime error checking.

Allowed Values: FALSE: Error checking is enabled.
TRUE: Error checking is disabled.

Default Value: FALSE

Action: Disables certain error checking in some

Salvo user services.

Related: -

Enables: -

Memory Required: ~ When FALSE, requires ROM for error-

checking.

By default, Salvo performs run-time error checking on certain pa-
rameters passed to user services, like task priorities.

This error checking can be costly in terms of code space (ROM)
used. It can be disabled by setting OSDI SABLE_ERROR_CHECKI NG to
TRUE. However, this is never recommended.

Caution Disabling error checking is strongly discouraged. It
should only be used as a last resort in an attempt to shrink code
size, with the attendant knowledge that any run-time error that
goes unchecked may result in unpredictable behavior.

Chapter 5 « Configuration 129

OSDISABLE_FAST _

Robin Scheduling

Notes

130

SCHEDULING: Configure Round-

Name: OSDI SABLE_FAST_SCHEDULI NG
Purpose: To alter execution sequence of tasks run-
ning in a round-robin manner.
Allowed Values: FALSE: Fast scheduling is used.
TRUE: Fast scheduling is not used.
Default Value: FALSE
Action: Changes the way in which eligible tasks

returning to the scheduler are re-enqueued
into the eligible queue.

Related: -

Enables: -

Memory Required: ~ When TRUE, requires a small amount of
additional ROM.

By default, the Salvo scheduler immediately re-enqueues the cur-
rent task upon its return to the scheduler if it is still eligible. This
has a side effect on round-robin scheduling that is best illustrated
by example.

If OSDI SABLE_FAST_SCHEDULI NG is FALSE and the current task
signals an event upon which another task of equal priority is wait-
ing, then the scheduler will run the signaling task again before the
waiting task.47 On the other hand, if
OSDI SABLE_FAST_SCHEDULI NG is TRUE in this situation, then the
scheduler will run the waiting task before the signaling task. In
other words, the round-robin sequence of task execution matches
the order in which the tasks are made eligible if
OSDI SABLE_FAST_SCHEDULI NGis set to TRUE.

Setting OSDI SABLE_FAST_SCHEDULI NG to TRUE will have a small
but significant negative impact on the context-switching speed of
your application.

47 This is indirectly related to the minimal stack depth required by

OSSi gnal Xyz() services.

Chapter 5 « Configuration Salvo User Manual

OSDISABLE_TASK_PRIORITIES: Force All Tasks to Same
Priority

Name: OSDI SABLE_TASK_PRI ORI Tl ES

Purpose: To reduce code (ROM) size when an ap-
plication does not require prioritized
tasks.

Allowed Values: FALSE: Tasks can have assigned priorities.

TRUE: All tasks have same priority (0).

Default Value: FALSE

Action: Removes priority-setting and priority-
dependent code from Salvo services.

Related: -

Enables: -

Memory Required: ~ When FALSE, requires ROM for manage-
ment of task priorities.

Notes By default, Salvo schedules task execution based on task priorities.
Some savings in ROM size can be realized by disabling Salvo's
priority-specific code. When OSDI SABLE_TASK_PRI ORI Tl ES is set
to TRUE, all tasks run at the same priority and round-robin.

Salvo User Manual Chapter 5 « Configuration 131

OSENABLE_BINARY_SEMAPHORES: Enable Support for
Binary Semaphores

Notes

132

Name: OSENABLE_BI NARY_SEMAPHORES

Purpose: To control compilation of binary sema-
phore code via the preprocessor.

Allowed Values: FALSE, TRUE

Default Value: FALSE

Action: If FALSE, binary semaphore services are

not available. If TRUE, OSCr eat eBi n-
Sem() , OSSi gnal Bi nSen() and

OS_Wai t Bi nSen() are available.
Related: OSENABLE_EVENT_FLAGS,

OSENABLE_MESSAGES,
OSENABLE_MESSAGE_QUEUES,
OSENABLE_SEMAPHORES, OSEVENTS
Enables: -
Memory Required: ~ When TRUE, requires ROM for binary
semaphore services.

This configuration option is useful when controlling which parts of
Salvo are to be included in an application. If you are including or
linking to sal vobi nsem ¢ in your source code, you can control its
compilation solely via this configuration option in sal vocfg. h.
This may be more convenient than, say, editing your source code
or modifying your project.

Chapter 5 « Configuration Salvo User Manual

OSENABLE_BOUNDS_CHECKING: Enable Runtime
Pointer Bounds Checking

Name: OSENABLE_BOUNDS_CHECKI NG

Purpose: To check for out-of-range pointer argu-
ments.

Allowed Values: FALSE, TRUE

Default Value: FALSE

Action: If FALSE, pointer arguments are not

bounds-checked. If TRUE, some services
return an error if the pointer argument is
out-of-bounds.

Related: OSDI SABLE_ERROR_CHECKI NG,
OSSET_LIM TS
Enables: -
Memory Required: ~ When TRUE, requires ROM for pointer
bounds checking.
Notes The result of passing an incorrect pointer to a service is unpredict-

able. Some protection can be achieved by bounds-checking the
pointer to ensure that it is within a valid range of pointer values
appropriate for the service. This can be useful when debugging an
application that uses variables as placeholders for pointers instead
of constants.

The utility of runtime pointer bounds checking is limited. Since
valid pointers do not have successive addresses, the allowed range
includes not only the valid pointer values but also all the other val-
ues within that range. Therefore runtime pointer bounds checking
will only detect a small subset of invalid pointer arguments.

OSENABLE_BOUNDS_CHECKI NG is overridden (i.e. set to TRUE) when
OSSET_LI M TSis set to TRUE.

Salvo User Manual Chapter 5 « Configuration 133

OSENABLE_CYCLIC_TIMERS: Enable Cyclic Timers

Notes

134

Name:
Purpose:

Allowed Values:
Default Value:
Action:

Related:
Enables:
Memory Required:

This configuration option is useful when controlling which parts of
Salvo are to be included in an application. If you are including or
linking to any of the sal vocyclicN. ¢ source files in your source
code, you can control their compilation solely via this configura-
tion option in sal vocfg. h. This may be more convenient than,

OSENABLE_CYCLI C_TI MERS

To control compilation of cyclic timer
code via the preprocessor.

FALSE, TRUE

FALSE

If FALSE, cyclic timer services are not
available. If TRUE, cyclic timer services
are available.

When TRUE, requires ROM and in some
cases, tcb RAM.

say, editing your source code or modifying your project.

Chapter 5 « Configuration

Salvo User Manual

OSENABLE_EVENT_FLAGS: Enable Support for Event
Flags

Name: OSENABLE_EVENT_FLAGS

Purpose: To control compilation of event flag code
via the preprocessor.

Allowed Values: FALSE, TRUE

Default Value: FALSE

Action: If FALSE, event flag services are not avail-

able. If TRUE, OSCr eat eEFl ag(), OSCl -
r EFl ag(), OSSet EFI ag() and

OS_Wai t EFl ag() are available.
Related: OSBYTES_OF_EVENT_FLAGS,

OSENABLE_BI NARY_SEMAPHORES,
OSENABLE_MESSAGES,
OSENABLE_MESSAGE_QUEUES,
OSENABLE_SEMAPHORES,
OSEVENTS, OSEVENT_FLAGS

Enables: -
Memory Required: ~ When TRUE, requires ROM for event flag
services.
Notes This configuration option is useful when controlling which parts of

Salvo are to be included in an application. If you are including or
linking to sal voefl ag. ¢ in your source code, you can control its
compilation solely via this configuration option in sal vocfg. h.
This may be more convenient than, say, editing your source code
or modifying your project.

A value of 0 for OSEVENT_FLAGS automatically resets (overrides)
OSENABLE EVENT_FLAGS to FALSE.

Salvo User Manual Chapter 5 « Configuration 135

OSENABLE_EVENT_READING: Enable Support for Event
Reading

Name: OSENABLE_EVENT_READI NG

Purpose: To control compilation of event-reading
code via the preprocessor.

Allowed Values: FALSE, TRUE

Default Value: FALSE

Action: If FALSE, event-reading services are not

available. If TRUE, OSReadBi nSen() , OS-
ReadEF| ag(), OSReadMsg() , OS-
ReadMsgQ) and OSReadSen() are
available.

Related: OSCALL_OSRETURNEVENT,
OSENABLE_EVENT_TRYI NG

Enables: -
Memory Required: When TRUE, requires ROM for event-
reading services.

Notes If you use any event-reading services (e.g. OSReadMsg()), you
must set OSENABLE_EVENT_READI NG to TRUE in sal vocfg. h. If
you do not use any event-reading services, leave it at is default
value of FALSE.

This configuration option is useful when controlling which parts of
Salvo are to be included in an application. If you are including
Salvo event source code in your project, you can keep unused
event-reading services out of your final object file solely via this
configuration option in sal vocf g. h. This may be more convenient
than, say, editing your source code or modifying your project.

A value of TRUE for OSENABLE_EVENT_TRYI NG automatically sets
(overrides) OSENABLE_EVENT_READI NG to TRUE.

136 Chapter 5 » Configuration Salvo User Manual

OSENABLE_EVENT_TRYING: Enable Support for Event

Trying

Notes

Salvo User Manual

Name: OSENABLE_EVENT_TRYI NG

Purpose: To control compilation of event-trying
code via the preprocessor.

Allowed Values: FALSE, TRUE

Default Value: FALSE

Action: If FALSE, event-trying services are not

available. If TRUE, OSTryBi nSem() ,
OSTryMsg(), OSTryMsgQ() and OSTry-
Sen() are available.

Related: OSCALL_OSRETURNEVENT,
OSENABLE_EVENT_READI NG

Enables: -
Memory Required: ~ When TRUE, requires ROM for event-
trying services.

If you use any event-trying services (e.g. OSTrySen()), you must
set OSENABLE_EVENT_TRYI NG to TRUE in sal vocfg. h. If you do
not use any event-trying services, leave it at is default value of
FALSE.

This configuration option is useful when controlling which parts of
Salvo are to be included in an application. If you are including
Salvo event source code in your project, you can keep unused
event-trying services out of your final object file solely via this
configuration option in sal vocf g. h. This may be more convenient
than, say, editing your source code or modifying your project.

A value of TRUE for OSENABLE_EVENT_TRYI NG automatically sets
(OVCI‘rideS) OSENABLE_EVENT _READI NG to TRUE.

Chapter 5 « Configuration 137

OSENABLE_FAST_SIGNALING: Enable Fast Event

Signaling

Name: OSENABLE_FAST_SI GNALI NG

Purpose: To increase the rate at which events can be
signaled.

Allowed Values: FALSE, TRUE

Default Value: FALSE

Action: If FALSE, signaled events are processed*®
when the waiting task runs.

If TRUE, signaled events are processed
when the event is signaled.

Related: -

Enables: -

Memory Required: When TRUE, requires a moderate amount
of additional ROM, and extra tcb RAM
for messages and message queues.

Notes With OSENABLE_FAST_SI GNALI NG set to FALSE, when an event is

signaled and a task was waiting the event, the event remains sig-
naled until the waiting task runs. For example, when a binary
semaphore is signaled with TaskA() waiting, OSSi gnal Bi nSent)
will return OSERR_EVENT_FULL if called again before TaskA()
runs. When TaskA() runs, the binary semaphore is reset to 0, and a
subsequent call to GSSi gnal Bi nSen() will succeed. On the other
hand, if OSENABLE_FAST_SI GNALI NG is TRUE, the binary sema-
phore will immediately return to zero when TaskA() is made eligi-
ble by OSSi gnal Bi nSen(), and thereafter the binary semaphore
can be signaled again without error.

Fast signaling is useful when multiple tasks are waiting an event,
or the same event is signaled in rapid succession. In these situa-
tions, OSSi gnal Xyz() will succeed until no tasks are waiting the
event and the event has been signaled.

48 E.g asemaphore is decremented.

138 Chapter 5 » Configuration Salvo User Manual

OSENABLE_IDLE_COUNTER: Track Scheduler Idling

Notes

Salvo User Manual

Name: OSENABLE_| DLE_COUNTER

Purpose: To count how many times the scheduler
has been idle.

Allowed Values: FALSE: Salvo does not keep track of how
often the scheduler OSSched() is idle.

TRUE: The OSi dl eCt xSw counter is incre-

mented each time the scheduler is called
with no eligible tasks, i.e. the system is
idle.

Default Value: FALSE

Action: If TRUE, configures Salvo to track sched-
uler idling.

Related: OSGATHER_STATI STI CS,
OSENABLE_| DLI NG_HOOK

Enables: -

Memory Required: ~ When TRUE, requires a small amount of
ROM, plus one byte of RAM.

If OSGATHER_STATI STI CS, OSENABLE_COUNTS and

OSENABLE_| DLE_COUNTER are all TRUE, and Salvo's idling hook

function is enabled via OSENABLE_I| DLI NG HOOK, then the OSi -

dl et xSws counter will be incremented each time the scheduler is
called and there are no tasks eligible to run. The percentage of time

your application is spending idle can be obtained by:

idle time = (OSi dl eCt xSws / OSct xSws) x 100

Chapter 5 « Configuration

139

OSENABLE_IDLING_HOOK: Call a User Function when

Idling

Notes

140

Name:
Purpose:

Allowed Values:

Default Value:
Action:

Related:
Enables:
Memory Required:

OSENABLE_| DLI NG_HOOK

To provide a simple way of calling a user
function when idling.

FALSE: No function is called when idling.

TRUE: An external user hook function
named OSI dl i ngHook() is called when
idling.

FALSE

If TRUE, GsSched() calls GsSl dl i ng-
Hook() when no tasks are eligible to run.

When TRUE, requires a small amount of
ROM.

When you enable this both configuration, you must also define an
external function void OSIdl i ngHook(void). It will be called
automatically when your Salvo application is idling.

Chapter 5 « Configuration Salvo User Manual

OSENABLE_MESSAGES: Enable Support for Messages

Notes

Salvo User Manual

Purpose: To control compilation of message code
via the preprocessor.

Allowed Values: FALSE, TRUE

Default Value: FALSE

Action: If FALSE, message services are not avail-

able. If TRUE, OSCr eat eMsg() , OSSi g-
nal Msg() and OS_Wai t Msg() are
available.

Related: OSENABLE_BI NARY SEMAPHORES,
OSENABLE_EVENT _FLAGS,
OSENABLE_MESSAGE_QUEUES,
OSENABLE_SEMAPHORES, OSEVENTS

Enables: -

Memory Required: ~ When TRUE, requires ROM for message
services.

This configuration option is useful when controlling which parts of
Salvo are to be included in an application. If you are including or
linking to sal vonsg. ¢ in your source code, you can control its
compilation solely via this configuration option in sal vocfg. h.
This may be more convenient than, say, editing your source code
or modifying your project.

Chapter 5 « Configuration 141

OSENABLE_MESSAGE_QUEUES: Enable Support for

Message Queues

Purpose: To control compilation of message queue
code via the preprocessor.

Allowed Values: FALSE, TRUE

Default Value: FALSE

Action: If FALSE, message services are not avail-
able. If TRUE, OSCr eat eMsgQ() , OSSi g-
nal MsgQ() and OS_Wai t MsgQ() are
available.

Related: OSENABLE_BI NARY SEMAPHORES,
OSENABLE_EVENT FLAGS, OSEN-
ABLE_NMESSAGES, OSENABLE SEMAPHORES,
OSEVENTS,
OSMESSAGE_QUEUES

Enables: -

Memory Required: ~ When TRUE, requires ROM for message
queue services.

Notes This configuration option is useful when controlling which parts of

Salvo are to be included in an application. If you are including or
linking to sal vonsgg. ¢ in your source code, you can control its
compilation solely via this configuration option in sal vocfg. h.
This may be more convenient than, say, editing your source code
or modifying your project.

A value of 0 for OSMESSAGE_QUEUES automatically resets (over-
rides) OSENABLE_MESSAGE_QUEUES to FALSE.

142 Chapter 5 « Configuration Salvo User Manual

OSENABLE_OSSCHED_DISPATCH_HOOK: Call User
Function Inside Scheduler

Name: OSENABLE_OSSCHED DI SPATCH_HOOK

Purpose: To provide a simple way of calling a user
function from inside the scheduler.

Allowed Values: FALSE: No user function is called from
OSSched() .

TRUE: An external, user-supplied function
named OSSchedDi spat chHook() is called
within OSSched() immediately prior to
the task being dispatched.

Default Value: FALSE

Action: If TRUE, you must define your own func-
tion to be called automatically each time
the scheduler runs.

Related: -

Enables: -

Memory Required: ~ When TRUE, requires ROM for user func-
tion and function call.

Notes This configuration option is provided for advanced users who want
to call a function immediately prior to the most eligible task being

dispatched by the scheduler.

Interrupts are normally disabled when OSSchedEntryHook() 1is
called.

Salvo User Manual Chapter 5 « Configuration 143

OSENABLE_OSSCHED_ENTRY_HOOK: Call User
Function Inside Scheduler

Notes

144

Name:
Purpose:

Allowed Values:

Default Value:
Action:

Related:
Enables:
Memory Required:

This configuration option is provided for advanced users who want

OSENABLE_OSSCHED_ENTRY_HOOK

To provide a simple way of calling a user
function from inside the scheduler.

FALSE: No user function is called from
OSSched() .

TRUE: An external, user-supplied function
named OSSchedEnt r yHook () is called
within OSSched() immediately upon en-
try.

FALSE

If TRUE, you must define your own func-
tion to be called automatically each time
the scheduler runs.

When TRUE, requires ROM for user func-
tion and function call.

to call a function immediately upon entry into the scheduler.

Interrupts are normally enabled when GSSchedDi spat chHook() is

called.

Chapter 5 « Configuration

Salvo User Manual

OSENABLE_OSSCHED_ RETURN_HOOK: Call User
Function Inside Scheduler

Name: OSENABLE_OSSCHED_RETURN_HOOK

Purpose: To provide a simple way of calling a user
function from inside the scheduler.

Allowed Values: FALSE: No user function is called from
OSSched() .

TRUE: An external, user-supplied function
named OSSchedRet ur nHook() is called
within OSSched() immediately after the
dispatched task has returned to the sched-

uler.
Default Value: FALSE
Action: If TRUE, you must define your own func-

tion to be called automatically each time
the scheduler runs.

Related: —

Enables: -

Memory Required: When TRUE, requires ROM for user func-
tion and function call.

Notes This configuration option is provided for advanced users who want
to call a function immediately after the most eligible task has re-

turned to the scheduler.

Interrupts are normally enabled when OSSchedRet ur nHook() is
called.

Salvo User Manual Chapter 5 « Configuration 145

OSENABLE_SEMAPHORES: Enable Support for

Semaphores

Notes

146

Purpose: To control compilation of semaphore code
via the preprocessor.

Allowed Values: FALSE, TRUE

Default Value: FALSE

Action: If FALSE, semaphore services are not

available. If TRUE, OSCr eat eSen() , OS-
Si gnal Sen() and OS_Wai t Sen() are
available.

Related: OSENABLE_BI NARY SEMAPHORES,
OSENABLE_EVENT _FLAGS,
OSENABLE_NMESSAGES,
OSENABLE_MESSAGE QUEUES, OSEVENTS

Enables: -

Memory Required: ~ When TRUE, requires ROM for semaphore
services.

This configuration option is useful when controlling which parts of
Salvo are to be included in an application. If you are including or
linking to sal vosem c in your source code, you can control its
compilation solely via this configuration option in sal vocfg. h.
This may be more convenient than, say, editing your source code
or modifying your project.

Chapter 5 « Configuration Salvo User Manual

OSENABLE_STACK_CHECKING: Monitor Call ... Return
Stack Depth

Name: OSENABLE_STACK_CHECKI NG

Purpose: To enable the user to discern the maximum
call ... return stack depth used by Salvo
services.

Allowed Values: FALSE: Stack depth checking is not per-
formed.

TRUE: Maximum and current stack depth is

recorded.

Default Value: FALSE

Action: If TRUE, enables code in each function to

monitor the current call ... return stack
depth and record a maximum call ... re-
turn stack depth if it has changed.

Related: OSGATHER_STATI STI CS, OSRpt ()

Enables: -

Memory Required: ~ When TRUE, requires a considerable
amount of ROM, plus two bytes of RAM.

Notes Current and maximum stack depth are tracked to a maximum call
... return depth of 255.

Current stack depth is held in OSst kDept h. Maximum stack depth
is held in OSmax St kDept h.

Stack depth is only calculated for call ... returns within Salvo code
and is not necessarily equal to the current hardware stack depth of
your processor. However, for most applications they will be the
same since OSSched() is usually called from mai n() .

Salvo User Manual Chapter 5 « Configuration 147

OSENABLE_TCBEXTO0|1|2|3|4|5: Enable Tcb Extensions

Notes

148

Name: OSENABLE_TCBEXTO|1/2|3]4/5
Purpose: To add user-definable variables to a task's
control block.
Allowed Values: FALSE: Named tcb extension is not en-
abled.
TRUE: Named tcb extension is enabled.
Default Value: FALSE
Action: If TRUE, creates a user-definable and ac-

cessible object of type OSt ypeTc-

bExt 0|1|2|3]4|5 within each tcb.
Related: OSLOC _TCB,

OSTYPE_TCBEXTO[1]2[34[5,

OScTcbExt 0[1[2|34|5,

OSt cbExt 0[1/2[3/4[5

Enables: t cbExt 0[1]2|3|4|5 fields
Memory Required: ~ When TRUE, requires additional RAM per
tcb.

Salvo's standard tcb fields are reserved for the management of
tasks and events. In some instances it is useful to additional vari-
ables that are unique to the particular task. Salvo's tch extensions
are ideal for this purpose.

The default type for a tcb extension is voi d * (i.e. a void pointer).
A tcb extension's type can be overridden to any type* by using the
appropriate OSTYPE_TCBEXTO|1|2|3|4|5 configuration option.

Once enabled via OSENABLE_TCBEXTO0(1|2|3|4|5, a tcb extension can
be accessed through the OScTcbExtO|1[2|3|4/5 or OStc-
bExt 0|1]2|3]4|5 macros.

OSLOC_TCB controls the storage type of tcb extensions. Tcb exten-
sions are only initialized if / when GSI ni t Tcb() is called, or by the
compiler's startup code. Any desired mix of the tcb extensions can
be enabled.

Consider the case of several identical tasks, all created from a sin-
gle task function, which run concurrently. Each task is responsible
for one of several identical communications channels, each with its
own I/O and buffers. Enable a tcb extension of type pointer-to-

49 Including structures, etc.

Chapter 5 « Configuration Salvo User Manual

Salvo User Manual

struct, and initialize it uniquely for each task. At runtime each
task runs independently of the others, managing its own communi-
cations channel, defined by the st ruct. Since only one task func-
tion need be defined, substantial savings in code size can be
realized.

The example in Listing 31 illustrates the use of a single, unsi gned-
char -sized tcb extension t cbExt 1 that each of four identical tasks
uses as an index into an array of offsets in the 4KB buffer the tasks
share.

const unsigned offset[4] = { 3072,

2048,
1024,
0 1
voi d TaskBuff(void)
{
while (1) {
printf("Task %' s buffer ",

OSt | D(OScTchP, OSTASKS));
printf("starts at %\ n", offset[OScTcbExt1]);
0s_Yiel d();

}
mai n()
oslnit();
OSCr eat eTask(TaskBuf f, OSTCBP(2), 1);
OSCr eat eTask(TaskBuf f, OSTCBP(6), 1);
OSCr eat eTask(TaskBuf f, OSTCBP(7), 1);
OSCr eat eTask(TaskBuf f, OSTCBP(8), 1);
OSt cbExt 1(OSTCBP(2)) = 0;
OSt cbExt 1(OSTCBP(6)) = 1;
OSt cbExt 1(OSTCBP(7)) = 2;
OSt cbExt 1(OSTCBP(8)) = 3;
for (i =0; i <4; i++) {
GSSched() ;
}

Listing 31: Tcb Extension Example

Each time TaskBuff () runs, it can obtain its offset into the 4KB
buffer through OSt cbExt 1 for the current task, namely, itself. For
this example, OSENABLE_TCBEXT1 was set to TRUE and

Chapter 5 « Configuration 149

150

OSTYPE_TCBEXT1 was set to unsi gned char in the project's sal -
vocf g. h. The resulting output is shown in Figure 30.

Task 2's buffer
Task 6's buffer
Task ?'s buffer
Task 8’s buffer

starts
starts
starts
starts

at
at
at

at @

Figure 30: Tch Extension Example Program Output

Tcb extensions can be used for a variety of purposes, including

* + Passing information via a pointer to a task at
startup or during runtime.0

* « Avoiding the use of task-specific global
variables accessed indirectly via OSt | D() .

* + Embedding objects of any type in a task's tcb.

50

This is useful because Salvo tasks must be declared as voi d Task (void

) , i.e. without any parameters.

Chapter 5 « Configuration

Salvo User Manual

OSENABLE_TIMEOUTS: Enable Support for Timeouts

Notes

Salvo User Manual

Name: OSENABLE_TI MEQUTS
Purpose: To be able to specify an optional timeout
when waiting for an event.
Allowed Values: FALSE: Timeouts cannot be specified.
TRUE: Timeouts can be specified.
Default Value: FALSE
Action: If TRUE, enables the passing of an extra

parameter to specify a timeout when wait-
ing for an event..

Related: -

Enables: OSTi medQut ()

Memory Required: ~ When TRUE, requires a considerable
amount of ROM, plus an additional byte
of RAM per tcb.

By specifying a timeout when waiting for an event, the waiting
task can continue if the event does not occur within the specified

time period. Use OSTi medQut () to detect if a timeout occurred.

If timeouts are enabled, you can use the defined symbol
OSNO_TI MEQUT for those calls that do not require a timeout.

See Chapter 6 « Frequently Asked Questions (FAQ) for more in-
formation on using timeouts.

Chapter 5 « Configuration 151

OSGATHER_STATISTICS: Collect Run-time Statistics

Purpose: To collect run-time statistics from your
application.
Allowed Values: FALSE: Statistics are not collected.
TRUE: A variety of statistics are collected.
Default Value: FALSE
Action: If TRUE, enables Salvo code to collect run-

time statistics from your application on
the number of errors, warnings, timeouts,
context switches and calls to the idle
function.

Related: OSBYTES_OF COUNTS,
OSENABLE_STACK_CHECKI NG

Enables: -
Memory Required: ~ When TRUE, requires a small amount of
ROM, plus RAM for counters.

Notes The numbers of errors, warnings and timeouts are tracked to a
maximum value of 255.

The maximum number of any counter is dependent on the value of
OSBYTES_OF COUNTS. If OSBYTES OF_COUNTS is not defined or is
defined to be 0, it will be redefined to 1.

Which statistics are collected is highly dependent on the related
configuration options listed above.

If enabled via OSLOGG NG, error and warning logging will occur
regardless of the value of OSGATHER_STATI STI CS.

152 Chapter 5 » Configuration Salvo User Manual

OSINTERRUPT_LEVEL: Specify Interrupt Level for
Interrupt-callable Services

Notes

Salvo User Manual

Name: OS| NTERRUPT_LEVEL

Purpose: To specity the interrupt level used in the
Salvo source code. For use with these
compilers:

HI-TECH PICC and PICC-Lite
HI-TECH PICC-18

HI-TECH V8C
Allowed Values: 0-7 (depends on compiler)
Default Value: 0
Action:
Related: OSCALL_0sXYZz
Enables: -
Memory Required: —

Some compilers support an interrupt level feature. With
OSI NTERRUPT_LEVEL you can specify which level is used by Salvo
services called from the foreground.

All affected Salvo services use the same interrupt level.

Chapter 5 « Configuration 153

OSLOC_ALL: Storage Type for All Salvo Objects

Name: OSLOC_ALL

Purpose: To place Salvo objects anywhere in RAM.

Allowed Values: See Table 1.

Default Value: OSLOC_DEFAULT (in port xyz. h).

Action: Set the memory storage type for all of
Salvo's objects that aren't overridden by
OSLOC_XYZ.

Related: OSLOC_ALL, OSLOC_COUNT, OSLOC _CTCB,

OSLOC_DEPTH, OSLOC _ECB, OSLOC_ERR,
OSLOC _LOGVBG, OSLOC_MQCB,
OSLOC_MBGQ, OSLOC _PS, OSLOC S| GQ,
OSLOC_TCB, OSLOC TI CK

Enables: -

Memory Required: n/a

Notes Many compilers support a variety of storage types (also called
memory types) for static objects. Depending on the target proces-
sor's architecture, it may be advantageous or necessary to place
Salvo's variables into RAM spaces other than the default provided
by the compiler.

OSLOC_ALL, when used alone, will locate all of Salvo's objects in
the specified RAM space. OSLOC_ALL overrides all other undefined
OSLOC_XYZ configuration parameters. To place all of Salvo's vari-
ables in RAM Bank 2 with the HI-TECH PICC compiler, use:

#defi ne OSLOC _ALL bank2

in sal vocfg. h. To place the event control blocks (ecbs) in data
RAM, and everything else in external RAM with the Keil Cx51
compiler, use:

#define OSLOC ALL xdata
#defi ne OSLOC ECB dat a

The storage types for all of Salvo's objects are set via OSLOC_ALL
and the remaining OSLOC_XYZ (see below) configuration parame-
ters. Do not attempt to set storage types in any other manner —
compile- and / or run-time errors are certain to result.

Table 1 lists the allowable storage types / type qualifiers for Salvo

objects for each supported compiler (where applicable). Those on
separate lines can be combined, usually in any order.

154 Chapter 5 « Configuration Salvo User Manual

compiler storagetypes/ type qualifiers

bank1, bank2, bank3
HI-TECH PICC

per si st ent
near
HI-TECH PICC-18 .
persi st ent
HI-TECH V8C per si st ent
Keil Cx51 dat a, i dat a, f ar, xdat a

not supported — use
Microchip MPLAB-C18 OSMPLAB C18 LOC ALL_NEAR in-
stead

Table 1: Allowable Storage Types / Type Qualifiers for
Salvo Objects

See Also OSLOC_XYZ, Chapter 11 « Tips, Tricks and Troubleshooting

Salvo User Manual Chapter 5 « Configuration 155

OSLOC_COUNT: Storage Type for Counters

Notes

See Also

156

Name: OSLCII_CCJJNT

Purpose: To place Salvo counters anywhere in
RAM.

Allowed Values: See Table 1.

Default Value: OSLOC_DEFAULT (in port xyz. h).

Action: Set storage type for Salvo counters.

Related: OSLOC_ALL

Enables: -

Memory Required: n/a

OsLOC_COUNT will locate the context switch and idle context switch
counters in the specified RAM area. Memory is allocated for these
counters only when statistics are gathered.

To explicitly specify RAM Bank 0 with the HI-TECH PICC com-
piler, use:

#def i ne OSLOC_COUNT
in sal vocf g. h.
As with all OSLOC_XYZ configuration options, multiple type quali-

fiers can be used with OSLOC_COUNT. For example, to prevent HI-

TECH PICC start-up code from re-initializing Salvo's counters in
RAM bank 2, use:

#def i ne OSLOC _COUNT bank2 persi stent

Chapter 11 « Tips, Tricks and Troubleshooting

Chapter 5 « Configuration Salvo User Manual

OSLOC_CTCB: Storage Type for Current Task Control

Block Pointer

osLoc_ctceB will locate the current task control block pointer in the
specified RAM area. This pointer is used by 0SSched() .

See OSLOC_COUNT for more information on setting storage types for
Salvo objects.

OSLOC _DEPTH: Storage Type for Stack Depth Counters

See Also

OSLOC_DEPTH will locate the 8-bit call ... return stack depth and
maximum stack depth counters in the specified RAM area. Mem-
ory is allocated for these counters only when stack depth checking
is enabled.

See OSLOC_COUNT for more information on setting storage types for
Salvo objects.

OSENABLE_STACK_CHECKI NG

OSLOC_ECB: Storage Type for Event Control Blocks and

Queue Pointers

See Also

osLoc_ECB will locate the event control blocks, the eligible queue
pointer and the delay queue pointer in the specified RAM area.
Memory is allocated for ecbs only when events are enabled. Mem-
ory is allocated for the delay queue pointer only when delays
and/or timeouts are enabled.

See OSLOC_COUNT for more information on setting storage types for
Salvo objects.

OSEVENTS

OSLOC_EFCB: Storage Type for Event Flag Control

Blocks

Salvo User Manual

osLoC_EFCB will locate the event flag control blocks — declared to
be of type OSgl t ypeEf cb by the user — in the specified RAM area.

Chapter 5 « Configuration 157

See OSLOC_COUNT for more information on setting storage types for
Salvo objects.

OSLOC_ERR: Storage Type for Error Counters

OSLOC_ERR will locate the 8-bit error, warning and timeout count-
ers in the specified RAM area. Memory is allocated for these
counters only when logging is enabled.

See OSLOC_COUNT for more information on setting storage types for
Salvo objects.

See Also OSENABLE_TI MEOUTS, OSGATHER_STATI STI CS, OS_LOGG NG

OSLOC_GLSTAT: Storage Type for Global Status Bits

OSLOC_GLSTAT will locate Salvo's global status bits in the specified
RAM area. Memory is allocated for these bits whenever time func-
tions are enabled.

See GSLOC_COUNT for more information on setting storage types for
Salvo objects.

OSLOC_LOGMSG: Storage Type for Log Message String

OSLOC_LOGVSG will locate the character buffer used to hold log
messages in the specified RAM area. This buffer is needed to cre-
ate error, warning and descriptive informational messages.

See OSLOC_COUNT for more information on setting storage types for

Salvo objects.

See Also OS_LOGG NG, OSLOG_MESSAGES

OSLOC _LOST TICK: Storage Type for Lost Ticks

OSLOC_LOST_TI cK will locate the character buffer used to hold lost
ticks in the specified RAM area. This buffer is used to avoid tim-
ing errors when the scheduler is not called rapidly enough.

158 Chapter 5 » Configuration Salvo User Manual

See Also

See OSLOC_COUNT for more information on setting storage types for
Salvo objects.

OS_LOGG NG, OSLOG_MESSAGES

OSLOC_MQCB: Storage Type for Message Queue Control

Blocks

OSLOC_MQCB will locate the message queue control blocks (mqcbs)
in the specified RAM area. Each message queue has an mqcb asso-
ciated with it — however, message queues and mqcbs need not be
in the same bank.

See OSLOC_COUNT for more information on setting storage types for
Salvo objects.

OSLOC_MSGQ: Storage Type for Message Queues

See Also

OSLOC_Ms&Qtells Salvo that the message queue buffers are located
in the specified RAM area. By using the predefined Salvo qualified
type OSgl t ypeMsgQP when declaring each buffer it will be auto-
matically placed in the desired RAM bank.

See OSLOC_COUNT for more information on setting storage types for
Salvo objects.

OSMESSAGE_QUEUES

OSLOC_PS: Storage Type for Timer Prescalar

See Also

Salvo User Manual

osLoC_Ps will locate the timer prescalar (used by OSTi mer ()) in
the specified RAM area.

See OSLOC_COUNT for more information on setting storage types for
Salvo objects.

OSENABLE_PRESCALAR

Chapter 5 « Configuration 159

OSLOC _TCB: Storage Type for Task Control Blocks

osLoc_TCB will locate the task control blocks in the specified
RAM area.

See OSLOC_COUNT for more information on setting storage types for
Salvo objects.

OSLOC_SIGQ: Storage Type for Signaled Events Queue

Pointers

OSLOC_SI &Q will locate the signaled events queue pointers in the
specified RAM area. Memory is allocated for this counter only
when events are enabled.

See OSLOC_COUNT for more information on setting storage types for
Salvo objects.

OSLOC _TICK: Storage Type for System Tick Counter

See Also

160

OSLOC_TI €K will locate the system tick counter in the specified
RAM area. Memory is allocated for this counter only when ticks
are enabled.

See OSLOC_COUNT for more information on setting storage types for
Salvo objects.

OSBYTES_OF_TI CKS

Chapter 5 « Configuration Salvo User Manual

OSLOGGING: Log Runtime Errors and Warnings

Notes

See Also

Salvo User Manual

Name:
Purpose:
Allowed Values:

Default Value:
Action:

Related:
Enables:
Memory Required:

OSLOGA NG

To log runtime errors and warnings.

FALSE: Errors and warnings are not
logged.

TRUE: Errors and warnings are logged.

FALSE

Configures Salvo functions to log all errors
and warnings that occur when during
execution.

OSLOG_MESSAGES, OSRpt ()

When TRUE, requires a considerable
amount of ROM, plus RAM for the error
and warning counters.

Most Salvo functions return an 8-bit error code. Additionally,
Salvo can track run-time errors and warnings through the dedicated
8-bit counters OSer r s and OSwar ns.

OSRpt () will display the error and warning counters if OSLOGGE NG

is TRUE.

The value of OSLOGAE NG has no effect on the return codes for Salvo

user services.

OSLOGG NGis not affected by OSGATHER _STATI STI CS.

OSRpt ()

Chapter 5 « Configuration 161

OSLOG_MESSAGES: Configure Runtime Logging

Messages

Notes

162

Name: OSLOG_MESSACES
Purpose: To aide in debugging your Salvo applica-
tion.
Allowed Values: OSLOG_NONE: No messages are generated.
OSLOG_ERRORS: Only error messages are
generated.

OSLOG_WARNI NGS: Error and warning mes-
sages are generated.
OSLOG _ALL: Error, warning and informa-
tional messages are generated.
Default Value: GSLOG_NONE
Action: Configures Salvo functions to log in a
user-understandable way all errors, warn-
ings and/or general information that oc-
curs when each function executes.
Related: OSLOGE NG
Enables: -
Memory Required: ~ When TRUE, requires a considerable
amount of ROM, plus RAM for an 80-
character buffer, OSl oghvsg[] .

Most Salvo functions return an 8-bit error code. If your application
has the ability to printf() to a console, Salvo can be configured
via this configuration option to report on errors, warnings and/or
general information with descriptive messages. If an error, warning
or general event occurs, a descriptive message with the name of the
corresponding Salvo function is output via pri ntf (). This can be
useful when debugging your application, when modifying the
source code or when learning to use Salvo.

Applications that do not have a reentrant printf() may have
problems when reporting any errors. In these cases, set OSLOG
_IMESSAGES to OSLOG_NONE.

Stack depth for printf() is not tracked by Salvo — your applica-
tion may have problems if there is insufficient stack depth beyond

that used by Salvo.

OSLOGGE NGmust be TRUE to use OSLOG_MESSAGES.

Chapter 5 « Configuration Salvo User Manual

The value of OSLOG_MESSAGES has no effect on the return codes for
Salvo user services.

Salvo User Manual Chapter 5 Configuration 163

OS_MESSAGE_TYPE: Configure Message Pointers

Name: %_NESSAGE_TYPE

Purpose: Enable message pointers to access any area
in memory. Compiler-dependent.

Allowed Values: Any pointer type supported by the com-
piler.

Default Value: voi d

Action: Redefines the defined type OSt ypeMsg.

Related: OSCOWPI LER

Enables: -

Memory Required: =~ Dependent on definition

Notes Salvo's message pointers (of type OSt ypeMsgP), used by messages
and message queues, are normally defined as void pointers, i.e.
voi d *. A void pointer can usually point to anywhere in RAM or
ROM. This is useful, for instance, if some of your message point-
ers point to constant strings in ROM as well as static variables (in
RAM).

Some supported compilers require an alternate definition for mes-
sage pointers in order to point to ROM and RAM together, or to
external memory, etc. By redefining OS_MESSAGE_TYPE, message
pointers can point to the memory of interest.

For example, for Salvo's message pointers to access both ROM and
RAM with the HI-TECH PICC compiler, OS_MESSAGE_TYPE must
be defined as const instead of voi d, because PICC's const *
pointers can access both ROM and RAM, whereas its void *
pointers can only access RAM.

Changing OS_MESSAGE_TYPE may affect the size of ecbs.

164 Chapter 5 « Configuration Salvo User Manual

OSMPLAB_C18 LOC_ALL_NEAR: Locate all Salvo
Objects in Access Bank (MPLAB-C18 Only)

Notes

Salvo User Manual

Name:
Purpose:

Allowed Values:

Default Value:
Action;

Related:
Enables:
Memory Required:

OSMPLAB_C18_LOC_ALL_NEAR

To improve application performance by
placing Salvo's global objects in access
RAM.

FALSE: Salvo's global objects are placed in
banked RAM.

TRUE: Salvo's global objects are placed in
access RAM.

FALSE

Declares all of Salvo's global objects to be
of type near.

When TRUE, should reduce ROM require-
ments.

Salvo's OSLOC_XYZ configuration cannot be used with MPLAB-
C18. Use OSMPLAB_C18 LOC ALL_NEAR instead to place all of
Salvo's global objects in access RAM for improved run-time

performance.

Chapter 5 « Configuration 165

OSOPTIMIZE_FOR_SPEED: Optimize for Code Size or

Speed

Notes

166

Name: OSOPTI M ZE_FOR_SPEED

Purpose: To allow you to optimize your application
for minimum Salvo code size or maxi-
mum speed.

Allowed Values: FALSE: Salvo source code will compile for
minimum size with existing configuration
options.

TRUE: Salvo source code will compile for
maximum speed with existing configura-
tion options.

Default Value: FALSE

Action: Takes advantage of certain opportunities to
increase the speed of the Salvo code.

Related: OSENABL E_DELAYS

Enables: -

Memory Required: ~ When TRUE, requires small amounts of
ROM and RAM.

Opportunities exist in the Salvo source code to improve execution
speed at the cost of some additional lines of code or bytes of RAM.
This configuration option enables you to take advantage of these
opportunities.

This configuration option does not override other parameters that
may also have an effect on code size.

This configuration option is completely independent of any op-
timizations your compiler may perform. The interaction between it
and your compiler is of course unpredictable.

The interplay between execution speed and memory requirements
is complex and is most likely to be unique to each application. For
example, configuring Salvo for maximum speed may in some
cases both increase speed and shrink ROM size, at the expense of
some memory RAM.

Chapter 5 « Configuration Salvo User Manual

OSPIC18_INTERRUPT_MASK: Configure PIC18 Interrupt

Mode

Notes

Salvo User Manual

Name: OSPI C18_| NTERRUPT_MASK

Purpose: To allow you to control which PIC18
PICmicro interrupts are disabled during
Salvo's critical sections.

Allowed Values: 0xC0, 0x80, 0x40, 0x00

Default Value: 0x Q0 (all interrupts are disabled during
critical sections).

Action: Defines the interrupt-clearing mask that

will be used in Salvo services that contain
critical regions of code.

Related: -

Enables: -

Memory Required: —

OSPI C18_| NTERRUPT_MASK is currently supported for use with the
IAR PIC18 and Microchip MPLAB-C18 compilers.

Microchip PIC18 PICmicro MCUs support two distinct interrupt
modes of operation: one with two levels of interrupt priorities
(I PEN1is 1), and one that is compatible with Microchip's mid-range
PICmicro devices (I PENis 0). Depending on how your application
calls Salvo services, it may be to your advantage to change
OSPI C18_| NTERRUPT_MASK to minimize interrupt latency.

When OSPI C18_I NTERRUPT_MASK is set to OxCO, all interrupts
(global / high-priority and peripheral / low-priority) are disabled
during critical regions. Therefore a value of 0xCO is compatible
with both priority schemes and any method of calling Salvo ser-
vices.

When OSPI C18_I NTERRUPT_MASK is set to 0x80, only global /
high-priority interrupts are disabled during critical regions. There-
fore a value of 0x80 should only be used in two cases: 1) in com-
patibility mode, and 2) in priority mode if Salvo services that can
be called from the foreground / ISR level are called exclusively
from high-level interrupts.

When OSPI C18_I NTERRUPT_MASK is set to 0x40, only peripheral /
low-priority interrupts are disabled during critical regions. There-
fore a value of 0x40 should only be used in priority mode if Salvo
services that can be called from the foreground / ISR level are

Chapter 5 « Configuration 167

called exclusively from low-level interrupts. A value of 0x40 must
not be used in compatibility mode.

A value of 0x00 is permitted. However, it must only be used on
applications that do not use interrupts.

Failure to use the correct value of OSPI C18_| NTERRUPT_MASK for
your application will lead to unpredictable runtime results.

See Microchip's PIC18 PICmicro databooks and your PIC18 com-
piler's Salvo Compiler Reference Manual for more information.

168 Chapter 5 » Configuration Salvo User Manual

OSRPT_HIDE_INVALID_POINTERS: OSRpt() Won't
Display Invalid Pointers

Name: OSRPT_HI DE_I NVALI D_POI NTERS

Purpose: To make the output of OSRpt () more legi-
ble.

Allowed Values: FALSE: All tcb and ecb pointer values will

be displayed, regardless of whether or not
they are valid.

TRUE: Only those pointers which are valid
are shown in the monitor.

Default Value: TRUE

Action: Configures OSRpt () to show or hide inva-
lid pointers.

Related: OSRPT_SHOW ONLY_ACTI VE,
OSRPT_SHOW TOTAL_DELAY

Enables: -

Memory Required: When TRUE, requires a small amount of
ROM.

Notes In some cases, the pointer fields of tcbs and ecbs are meaningless.

For example, if a task has been destroyed, the pointers in its tcb are
invalid. By making OSRPT_HI DE_I NVALI D PO NTERS TRUE,
OSRpt () 's output is simplified by removing unnecessary informa-
tion. Invalid pointers are displayed as "n/a".

See Chapter 7 « Reference for more information on OSRpt () .

Salvo User Manual Chapter 5 « Configuration 169

OSRPT_SHOW_ONLY_ACTIVE: OSRpt() Displays Only
Active Task and Event Data

Notes

170

Name:
Purpose:

Allowed Values:

Default Value:
Action:

Related:

Enables:
Memory Required:

OSRPT_SHOW ONLY_ACTI VE

To remove unnecessary information from
OSRpt () 's output.

FALSE: Show the contents of each tcb and
ecb.

TRUE: Show only the contents of each ac-
tive tcb and ecb.

TRUE

Configures OSRpt () to show only tasks
which are not destroyed and events which
have already been created.

OSRPT_HI DE_| NVALI D_PO NTERS,
OSRPT_SHOW TOTAL_DELAY

When TRUE, requires a small amount of
ROM.

By showing neither the tcb contents of tasks in the destroyed state,
nor the ecb contents of events which have not yet been created,
OSRpt () 's output is simplified. However, if you wish to have all
the tasks and events displayed by OSRpt (), set this configuration

option to FALSE.

See Chapter 7 « Reference for more information on OSRpt () .

Chapter 5 « Configuration Salvo User Manual

OSRPT_SHOW_TOTAL_DELAY: OSRpt() Shows the Total
Delay in the Delay Queue

Notes

Salvo User Manual

Name:
Purpose:

Allowed Values:

Default Value:
Action:

Related:

Enables:
Memory Required:

OSRPT_SHOW TOTAL_DELAY

To aid in computing total delay times
when viewing OSRpt () 's output.

FALSE: Only individual task delay fields
are shown.

TRUE: The total (cumulative) delay for all
the tasks in the delay queue is computed
and shown.

TRUE

Configures OSRpt () to compute and dis-
play the total delay of all delayed tasks.

OSRPT_HI DE_| NVALI D_PO NTERS,
OSRPT_SHOW ONLY_ACTI VE

When TRUE, requires a small amount of
ROM.

Task delays are stored in the delay queue in an incremental (and
not absolute) scheme. When debugging your application it may be
useful to be able to see the total delay of all tasks in the delay

queue.

See Chapter 7 « Reference for more information on OSRpt () .

Chapter 5 « Configuration 171

OSRTNADDR_OFFSET: Offset (in bytes) for Context-
Switching Saved Return Address

Notes

172

Name: %RTNADDR_O:FSEF

Purpose: To configure the inner workings of the
Salvo context switcher.

Allowed Values: Any literal.

Default Value: Defined for each compiler and target in

por t Xyz. h whenever OSCTXSW METHOD
1S OSRTNADDR | S VAR. If left undefined,

default is 0.

Action: Configures Salvo source code for use with
the selected compiler and target proces-
sor.

Related: OSCTXSW METHOD

Enables: —
Memory Required: n/a

This configuration option is used within the Salvo source code to
implement part of the context switcher OS_Yi el d() .

Warning Unless you are porting Salvo to an as-yet-unsupported
compiler, do not override the value of OSCTXSW METHOD in the
porting file sal voport Xyz. h appropriate for your compiler. Un-
predictable results will occur.

If you are working with an as-yet-unsupported compiler, refer to
the Salvo source code and Chapter 10 ¢ Porting for further instruc-
tions.

Chapter 5 « Configuration Salvo User Manual

OSSCHED RETURN_LABEL(): Define Label within

OSSched()

Notes

Salvo User Manual

Name: OSSCHED_RETURN_LABEL

Purpose: To define a globally visible label for cer-
tain Salvo context switchers.

Allowed Values: Undefined, or defined to be the instruc-
tion(s) required to create a globally visi-
ble label.

Default Value: Defined but valueless.

Action: Creates a globally visible label for use by
the got o statement.

Related: —

Enables: -

Memory Required: —

Salvo context switchers for certain compilers and/or target proces-
sors may be implemented with a got o-based approach rather than
with a cal | -based approach. For those circumstances, a globally
visible label within the scheduler 0SSched() is required. By de-
claring a label via this configuration parameter, a context switcher
will be able to "return" from a task to the appropriate part of the
scheduler.

The preferred name for the label is OSSchedRt n.

For the Microchip 12-bit PICmicros (e.g. PIC16C57), which have
only a 2-level hardware call...return stack, the following is used
with the HI-TECH PICC compiler:

#defi ne OSSCHED RETURN_LABEL() {
asn("gl obal _OSSchedRtn'
asn("_OSSchedRtn:"); \

}

\
D

This creates a globally visible label OSSchedRtn that can be
jumped to from other parts of the program.

See the various portxyz. h compiler- and target-specific porting
files for more information.

Chapter 5 « Configuration 173

OSSET_LIMITS: Limit Number of Runtime Salvo Objects

Name: %SEF_Ll M TS

Purpose: To limit the number of permissible Salvo
objects when using the freeware libraries.

Allowed Values: FALSE: The numbers of Salvo objects are
limited only by their definitions in sal -
vonem c.

TRUE: Salvo services reject operations on
Salvo objects that are outside the limits
set by the configuration parameters.

Default Value: FALSE

Action: Adds run-time bounds-checking on pointer
arguments.

Related: OSENABLE_BOUNDS_CHECKI NG

Enables: Bounds-checking code sections in various

Salvo services.
Memory Required: ~ When TRUE, requires some ROM.

Notes Services involving Salvo objects (e.g. events) normally accept
pointer arguments to any valid control blocks. However, when
OSSET_LIM TS is TRUE, OSENABLE BOUNDS_ CHECKI NG is set to
TRUE, and these services will only accept pointers that are within
the control blocks as specified by configuration parameters (e.g.
OSEVENTS) at compile time, and otherwise return an error code.

In other words, if OSSi gnal Xyz() is compiled with OSSET_LI M TS
as TRUE and OSEVENTS as 4, passing it an event control block
pointer (ecbP) of OSECBP(5) or highers! will result in OSSi g-
nal Xyz() returning an error code of OSERR_BAD_P.

All users should leave this option at its default value.

51 ecbs are numbered from 1 to OSEVENTS.

174 Chapter 5 « Configuration Salvo User Manual

OSSPEEDUP_QUEUEING: Speed Up Queue Operations

Notes

Salvo User Manual

Purpose: To improve queueing performance.
Allowed Values: FALSE: Use standard queueing algorithm.
TRUE: Use fast queueing algorithm.

Default Value: FALSE

Action: Configures queueing routines for fastest
performance.

Related: -

Enables: -

Memory Required: ~ When TRUE, requires a small amount of
ROM and RAM.

It is possible to improve the speed of certain operations involving
queues approximately 25% through the use of local variables in a
few of Salvo's internal queueing routines.

Applications with minimal RAM should leave this configuration
option at its default value.

See Chapter 9 » Performance for more information on queueing.

Chapter 5 « Configuration 175

OSTIMER_PRESCALAR: Configure Prescalar for

OSTimer()

Notes

176

Purpose: To allow you maximum flexibility in
locating OSTi ner () within your applica-
tion.

Allowed Values: 0, 2 to (2732)-1.

Default Value: 0

Action: If non-zero, adds code and an 8- to 32-bit

countdown timer to OSTi ner () to im-
plement a prescalar.

Related: OSBYTES_OF DELAYS, OSBYTES OF _TI CKS

Enables: -

Memory Required: ~ When TRUE, requires a small amount of
ROM, plus RAM for the prescalar.

If your application uses delays or timeouts, OSTi mer () must be
called at the desired system tick rate. This is typically every 10-
100ms. If your processor has limited resources, it may be unac-
ceptable to dedicate a (relatively slow) timer resource to
OSTiner(). By using OSTIMER PRESCALAR you can call
OSTi mer () at one rate but have it actually perform its timer-related
duties at a much slower rate, as dictated by the value of
OSTI MER_PRESCALAR.

Unlike some hardware prescalars, which provide powers-of-2 pre-
scaling (e.g. 1:2, 1:4, ...), the Salvo timer prescalar is implemented
with a simple countdown timer, and can therefore provide a pre-
scalar rate anywhere from 1:2 to 1:(2"32)-1.

A prescalar value of 1 accomplishes nothing and should not be
used.

Whenever GSTi ner () is called and its prescalar has not reached 0,
a minimum of housekeeping is performed. When the prescalar
reaches zero, OSTi ner () increments the system tick count (if en-
abled), and the scheduler processes delayed and/or timed-out tasks.

Chapter 5 « Configuration Salvo User Manual

OSTYPE_TCBEXTO0|1|2|3|4|5: Set Tcb Extension Type

Notes

Salvo User Manual

Name: OSTYPE_TCBEXTO|1|23/4/5

Purpose: To allow you to change the type of a tcb
extension.

Allowed Values: Any valid C-language type.

Default Value: void *

Action: Redefines OSt ypeTcbExt 0[1|2|3|4|5.

Related: OSENABLE_TCBEXTO|1[2[3[45,
OScTcbExt 0[1|2|3]|4|5, OStc-
bExt 0|1]2[3[4]5

Enables: -

Memory Required: Dependent on definition — affects size of
tcbs.

A tcb extension can be of any valid type, and can have memory
type qualifiers applied to it so long as they do not conflict with ex-
isting OSLOC_XYZ configuration options.

To use tcb extensions, the associated OSENABLE_TCBEXTO|1|2|3|4|5
must be set to TRUE.

See the example for OSENABLE_TCBEXTO0|1|2|3|4|5 for more infor-
mation.

Chapter 5 « Configuration 177

OSUSE_CHAR_SIZED BITFIELDS: Pack Bitfields into
Chars

Name: OSUSE_CHAR S| ZED BI TFI ELDS
Purpose: To reduce the size of Salvo objects.
Allowed Values: FALSE: Places Salvo bitfields into i nt -

sized objects.
TRUE: Places Salvo bitfields into char -
sized objects.

Default Value: FALSE
Action: Alters the typedef for OSt ypeBi t Fi el d.
Related: -
Enables: -
Memory Required: ~ When FALSE, reduces RAM requirements
slightly.
Notes ANSI C supports bitfields in structures. Multiple bits are combined

into a single i nt -sized value, e.g.:

typedef struct {
int fieldoO:2;
int fieldl:1;
int field2:4;
} bitfieldStruct;

Some compilers (e.g. HI-TECH PICC, Keil C51) allow the pack-
ing of bitfields into a single char -sized value in order to save
memory. To use this feature, set OSUSE_CHAR S| ZED BI TFI ELDS
to TRUE. The Salvo type OSt ypeBi t Fi el d will be of type char .

Not all compilers support this feature. If you are having problems
compiling a Salvo application, set OSUSE_CHAR_SI ZED_BI TFI ELDS
to FALSE. The Salvo type OStypeBitFiel d will then be of type
int.

178 Chapter 5 » Configuration Salvo User Manual

OSUSE_EVENT_TYPES: Check for Event Types at

Runtime

Name: %USE_EVENT_TYPES

Purpose: To check for correct usage of an ecb
pointer.

Allowed Values: FALSE: Event-type error checking is not
performed.

TRUE: When using an event service (e.g.

OSSi gnal Sen()), Salvo verifies that the
event being operated on is correct for the
service.

Default Value: TRUE

Action: If TRUE, enables code to verify that the
event type is what the service expects.
This requires additional ROM, and a byte
is added to each ecb (RAM).

Related: -

Enables: -

Memory Required: ~ When TRUE, requires a moderate amount
of ROM.

Notes Salvo uses event control block (ecb) pointers as handles to events.

These pointers are passed as arguments to user event services (e.g.
OS_Wai t Msg()). A user might inadvertently pass an ecb pointer for
one type of event (e.g. a semaphore) to a service for another type
of event (e.g. OSSi gnal Msg()). The result would be unpredictable.
Therefore an extra layer of error checking can be enabled to ensure
that your application is protected against this sort of error.

Caution If you disable this configuration option you must be
especially careful with event service arguments. The use of #de-
f i ne statements with descriptive names (e.g. SEML_P, SEM COML_P,
MSGL2_P) for ecb pointers is highly recommended.

Salvo User Manual Chapter 5 « Configuration 179

OSUSE_INLINE_OSSCHED: Reduce Task Call...Return

Stack Depth

Notes

180

Name: %USE_l NSELI G_NACRO

Purpose: To reduce the call...return stack depth at
which Salvo tasks run.

Allowed Values: FALSE, TRUE

Default Value: FALSE

Action: If FALSE, 0SSched() is called as a func-

tion, and Salvo tasks run at a call...return
stack depth of 1 greater than that of OSS-
ched() . If TRUE, OSSched() is used in an
inline form (i.e. macro), which reduces its
call...return stack depth by 1.

Related: OSUSE_| NLI NE_OSTI MER

Enables: -

Memory Required: When FALSE, a small amount of extra
ROM and one additional call...return
stack level are used by 0SSched() . When
TRUE, OSSched() uses less ROM and
only one call...return stack level.

Normally, you will call Salvo's scheduler in your application like
this:

mai n()

oSl nit():

while (1) {
GSSched() ;

}
}

Since OSSched() calls Salvo tasks indirectly via function pointers,
each task will run with two return addresses pushed onto the target
processor's call...return stack: one inside of OSSched(), and one
inside of mai n() .>2 This means that the call...return stack depth
available to your functions called from within a Salvo task is equal
to 2 less than the target processor's maximum call...return stack
depth.

52 This assumes that the compiler uses a got o nai n(), and calls all functions

inside of mai n() from a call...return stack level of 0. Also, interrupts would
add additional return addresses to the call...return stack.

Chapter 5 « Configuration Salvo User Manual

Salvo User Manual

If your target processor's call...return stack depth is limited, and
you make deep, nested calls from within Salvo tasks or interrupt
routines, you may want to reduce the call...return stack depth at
which Salvo tasks run. By setting OSUSE_I NLI NE_OSSCHED to
TRUE, and calling the scheduler like this:

mai n()

oSl nit():

while (1) {
#i ncl ude "sal vosched. c"

}
}

you can make Salvo tasks run with one fewer return addresses on
the call...return stack, thereby freeing up one call...return stack
level for other functions.

Chapter 5 « Configuration 181

OSUSE_INLINE_OSTIMER: Eliminate OSTimer()
Call...Return Stack Usage

Notes

182

Name: OSUSE_I NLI NE_OSTI MER

Purpose: To enhance ISR performance and reduce
Salvo's call...return stack usage.

Allowed Values: FALSE, TRUE

Default Value: FALSE

Action: If FALSE, OSTimer() is called as a function

from an ISR. If TRUE, uses a macro to per-

form the same operation.
Related: OSUSE_I NLI NE_OSTI MER

Enables: -

Memory Required: ~ When FALSE, a small amount of extra
ROM and one call...return stack level are
used by OSTi ner () . When TRUE,

OSTi mer () uses less ROM and no
call...return stack levels.

Normally you might call OSTi ner () like this from your Salvo ap-
plication:

void interrupt PeriodiclntVector (void)

{

OSTi mer () ;
}

This works for many applications. However, there may be disad-
vantages that arise when calling OSTi mer () from an ISR. They
include slower interrupt response time and larger code size due to
the overhead of a call...return chain of instructions through
OSTi mer () and the need to save context during interrupts, and the
consumption of one call...return stack level.

You can avoid all of these problems by setting
OSUSE_| NLI NE_OSTI MER to TRUE and using OSTi ner () like this:

void interrupt PeriodiclntVector (void)

{

{ #include "salvotiner.c" }

}

This will insert an in-line version of OSTi ner () into your ISR.

Chapter 5 « Configuration Salvo User Manual

OSUSE_INSELIG_MACRO: Reduce Salvo's Call Depth

Notes

Salvo User Manual

Name:
Purpose:

Allowed Values:
Default Value:
Action:

Related:
Enables:
Memory Required:

OSUSE_| NSELI G_MACRO

To reduce Salvo's maximum call depth and
parameter RAM usage.

FALSE, TRUE

TRUE

If FALSE, uses a function to perform a
common operation internal to Salvo. If
TRUE, uses a macro to perform the same
operation.

When FALSE, requires a small amount of
ROM and may require extra RAM on the
stack. When TRUE, requires a moderate
amount of ROM.

If your processor is severely RAM-limited, you should leave this
configuration option at its default value. For those processors that
have a lot of RAM available (e.g. those with a general-purpose
stack), then by setting OSUSE_I NSELI G_MACROto FALSE you should
realize a reduction in code size at the expense of an additional call
level and the RAM required to pass a tcb pointer as a parameter.

Chapter 5 « Configuration 183

OSUSE_MEMSET: Use memset() (if available)

Notes

184

Name: OSUSE_NMEMSET

Purpose: To take advantage of the presence of a
working menmset () library function.

Allowed Values: FALSE, TRUE

Default Value: FALSE

Action: If FALSE, your code will use Salvo func-

tions to clear global Salvo variables. If
TRUE, nenset () will be used to clear

global Salvo variables.
Related: OSLOC_XYZ

Enables: -
Memory Required: ~ Requires some ROM when FALSE.

Compilers will often use the standard library function menmset () to
clear (zero) global variables in start-up code.

If your target processor has a linear organization for RAM, you
should probably set OSUSE_MEMSET to TRUE.

If you target processor uses banked memory, menset () may not
work correctly for certain settings of OSLOC_ECB and OSLOC_TCB.
In these cases, you should set OSUSE_MEMSET to FALSE in order to
use Salvo's explicit byte-by-byte structure clearing functions.

Chapter 5 « Configuration Salvo User Manual

Organization

The configuration options are loosely organized as outlined below,

by category.
Compiler in use: OSCOWPI LER
Target processor: OSTARGET

OSBI G_SEMAPHORES,
OSEABLE_BI NARY_SEMAPHORES,
OSENABLE_EVENT_READI NG,
OSENABLE_EVENT_TRYI NG,
OSENABLE_FAST_SI GNALI NG,
OSENABLE_| DLE_COUNTER,
OSENABLE_| DLI NG_HOCK,
OSENABLE_MESSAGES,
OSENABLE_MESSAGE_QUEUES,
OSENABLE_SEMAPHORES, OSEVENTS,
OSMESSAGE_QUEUES, OSMESSAGE_TYPE,
OSTASKS, OSTASKS

OSBYTES_OF COUNTS,
OSBYTES_OF DELAYS,
OSBYTES_OF EVENT_FLAGS,
OSBYTES_OF_TI CKS

OSCOLLECT _LOST_TI CKS,

Time and ticks: OSENABLE_TI MEOUTS,

OSTI MER_PRESCALAR

OSCLEAR_GLOBALS,

OSOPTI M ZE_FOR_SPEED,

Tasks and events:

Size-specific:

Optimizations:
OSSPEEDUP_QUEUEI NG,
OSUSE_0SI NSELI GQ_MACRO

Monitor _and OSCLEAR_UNUSED PO NTERS, OSEN-

debugging: ABLE_STACK_CHECKI NG, OSLOGG NG,

OSLOG MESSAGES,
OSRPT_HI DE_| NVALI D_PO NTERS,
OSRPT_SHOW ONLY_ACTI VE,
OSRPT_SHOW TOTAL_DELAY

Error checking: OSDI SABLE_ERROR_CHECKI NG,
OSUSE_EVENT_TYPES

Statistics: OSGATHER_STATI STI CS

Salvo User Manual Chapter 5 « Configuration 185

Memory allocation

and RAM banking:

OSLOC_ALL, OSLOC_COUNT, OSLOC_CTCB,
OSLOC_DEPTH, OSLOC_ECB, OSLOC_ERR,
OSLOC_LOGVBG, OSLOC_LOST_TI CK,
OSLOC_MQCB, OSLOC_MSGQ, OSLOC_PS,
OSLOC_SI GQ, OSLOC_TCB, OSLOC_TI CK,
OSMPLAB_C18_LOC_ALL_NEAR,

OSUSE_CHAR S| ZED_BI TFI ELDS,
OSUSE_MEMSET

Interrupts:

OSCALL_ OSCREATEEVENT,
OSCALL_ OSMSGQCOUNT,
OSCALL_OSMBGQEMPTY,
OSCALL_OSRETURNEVENT,
OSCALL_ 0SS GNALEVENT,
OSCALL_OSSTARTTASK,

OSI NTERRUPT_LEVEL,
OSTI MER_PRESCALAR

Porting:

OSCTXSW METHOD, OSRTNADDR OFFSET

Stack depth usage:

OSUSE_I NLI NE_OSSCHED,
OSUSE_I NLI NE_OSTI MER

Code compression:

OSCOVBI NE_EVENT_SERVI CES

Linking to libraries:

OSCUSTOM LI BRARY_CONFI G,
OSLI BRARY_CONFI G,
OSLI BRARY_GLOBALS, CSLI BRARY_TYPE,
OSLI BRARY_VARI ANT, OSUSE_LI BRARY

Hooks to user code:

OSENABLE_| DLI NG_HOCK,
SENABLE_OSSCHED DI SPATCH_HOCK,
OSENABLE_OSSCHED_ENTRY_HOOK,
OSENABLE_OSSCHED_RETURN_HOOK

Scheduler behavior:

OSDI SABLE_FAST_SCHEDULI NG

Extensions:

OSENABLE_TCBEXTO|1]2[3]4]5,
OSTYPE_TCBEXTO|1[23[4|5

Cyclic Timers:

OSENABLE_CYCLI C_TI MERS

Table 2: Configuration Options by Category

Choosing the Right Options for your Application

186

You must select a compiler and a target when configuring Salvo
for your application. Depending on how many Salvo services you
wish to use in your application, you will also need to select and/or
configure other options. Consult the table below for further infor-

mation:

Multitasking:

OSTASKS

Chapter 5 « Configuration

Salvo User Manual

Using events:

OSENABLE_BI NARY_SEMAPHORES,
OSENABLE_EVENT_FLAGS,
OSENABLE_FAST_SI GNALI NG,
OSENABLE_MESSAGES,
OSENABLE_MESSAGE_QUEUES,
OSENABLE_SEMAPHORES, OSEVENTS

Using multiple event
types:

OSCOVBI NE_EVENT_SERVI CES

Keeping unused code

OSENABLE_EVENT_READI NG,

out of your OSENABLE_EVENT TRYI NG
application:
Delaying tasks: OSBYTES_OF_DELAYS

Waiting on events
with a timeout:

OSBYTES_OF DELAYS

Setting the size of
event flags:

OSBYTES_OF EVENT_FLAGS

Keeping track of
elapsed time:

OSBYTES_OF_TI CKS,
OSCOLLECT_LOST_TI CKS

Counting the number
of context switches:

OSBYTES_OF_COUNTS,
OSGATHER _STATI STI CS

Using 16-bit

OSBI G_SEMAPHORES

semaphores:
Using ROM and OSMESSAGE_TYPE
RAM pointers: -
Having an idle OSENABLE_| DLI NG_HOOK,
function: OSENABLE_| DLE_COUNTER
Checking call ... OSENABLE_STACK_CHECKI NG,

return stack depth:

OSGATHER _STATI STI CS

Collecting statistics:

OSGATHER _STATI STI CS

Logging descriptive
error, warning and
status messages:

OSLOGG NG, 0SLOG_MESSAGES

Optimizing your
application:

OSCLEAR_GLOBALS,

OSOPTI M ZE_FOR_SPEED,
OSSPEEDUP_QUEUEI NG

Making the most of
limited resources:

OSTI MER_PRESCALAR

Avoiding event-type
mismatches:

OSUSE_EVENT_TYPES

Learning how Salvo
works:

OSCLEAR_UNUSED_POl NTERS,
OSRPT_HI DE_| NVALI D_POI NTERS,

OSRPT_SHOW ONLY_ACTI VE,
OSRPT_SHOW TOTAL_DELAY

Salvo User Manual

Chapter 5 « Configuration

187

Predefined Configuration Constants

188

Porting to other
compilers and / or
target processors:

OSCTXSW METHOD, OSRTNADDR OFFSET,
OSUSE_MEMSET

Minimizing Salvo's
call...return stack
usage:

OSUSE_I NLI NE_OSSCHED,
OSUSE_I NLI NE_OSTI MER

Calling Salvo
services from the
background and the
foreground:

OSCALL_ OSCREATEEVENT,
OSCALL_ OSMSGQUOUNT,
OSCALL_ OSMBGQEMPTY,
OSCALL_ OSRETURNEVENT,

OSCALL_ 0SS GNALEVENT,
OSCALL_OSSTARTTASK

Locating Salvo's
variables in

OSLOC_ALL, OSLOC_COUNT, OSLOC_CTCB,
OSLOC_DEPTH, OSLOC_ECB, OSLOC_ERR,
OSLOC_LOGVBG, OSLOC_LOST_TI CK,
OSLOC_MQCB, OSLOC_MSGQ, OSLOC_PS,

memory:
OSLOC S| GQ, OSLOC_TCB, OSLOC_TI CK,
OSMPLAB_C18 LOC ALL_NEAR
1 1 OSCUSTOM _LI BRARY_CONFI
Building an - = G

application with
libraries:

OSLI BRARY_CONFI G
OSLI BRARY_GLOBALS, CSLI BRARY_TYPE,
OSLI BRARY_VARI ANT, OSUSE_LI BRARY

Running multiple
tasks at same
priority (round-
robin):

OSDI SABLE_FAST_SCHEDULI NG

Minimizing memory
usage:

OSUSE_CHAR S| ZED _BI TFI ELDS

Extending task-
specific
functionality:

OSENABLE_TCBEXTO|1]2[3]4]5,
OSTYPE_TCBEXTO|1[23/4|5

Using cyclic timers
in place of tasks:

OSENABLE_CYCLI C_TI MERS

Table 3: Configuration Options by Desired Feature

Predefined symbols are listed with their values below.

FALSE

TRUE

OSLOG_NONE, OSLOG_ERRCRS,
OSLOG_WARNI NGS, CSLOG _ALL

see OSLOG_MESSAGES

Chapter 5 « Configuration

Salvo User Manual

OSUNDEF, OSNONE 0

OSPI C12, OSPI C16, OSPI C17,
OSPI C18, OSI X86, CSI 8051,
OSMBSHC11, OSMBP430,
OSVAVS, etc.

OSAQ 430, OSGCC, OSHT_8051C,
OSHT_PI CC, OSHT_V8C,

OSI MAGECRAFT, OSM\. CW
OSM X_PC, OSI AR_| CC,
OSMPLAB_C18, OSKEIL_C51,
etc.

OSFROM_BACKGROUND,
OSFROM_FOREGROUND, see OSCALL_XYZ
OSFROM_ANYWHERE

OSRTNADDR | S_PARAM
OSRTNADDR | S VAR,
OSVI A_OSCTXSW
OSVI A_OSDI SPATCH, etc.

OSALL_BI TS, OSANY_BI TS,
OSEXACT_BI TS

see OSTARGET

see OSCOVPI LER

see OSCTXSW METHCD

see OS_Wai t EFl ag()

Table 4: Predefined Symbols

Obsolete Configuration Parameters

Obsolete configuration parameters — id defined — are automatically
caught during the preprocessing stage. Including them in your
sal vocf g. h will result in a compile-time error message indicating
the name of the configuration option. Some error messages include
instructions on alternate, renamed or related configuration options.

Salvo User Manual Chapter 5 « Configuration 189

190 Chapter 5 « Configuration Salvo User Manual

Chapter 6 « Frequently Asked
Questions (FAQ)

General

What is Salvo?

Salvo is a powerful and feature-rich real-time operating system
(RTOS) for single-chip microcontrollers with limited ROM and
RAM. By imposing a few constraints on conventional RTOS pro-
gramming, Salvo rewards you with the power of an RTOS without
all of the RAM requirements.

Salvo is so small that it runs where other RTOSes can't. Its RAM
requirements are minuscule, and it doesn't need much ROM, ei-
ther.

Salvo is not a state machine. It is not a "a neat trick." It is not an
app note. Salvo is all the RTOS code you need and more to create
a high-performance embedded multitasking program in systems
where kilobytes of ROM are a luxury and available RAM is meas-
ured in tens of bytes.

Is there a shareware / freeware / open source version of

Salvo?

Salvo User Manual

There is a freeware version called Salvo Lite.

Processor- and compiler-specific freeware libraries are provided as
part of each Salvo Lite distribution. Each freeware library sup-
ports a limited number of tasks and events. All of the default func-
tionality is included in the freeware libraries. If you need more
tasks and/or events, or you need access to Salvo's advanced func-
tionality, then you should consider purchasing Salvo LE or Pro.

191

Salvo Pro includes all source code. Source code is not included>? in
Salvo Lite or LE. Salvo is not open source.

Just how small is Salvo?

On a single-chip microcontroller, a typical>* multitasking applica-
tion might need around 1K ROM and around fifty bytes of RAM
for all of Salvo's code and data.

Why should | use Salvo?

If you want to:

* e« get your embedded product to market ahead of
the competition,

* «add greater software functionality to your
existing hardware design,

* e« improve the real-time performance of a
complex design,

e ot have to re-invent the wheel,

* < have a powerful framework to do multitasking
programming,

* e+ control the increasing complexity of your
applications,

* + minimize your hardware costs by using
smaller and cheaper processors,

* < not be left behind by the multitasking / RTOS
wave and/or

* e+ maximize the reliability of your complex
applications

then Salvo is for you.

Low-cost single-chip microcontrollers are capable of hosting so-
phisticated real-time applications, but programming them to do so
can be quite a challenge. Real-time kernels can simplify the design
of complex software. They provide proven mechanisms to accom-
plish a variety of well-understood operations within predictable
time frames. Unfortunately, most commercial real-time offerings
require large amounts of ROM and RAM - requirements that are
largely incompatible with these chips. Programmers of low-end

53
54

Except for a few specific files in certain freeware versions.
Microchip® PIC16C64 with five concurrent tasks and five events.

192 Chapter 6 « Frequently Asked Questions (FAQ) Salvo User Manual

embedded processors have been at a disadvantage when develop-
ing non-trivial applications.

Salvo changes all of that. Now you can develop applications for
inexpensive one-chip microcontrollers similar to how you would
for a Pentium® in an embedded application.

Salvo will get your application up and running quickly. It provides
you with a clean and easily-understood multitasking framework
that uses a minimum of memory to get the job done.

What should | consider Salvo Pro over Salvo LE?

With Salvo Pro, you have the Salvo source code. With source code
you have complete access to all of Salvo's configurability. This
means that you can build custom Salvo libraries with Salvo Pro.

Plus, when your compiler is updated with support for new proces-
sors or with new optimizations, you can take advantage of the new
compiler features without waiting for a Salvo libraries to be rebuilt
and packaged into a new Salvo release.

Another advantage of having Salvo Pro is that it allows you to step
through the Salvo code in C when symbolically debugging your
application.

Additionally, if / when bugs are found and identified in the Salvo
code, you can make changes locally without having to wait for a
new Salvo release.

Lastly, some organizations demand access to source code for code
reviews and code maintenance.

You can upgrade from Salvo LE to Salvo Pro at anytime.

What can | do with Salvo?

You can throw out any preconceived notions on how difficult or
time-consuming embedded programming can be. You can stop
dreaming about multiple, independent processes running concur-
rently in your application without crashing. You can reorganize
your code and no longer worry about how a change in one area
might affect another. You can add new functionality to your exist-
ing programs and know that it will integrate seamlessly. You can
easily link external and internal events to program action.

Salvo User Manual Chapter 6 « Frequently Asked Questions (FAQ) 193

Once you start creating applications with Salvo, you can focus on
adding functionality to and improving the performance of your ap-
plication by creating tasks and events tailored specifically to it.
You can create multitasking applications where tasks pass informa-
tion to other tasks and the rest of your application. You can priori-
tize the tasks so that your processor is spending its time doing
what's most important, instead of unnecessary housekeeping
chores. You can have events control how and when tasks run. You
can worry a lot less about interrupts. You can write powerful, effi-
cient and reliable multitasking applications with predictable real-
time performance.

And you can do all of this a lot more quickly than you'd expect.

What kind of RTOS is Salvo?

Salvo is a priority-based, event-driven, cooperative, multitasking
RTOS. It is designed to run on processors with severely limited
resources (primarily ROM and RAM).

What are Salvo's minimum requirements?

Salvo requires a full-featured ANSI-C-compliant C compiler from
a third party. Contact the factory or visit the website for a list of
tested and/or approved compilers.

If you're not already reasonably proficient in C, you will need to
review certain concepts (particularly pointers, if you plan on using
messages and message queues) before beginning with Salvo. You
don't need to be an expert C programmer to use Salvo.

What kind of processors can Salvo applications run on?

194

Salvo requires a processor with a hardware call...return stack of at
least 4 levels and enough memory for Salvo's code and data. ROM
and RAM requirements vary, and are controlled primarily by your
application's source code and settings in the Salvo configuration
file sal vocfg. h.

Chapter 6 « Frequently Asked Questions (FAQ) Salvo User Manual

My compiler doesn't implement a stack. It allocates
variables using a static overlay model. Can it be used

with Salvo?

Salvo has been implemented with this type of compiler, with con-
ventional compilers (parameters and return addresses on the stack),
and with compilers that take an in-between approach.

Where a general-purpose stack is present, Salvo's use of it is
minimal.>> It can run on stack-less processors as well as any
processor with a stack, from a PICmicro® to a Pentium®.

How many tasks and events does Salvo support?

Salvo supports an unlimited number of tasks and events. The num-
ber of tasks and events in your application is limited only by avail-
able RAM. Salvo's default configuration supports up to 255 tasks,
255 events and 255 message queues.

How many priority levels does Salvo support?

Salvo supports 16 distinct priority levels. Tasks can share priority
levels.

What kind of events does Salvo support?

Salvo supports binary semaphores, counting semaphores, event
flags, messages and message queues. You can create ("init")

events, signal ("post", "put", "unlock", "release", "send") events

nn

and have tasks wait ("pend", "get", "lock", "acquire", "receive") on
each event.

Is Salvo Y2K compliant?

Salvo User Manual

Yes. Salvo does not provide any functions for reporting or setting
the absolute time of day and date (e.g. 10:22.36pm, Nov. 11,
1999). Therefore Salvo is by definition Y2K compliant.

55 A stack pointer (SP) and/or PUSH and POP instructions are evidence of a
general-purpose stack.

Chapter 6 « Frequently Asked Questions (FAQ) 195

Where did Salvo come from?

Getting Started

Salvo 1.0 was originally developed in assembly language for use in
a low-cost, high-performance multichannel racecar data acquisition
system. Its appeal to a wider audience was quickly recognized,
whereupon it was rewritten in C for greater portability and con-
figurability.

Where can | find examples of projects that use Salvo?

Every Salvo distribution has deno, tut (tutorial) and ex (exam-
ple) folders. Refer to File and Program Descriptions in the Salvo
User Manual for a test system (e.g. sysa) that's similar to yours.
Then search these folders in your Salvo installation for project
files, source code (usually mai n. c) and configuration files (sal -
vocf g. h).

Which compiler(s) do you recommend for use with Salvo?

Is there a tutorial?

As a matter of policy, we do not take any positions regarding the
compilers we have certified for use with Salvo. The fact that we've
certified a particular compiler should suggest to you that we con-
sider it to be a production-level tool. When purchasing a compiler,
we suggest you base your decision on the quality of its output,
suitability to the task, flexibility, IDE (if included), debugging
tools, support and price.

Unless otherwise noted in the Salvo Compiler Reference Manuals,

compilers for the same target are generally interchangeable as far
as Salvo is concerned.

Yes. An in-depth tutorial can be found in the Salvo User Manual.

196 Chapter 6 « Frequently Asked Questions (FAQ) Salvo User Manual

Apart from the Salvo User Manual, what other sources of
documentation are available?

The Application Notes contain information on a variety of topics.
The Salvo Compiler Reference Manuals contain compiler-specific
information.

I'm on atight budget. Can | use Salvo?

You can use Salvo Lite, with its complete set of freeware libraries,
to create fully functioning Salvo applications. You'll be limited to
the numbers of tasks and events your application can support.

| only have an assembler. Can | use Salvo?

Performance

No. You will need a certified C compiler to use Salvo.

How can using Salvo improve the performance of my

application?

Salvo User Manual

If you're used to programming within the conventional foreground
/ background loop model, converting your application to a Salvo
application may yield substantial performance benefits.

For example, it's not uncommon to write a program that polls
something (say an I/O pin) repeatedly and performs a complicated
and time-consuming action whenever the pin changes. You might
have a timer interrupt which calls a subroutine to poll a port pin
and XOR it against its previous value. If the pin changes, then you
might set a bit in a global status byte, which is then tested every
time through your main loop. If the bit is set, you disable inter-
rupts, clear the status bit, reenable interrupts and then take an ap-
propriate action.

The problem with this approach is that your program is consuming
processor cycles while sampling information that remains un-
changed for most of the time. The more infrequently the event (in
this case, the change on I/O pin) occurs, the more inefficient your
program is.

Chapter 6 « Frequently Asked Questions (FAQ) 197

The solution is to employ an event-based approach by using Salvo.
When a task is made to wait an event, and the event is not avail-
able (e.g. the I/O pin hasn't changed), then the task is put into a
waiting state. From this time forward, until the event occurs, not a
single processor cycle is expended on waiting for the event. Zip,
zero, nada. When the event does finally occur, the task will process
the event as soon as it is made to run by the scheduler. In other
words, it's the event that drives all the other actions directly. With
events driving your application, it can spend its time on the most
important things, as defined by you, the programmer.

It's important that you understand the distinction between polled
and event-based actions.

How do delays work under Salvo?

Salvo provides a simple means of delaying tasks. While a task is
delayed, it consumes a minimum of processor resources, and your
other (non-delayed) tasks can continue to run. The overhead to
support one or more delayed tasks is the same. You can specify
delays to the resolution of the system timer, which is under your
control.

See the Timer and Timing section in this FAQ for more informa-
tion.

What's so great about having task priorities?

The point of assigning priorities to tasks is to make the most of
your processor's power by having it always doing what is most im-
portant at that particular instant in time.

For example, say you have an instrument whose primary purpose
is to generate moderate-frequency waveforms. But you'd also like
to monitor various analog voltages in the instrument to ensure no
out-of-range conditions. By assigning the waveform-generating
task a high priority, and the analog-sampling task a low priority,
the Salvo application will automatically run the sampling task
when there's no demand for the waveform to be generated. But
while the waveform is being generated, the sampling task will not
interfere.

All you have to do in Salvo is assign each task an appropriate pri-

ority, and ensure that each task context-switches often enough to
allow other tasks to run as needed.

198 Chapter 6 « Frequently Asked Questions (FAQ) Salvo User Manual

When does the Salvo code in my application actually run?

Salvo's code runs only when you explicitly call Salvo's user ser-
vices within your application. In most cases it's pretty obvious
when your processor is running Salvo code — for example, when
you start a task by calling OSCr eat eTask() or OSSt art Task() .

When the scheduler and timer actually run is perhaps a little less
obvious. The scheduler runs as part of any context switch in your
code, and it also runs when there are no tasks eligible to run. The
timer runs whenever it is called at the periodic system timer rate,
which is usually done via a periodic interrupt.

How can | perform fast, timing-critical operations under

Salvo?

Memory

In order to control critical timing under any RTOS, follow these
two rules: 1) give timing-critical tasks high priorities, and 2) use
Salvo's flexible features to prevent or delay it from doing anything
during a critical time period.

Since Salvo is a cooperative multitasking RTOS, during a timing-
critical task there is only one source of potential interference — in-
terrupts. Interrupts which might involve Salvo would be those that
signal events and / or call the system timer OSTi ner (). By pre-
venting calls to Salvo services during timing-critical operations
you can guarantee the proper operation of your system.

If, on the other hand, your application can tolerate the timing jitter
that will occur if Salvo services are invoked during a critical pe-
riod, then you may not have much to worry about. This is usually
the case with operations whose frequency is much less (e.g. 1/50)
than that of the system timer.

How much will Salvo add to my application's ROM and

RAM usage?

Salvo User Manual

Salvo's ROM requirements depend on how many of its functions
you call, and its RAM requirements depend on how many tasks
and resources you create. Salvo was specifically designed for proc-
essors with limited memory resources, and so it requires only a

Chapter 6 « Frequently Asked Questions (FAQ) 199

small fraction of what a typical multitasking kernel would nor-
mally need.

The Salvo User's Manual contains specific information on memory
requirements for a variety of representative test systems.

How much RAM will an application built with the libraries
use?

Using a PIC16 library3¢ that supports multitasking, delays, and
events (binary and counting semaphores, as well as messages), an
application will need

e o 10 bytes of RAM for Salvo's global
variables3’

* o 5Dbytes of RAM per task
* e 3 bytes of RAM event

The compiler will need some additional RAM to handle local vari-
ables, interrupt save and restore, etc. But the numbers above repre-
sent how little RAM Salvo needs to implement all its functionality.

Do | need to worry about running out of memory?

No. Salvo's RAM memory requirements are fixed at compile time.
They are simply:

#(tasks) x sizeof(task control block)

* +#(events) x sizeof(event control block)

* + #(tcb pointers3®) x sizeof(tcb pointer)

* + #(message queues) x sizeof(message queue
control block)

* +#(message queues) x sizeof(user-defined
message queues)

* + sizeof(variables associated with configuration

options)

These requirements do not change during runtime, and are not de-
pendent on call depth, the status of any of the tasks, the values of

56 sfpa2cab.lib, for the PICI6F877 for use with the HI-TECH PICC
compiler.

4 of the 10 bytes of global variables are for the 32-bit elapsed time counter,
which can be disabled by doing a source-code build (no libraries).

57

38 2or3, depending on the configuration.

200 Chapter 6 « Frequently Asked Questions (FAQ) Salvo User Manual

any of the events or any other multitasking-related issues. Once
you define tasks and events in Salvo and your application has the
memory to support them, you can do whatever you want without
the fear of running out of memory.

Salvo cannot "run out of memory" during runtime.

If | define a task or event but never use it, is it costing me
RAM?

Yes. The RAM memory is allocated at compile time.

How much call ... return stack depth does Salvo use?

Normal stack depth is 4, and in some instances Salvo can be con-
figured to use a maximum call...return stack depth of 3. This
means that no Salvo function will require a call-return stack more
than 4 levels deep, not including interrupts. This is accomplished
by setting the following configuration parameters in your sal -

vocfg. h:
#defi ne OSLOGE NG FALSE
#defi ne OSUSE_| NLI NE_OSSCHED TRUE
#defi ne OSUSE_| NLI NE_CSTI MER TRUE

#def i ne OSUSE_OSI NSELI GQ MACRO TRUE

and making the appropriate changes to your source code (see the
configuration options' descriptions for more information). These
options will configure Salvo to use in-line forms of various func-
tions (thus saving one or more call...return stack levels) and to use
simple function return codes without debug messages (saving an-
other call...return stack level).

When calling Salvo functions (e.g. OSSi gnal Msg()) from ISRs,
remember that ISRs are likely to run one or more stack levels deep,
depending on when the interrupt is serviced. This will affect the
maximum call ... return stack depth in your application.

By choosing OSENABLE_STACK_CHECKI NG Salvo will monitor the
stack depth of all of its functions and report back the maximum
stack depth reached. This is especially useful when simulating your
application by running Salvo on a PC.

Note that the numbers above are based on Salvo's inherent
call...return tree, and do not include any additional stack depth due

Salvo User Manual Chapter 6 « Frequently Asked Questions (FAQ) 201

to how your compiler does certain things like indirect function
calls.

Why must | use pointers when working with tasks? Why
can't | use explicit task IDs?

202

Salvo user services originally took task, event and message queue
IDs (simple integer constants) as parameters to refer to Salvo ob-
jects. The advantage of this approach was that it was very easy for
beginners to understand, it easily accommodated run-time error
checking, and the memory requirements (mainly when passing pa-
rameters) were minimal. However, it also had several severe dis-
advantages, including increased code size, lack of flexibility, poor
run-time performance and increased call...return stack usage.

Salvo services now use pointers as parameters to refer to Salvo ob-
jects. Along with the attendant advantages that pointers bring with
them, Salvo's syntax is more like other, larger RTOSes. Somewhat
surprisingly, the memory requirements actually decreased for
many target processors.

With the pointer-based approach, the simplest way to refer to a
task is to use the OSTCBP() macro, which returns a pointer to the
tcb of a particular task. This is a compile-time constant (it's an ad-
dress of an array element), and on many targets’® uses the same
amount of memory as an 8-bit integer constant. Similar macros
exist for events, message queues, etc. These macros allow you to
refer to Salvo objects explicitly.

An alternative approach is to use a handle, a variable that contains
a pointer to a particular task's tcb. This offers flexibility but has the
disadvantage that it consumes extra RAM. For some applications
handles can be very useful.

Using the C #def i ne preprocessor directive for event IDs can sub-
stantially improve code legibility. For example, use:

/* pointer to display binSem */
#define BINSEM DI SP_P OSECBP(3)

/* create display semaphore, init to 1. */
OSCr eat eSen(BI NSEM DI SP_P, 1);

/* get display. */
OS_Wai t Sem(BI NSEM DI SP_P, OSNO_TI MEQUT) ;

59 E.g. PIC16 and PIC17 series of PICmicro MCUs.

Chapter 6 « Frequently Asked Questions (FAQ) Salvo User Manual

/* rel ease display. */
OSSi gnal Sen(BI NSEM DI SP_P) ;

to reference the binary semaphore that is used as a resource to con-
trol access to a display in a easy-to-read manner.

How can | avoid re-initializing Salvo's variables when |
wake up from sleep on a PIC12C509 PICmicro MCU?

Libraries

The PIC12C509 has a simple architecture (no interrupts, single re-
set vector) and always vectors to the last location in ROM when it
wakes from sleep due to the watchdog timer or wake-on-pin-
change. Normally, the startup code generated by the compiler will
initialize all static and global variables immediately after any type
of reset — power-on reset (POR) or otherwise. This will reset all of
Salvo's variables to 0, equivalent to calling GSI ni t ().

Since you'd like to preserve the state of your multitasking system
on wake-from-sleep, and not reset it, you must declare Salvo's
variables to be of type persistent. This instructs the compiler to
skip the initialization for these variables. If you are using HI-
TECH PICC, the easiest way to declare Salvo's variables as persis-
tent is to use the OSLOC_ALL configuration option, like this:

#defi ne OSLOC _ALL bankl persi stent

This will place all of Salvo's variables in RAM bank 1, and will
prevent the startup code (which is executed after every type of re-
set, not just POR) from resetting the variables to zero. If you use
this method, you must call osI nit () after each POR (and not af-
ter other types of reset) in order to properly initialize Salvo.

What kinds of libraries does Salvo include?

Salvo User Manual

Every Salvo distribution includes the freeware Salvo libraries.
Additionally, the Salvo LE and Pro include the standard Salvo li-
braries. There are many different library types, depending on how
much functionality you need.

Chapter 6 « Frequently Asked Questions (FAQ) 203

What's in each Salvo library?

Each Salvo library contains the default Salvo functionality for the
particular library type. Additionally, each library is compiled for a
default number of Salvo objects (tasks, events, etc.). Some libraries
(notably those for targets with extremely limited RAM) have a
subset of the normal functionality.

Why are there so many libraries?

Each library is generated with a particular compiler, target proces-
sor and library type in mind. As a result, a large number of librar-
ies is required to span all the possible combinations.

Should | use the libraries or the source code when
building my application?

If you don't have Salvo Pro, you'll have to use the libraries.

With Salvo Pro, you should use the standard libraries until you
reach a situation where the configuration of the library no longer
suits your application, e.g. you want 32-bit delays and the library
supports only 8-bit delays. In that case, you can use the source
code and some configuration options to build a custom Salvo li-
brary.

Alternatively, you can build a Salvo application wholly from the
Salvo source code, bypassing the libraries altogether.

What's the difference between the freeware and standard
Salvo libraries?
There is very little difference. The freeware libraries are limited to

a maximum number of Salvo objects. The standard libraries sup-
port as many Salvo objects as you can fit in RAM.

My library-based application is using more RAM than |
can account for. Why?

The default number of Salvo objects used by each library requires
a certain amount of RAM, whether or not you use all of those ob-
jects. If your application uses fewer objects, you can reduce the

204 Chapter 6 « Frequently Asked Questions (FAQ) Salvo User Manual

application's RAM requirements with a different set of configura-
tion objects. See Chapter 8 ¢ Libraries for more information.

I'm using a library. Why does my application use more
RAM than one compiled directly from source files?

Each library is created with its own default configuration. Some
configurations include Salvo features that require one or more
bytes of RAM. For example, the library may be configured to sup-
port a single message queue as well as other event types. Each
message queues requires its own message queue control block
(mqcb), and RAM has been allocated for it in the library. There-
fore even if you do not use message queues in your application
when linking to a library, RAM is allocated for this (unused) mes-
sage queue.

You can reduce some of the library's RAM requirements by over-
riding the RAM allocations. See Chapter 8 ¢ Libraries for more
information.

I'm using a freeware library and | get the message "#error:
OSXYZ exceeds library limit — aborting." Why?

You've probably set OSXYZ to a number that exceeds the maximum
value supported by the library. Remove OSXYZ from your sal -
vocf g. h or upgrade to Salvo LE or Pro.

Why can't | alter the functionality of a library by adding
configuration options to my salvocfg.h?

Salvo User Manual

The configuration options affect a library only at compile time.
Since the libraries are precompiled, changing configuration options
in your sal vocf g. h will have no effect on them. Choose a differ-
ent library with the functionality you desire, or use the source
code.

Chapter 6 « Frequently Asked Questions (FAQ) 205

The libraries are very large — much larger than the ROM
size of my target processor. Won't that affect my

application?

No. Your compiler will extract only the modules that it needs from
the library you're using. In fact, linking to libraries creates the
smallest possible Salvo applications.

I'm using a library. Can | change the bank where Salvo
variables are located?

Configuration

No. On banked target processors, the locations of the Salvo vari-
ables are determined by the library. To "move" the variables to
another bank, you'll need to build a custom library, or use the
source files, set your own configuration options, and recompile.

I'm overwhelmed by all the configuration options. Where

should | start?

206

Nearly all of the configuration options are for Salvo Pro users do-
ing source-code builds, or building custom libraries.

If you're using a Salvo library, the only configuration options you
need are the ones that tell Salvo which kind of library you're using
and how many Salvo objects you want in your application. You
needn't worry too much about the others.

If you have Salvo Pro, or you want more objects than are sup-
ported by default in the standard libraries, you'll find various con-
figuration options useful when tailoring Salvo to your application.
Start with the default configurations (no configuration options in
your sal vocf g. h), which are described in Chapter 5 « Configura-
tion. Then modify your sal vocf g. h as you enable Salvo function-
ality that differs from the default.

Three good places to get acquainted with the configuration options
and how they're used are the tutorial, example and demonstration
programs in the standard Salvo distribution. By examining the pro-
grams and their corresponding sal vocfg. h files you should be
able to develop a feel for when to use a particular configuration

Chapter 6 « Frequently Asked Questions (FAQ) Salvo User Manual

option. These programs are found in \sal vo\tut, \sal vo\ex
and \ sal vo\ deno.

Do | have to use all of Salvo's functionality?

You can use as little or as much as you like. Only those portions
that you use will be incorporated into (i.e. will take up ROM and
RAM in) your final executable. By choosing configuration options
you can control how much functionality Salvo delivers to your ap-
plication.

What file(s) do | include in my main.c?

In terms of Salvo services, all you need to include is sal vo. h. For
some target processors, including sal vo. h is enough to automati-
cally include the necessary processor-specific header files. If not,
you'll also need to include target-specific header files in all of your
source files — see your compiler's documentation for more informa-
tion.

What is the purpose of OSENABLE_SEMAPHORES and
similar configuration options?

Salvo Pro users who compile their applications by linking multiple
Salvo source files may find this type of configuration option use-
ful. That's because entire modules can be disabled simply setting
the configuration option to FALSE in sal vocf g. h instead of chang-
ing the setup to your compiler / project / IDE.

Can | collect run-time statistics with Salvo?

By enabling OSGATHER_STATI STI CS Salvo will track and report the
number of context switches, warnings, errors, timeouts and calls to
the idle function (if enabled).

How can | clear my processor's watchdog timer with
Salvo?

Good coding practice dictates that watchdog timers only be cleared
from a single place within an application. An excellent place to do
so is from within Salvo's scheduler, and by default, this is what

Salvo User Manual Chapter 6 « Frequently Asked Questions (FAQ) 207

Salvo does. Therefore, if a task fails to release control back to the
scheduler, the watchdog will time out, indicating a fault.

Salvo Pro users can clear the processor's watchdog timer from an-
other location by redefining OSCLEAR WATCHDOG _TI MER() in sal -
vocf g. h to do nothing, and clearing the watchdog timer elsewhere
in their code.

| enabled timeouts and my RAM and ROM grew
substantially— why?

Timer and Timing

Salvo makes the most efficient use of RAM and ROM based on the
configuration options you've chosen. Adding support for timeouts
requires an additional amount of RAM for each task, and extra
code in ROM, in order to support a task's ability to wait on an
event with a timeout. RAM- and ROM-wise, this is probably the
most "expensive" Salvo configuration option.

Do | have to install the timer?

If you want to make any use of Salvo's time-based functions (task
delays, timeouts when waiting for a resource, elapsed time, etc.)
you must install the timer. Simple multitasking and support for
events do not require the timer, but delays and timeouts do.

Salvo Pro users can configure OSBYTES_OF_DELAYS to a non-zero
value appropriate for the application in order to use Salvo's delay
and timeout features in a source-code build. Similarly, configuring
OSBYTES_OF_TI CKS to a non-zero value in a source-code build en-
ables the use of Salvo's elapsed time features.

How do | install the timer?

In your application you must call OSTi mer () at the tick rate you
feel is appropriate for your application. Usually this is done by cre-
ating a periodic interrupt at the desired tick rate, and having the
associated ISR call OSTi mer (). OSTi mer () must be called in only
one place in your application.

208 Chapter 6 « Frequently Asked Questions (FAQ) Salvo User Manual

| added the timer to my ISR and now my ISR is huge and
slow. What should | do?

See "Why did my interrupt service routine grow and become
slower when I added a call to OSTi ner () " in this FAQ.

How do | pick atick rate for Salvo?

The ideal Salvo "tick" rate is dependent on the application, and
hence is configurable. Rates on the order of 10-100Hz are com-
monly used. The tick rate defines the timer resolution in Salvo, but
does not directly affect the latency of a task made ready-to-run.
The context-switching rate is independent of the tick rate. A faster
tick rate requires more processor, but it gives better timer resolu-
tion, and may require additional memory for the delay fields in the
task blocks.

Once you've chosen a tick rate, you must configure your system to
call OSTi mer () each time the tick occurs. This is usually done via
a periodic interrupt.

How do | use the timer prescalar?

A linear prescalar for the Salvo timer is provided to create a slower
Salvo "tick" rate independent of the timer to which the Salvo timer
is chained. For example, on a 4MHz system with a hardware timer
that generates interrupts at a 500 Hz rate (i.e. every 2 ms), by de-
fining OSTI MER_PRESCALAR to 5 the desired Salvo tick rate will be
100Hz (i.e. every 10ms). The maximum value for the prescalar is
(2°32)-1, and to disable it altogether simply set it to O (the default).

| enabled the prescalar and set it to 1 but it didn't make
any difference. Why?

The Salvo timer prescalar is enabled if OSTI MER_PRESCALAR is set
to a number greater than or equal to 1, resulting in prescalar rates
of 1:1, 1:2, 1:3, ... 1:(2"32)-1. A prescalar value of 1 will add a few
instructions to OSTi mer () and will require a byte of RAM storage
for Osti mer PS, but it will not change the rate at which OSTi ner ()
is called, since the prescalar rate is 1:1. In order to change the rate
at which OSTi ner () is called in your application, choose a value
for the timer prescalar that is 2 or greater.

Salvo User Manual Chapter 6 « Frequently Asked Questions (FAQ) 209

What is the accuracy of the system timer?

As long as the system tick rate is slow enough to give Salvo's sys-
tem timer OSTi mer () enough time to do its job, the system timer
will have no more than 1 timer tick of inaccuracy.

What is Salvo's interrupt latency?

Salvo must disable interrupts while certain internal operations are
being performed. Every effort has been made to minimize Salvo's
interrupt latency. However, because of Salvo's configurability it's
difficult to provide a general answer to this question. Your best bet
is to create your own test programs with Salvo Lite to test Salvo's
interrupt latency.

What if | need to specify delays larger than 8 bits of ticks?

You have three options. You can call OS_Del ay() multiple times
(sequentially, or in a loop) to create longer delays.

With Salvo Pro, you can change the configuration parameter
OSBYTES_OF_DELAYS to use 16- or 32-bit delays instead of 8-bit
delays. This will consume an additional 1 or 3 bytes of RAM per
task, respectively.

Or you can make use of the OSTI MER_PRESCALAR configuration
parameter with Salvo Pro. However, this approach will reduce the
resolution of the system timer.

How can | achieve very long delays via Salvo? Can | do
that and still keep task memory to a minimum?

The maximum delay and timeout length is user-configurable as
(2"(n x 8))-1, where n is the size in bytes for the task's delay field.
For example, if 16-bit delays are selected, delays and timeouts of
up to 65535 clock ticks are possible. Since all tasks have the same-
size delay field, the total amount of RAM memory dedicated to
holding the delays is

sizeof(delay field) x #(tasks).
If your application uses delays and timeouts sparingly, but requires

a very long timeout, you can use a small value for OSBYTES_OF_-
DELAYS (e.g. 1, for 1 byte / 8 bits / maximum count of 255) and

210 Chapter 6 « Frequently Asked Questions (FAQ) Salvo User Manual

nest the call within a local loop to achieve a multiple of the maxi-
mum timeout supported by Salvo. For example, using

for (i =0; i <= TIMEQUT_MULTIPLE; i++) {
OS_Wai t Sen{ SEM_NAVE_P, MAX_TI MEQUT) :
if (!OSTi medaut ())

br eak;
}
if (OSTinedQut()) {
/* loop is over, are we here because of a */
/* timeout or did we wait the semaphore */
/* successful ly? */

}

within a task (where the loop counter i is static) will result in a
maximum timeout of TI MEQUT_MULTI PLE x MAX_TI MEQUT. With a
looping construct like this a timeout or delay can be made arbitrar-
ily long at the cost of only a single static variable local to the task
of interest.

Note that many target processors do math efficiently only for their
native data size. Therefore Salvo's timer code will grow substan-
tially on an 8-bit PICmicro if you use 32-bit delays.

An alternative method is to use Salvo's timer prescalar. This
method will affect all Salvo delays and timeouts, system-wide. In
order to use Salvo's delays and timeouts OSBYTES_OF DELAYS must
be non-zero. In order to wuse the timer prescalar,
OSTI MER_PRESCALAR must be set to a non-zero value.

Can | specify a timeout when waiting for an event?

Yes. When waiting for an event you can specify an optional time-
out in system ticks. OSENABLE_TI MEOUTS must be TRUE in order to
wait with timeouts.

Does Salvo provide functions to obtain elapsed time?

Yes. Salvo provides two elapsed time functions, OSGet Ti cks()
and OSSet Ti cks(). These functions get and set, respectively, the
current number of timer ticks since the free-running timer ticks
counter rolled over. To use these elapsed time functions, the con-
figuration parameter OSBYTES_OF_TI CKS must be non-zero.

Salvo User Manual Chapter 6 « Frequently Asked Questions (FAQ) 211

In this example, a task waits for a message, and once obtained, cal-
culates the amount of elapsed time in timer ticks (OSBYTES_OF_-
TI CKS is defined to be 4 in sal vocf g. h):

static OStypeMsgP nmsgP;
static OStypeTick el apsedTi cks;

while (1) {

OSSet Ti cks(0);

OS_Wai t Msg(MSG_I D, &nmsgP, OSNO_TI MEQUT) ;

el apsedTi cks = OSGet Ti cks();

printf("%u ticks have passed\n", el apsedTi cks);

How do | choose the right value for
OSBYTES_OF_TICKS?

212

Salvo uses a free-running counter to monitor system ticks. This
counter is incremented by 1 each time the system timer OSTi mer ()
is called by your application.®® The size of this counter, and hence
the rollover period, is controlled by the configuration parameter
OSBYTES_OF_TI CKS.

Since system ticks are used only for obtaining elapsed time and
statistics, your choice for the value of OSBYTES_OF_TI CKS is en-
tirely dependent on the longest elapsed time you wish to be able to
measure accurately.

For example, let's assume that you have written your application to
have an effective tick rate of 100Hz by enabling Salvo's system
timer, choosing an appropriate value for OSTI MER_PRESCALAR, and
calling OSTimer() from inside a timer-interrupt ISR. If
OSBYTES_OF_TI CKS were defined to be 2, the longest time interval
you could measure would be (65535/100) seconds, or just under 11
minutes. If more than 11 minutes elapse before calling OSGet -
Ti cks(), the reported elapsed time will be the actual elapsed time
modulo 11 minutes, an erroneous result.

60 For every OSTI MER_PRESCALAR calls to OSTi mer () if OSTI MER_PRESCALAR
is nonzero.

Chapter 6 « Frequently Asked Questions (FAQ) Salvo User Manual

My processor has no interrupts. Can | still use Salvo's

timer services?

Context Switching

Yes. As long as you have some form of a timer, you can use
OSTi mer () . For example, you can monitor a free-running counter
for overflow, and each time this occurs, you can call OSTi ner ().
This results in a system tick period equal to the timer overflow pe-
riod. You can lengthen this period by using Salvo's timer prescalar.
As long as you check often enough not to miss an overflow, you'll
have an accurate system timer.

See How can | avoid re-initializing Salvo's variables when | wake
up from sleep on a PIC12C509 PICmicro MCU?, above, for an ex-
ample of how to do this.

How do | know when I'm context switching in Salvo?

All Salvo with an "OS " prefix (e.g. OS_Yi el d())cause a context
switch. Context switches do not occur anywhere else in Salvo.

Why can't | context switch from something other than the

task level?

Because Salvo is designed to run on processors with minimal
amounts of RAM memory and no general-purpose stack, it does
not presume that a stack is available to store context-switching in-
formation. Without it, there's no way to store the return addresses
for the function calls nested within the task. If you were to context-
switch from a function nested within a task, upon returning from
that function the processor's program counter would be undefined.

Why does Salvo use macros to do context switching?

Salvo User Manual

Context switching in Salvo is an inherently in-line action, and is
not generally conducive to the use of functions or subroutines. The
context-switching macros use function calls wherever possible to
keep code size to a minimum.

Chapter 6 « Frequently Asked Questions (FAQ) 213

Can | context switch in more than one place per task?
There is no limit on how many context switches you write into a

given task.

For example, you could add several unconditional context switches
(0s_Yi el d()) to the main loop of a low-priority yet long (in terms
of lines of code) task. This way, if a higher-priority task needs to
run, it will have several opportunities to run for each full path
taken through the low-priority task's loop. For example,

voi d TaskLong(void)
while (1) {

);"give ot her tasks a chance to run. */
CS Yi el d(TaskLongl);

);.Iet'stakeabreaktolet hi gher - */
/* tasks run. */
CS Yi el d(TaskLong2) ;

/* we're about to hog the processor for a */
/* while, solet's yield in case another */

/* nore inportant task is ready to run. */
COS Yi el d(TaskLong3) ;

When must | use context-switching labels?

Prior to Salvo v4, Salvo required context-switching labels.

Unless otherwise specified for a particular target and compiler,
Salvo no longer requires context-switching labels.

Use of context-switching labels where they are not required will
generate an error message.

Tasks & Events

What are taskIDs?

TaskIDs are just integers used to refer to a task. They are num-
bered from 1 to OSTASKS. There's a one-to-one mapping between a
task's taskID and the task control block (tcb) assigned to it. You'll

214 Chapter 6 « Frequently Asked Questions (FAQ) Salvo User Manual

rarely use taskIDs when writing your Salvo application. Instead,
Salvo uses pointers as handles to tasks. For example, the pointer to
the task with taskID 3 is OSTCBP(3) .

Does it matter which taskID | assign to a particular task?

No. The only rule to follow is that each task needs its own, unique
taskID, and hence its own, unique tcb. A task's priority is inde-
pendent of its taskID.

Is there an idle task in Salvo?

Salvo has a built-in facility for automatically calling a user-defined
function when the system is idling. OSI dI i ngHook() is enabled via
the configuration option OSENABLE_| DLI NG_HOOK.

If you prefer, you can create your own idle task with the lowest
possible priority (OSLOWEST_PRI O). Be sure that no other tasks
have this priority. Then, your idle task will run whenever none of
the other tasks are eligible.

You can context-switch inside an idle task of your own making,
but you cannot context-switch inside the built-in idling hook func-
tion. This is an important distinction. Which one you use will de-
pend on what sort of functionality you want to occur when the
system is idling. The scheduler must perform a context switch each
time the idle task runs. Overall performance is better when using
the idling hook function, since no real context switch is performed
when calling OGSl dI i ngHook() .

How can | monitor the tasks in my application?

Salvo provides a task monitor function that you can link to your
application. The monitor is intended to work with a simple ASCII
terminal program. The monitor can display the status of all tasks
and events, and can control tasks. See OSRpt () for more informa-
tion.

What exactly happens in the scheduler?

Salvo's scheduler GSSched() performs three major functions each
time it is called. First, it processes the event queue, if events are in
use. This means that for every event that had a waiting task when it

Salvo User Manual Chapter 6 « Frequently Asked Questions (FAQ) 215

was signaled, the scheduler makes that task eligible to run. Next, it
processes the delay queue. Any tasks that timed out while being
delayed or waiting with a timeout will be made eligible to run. Fi-
nally, the scheduler runs the most eligible task. Interrupts are en-
abled and disabled at various times in the scheduler.

What about reentrant code and Salvo?

An RTOS requires a call...return stack, but Salvo works without a
general-purpose stack. Therefore none of its functions are reen-
trant. In order to avoid problems with reentrancy, 1) do not directly
call a task from anywhere within your program — let the scheduler
handle it, and 2) carefully observe the restrictions on calling Salvo
services from ISRs. By explicitly controlling interrupts and/or set-
ting certain configuration parameters, you can call certain Salvo
services from mainline, task and interrupt levels all in a single ap-
plication.

What are "implicit" and "explicit" OS task functions?

The explicit OS functions require that you specify a task number as
a parameter. A good example is OSCr eat eTask(), which creates
and starts a specified task. Explicit OS task function names contain
the word "Task". Implicit OS functions like OS_Del ay() operate
only on the current task, i.e. the task that is running. Once a task is
running, most or all of the OS functions called are likely to be im-
plicit ones, i.e. they operate on the current task.

How do | setup an infinite loop in a task?

216

A simple way in C is to use the following syntax:

void Task (void)
{

/* initialization code. */

while (1) {
/* body of task. */

-
}

Note that somewhere in the for loop the task needs to return to the
scheduler (e.g. via OS_Yi el d()) to make the highest-priority eligi-
ble task run.

Chapter 6 « Frequently Asked Questions (FAQ) Salvo User Manual

Why must tasks use static local variables?

Static variables are assigned their own unique address in RAM,
and may not be visible to other tasks. By declaring a task's vari-
ables as static you are guaranteeing that they will remain un-
changed while the task is not running. This is the only way to
preserve the variable from one context switch to the next. If the
variable were not static (i.e. if it were an auto variable) it's likely
that it would be changed by other tasks, functions or ISRs, and
unpredictably.

It is safe to use auto variables in tasks®! as long as the task does not
require that the value of the variable be maintained in the task from
one context switch to the next. For example, if a simple f or () loop
is used to repeatedly call a function, and then the task context
switches, as long as the loop index is initialized each time, it
should not pose a problem.

int i;
while (1) {
for (i =0; i <5; i++) {
Wit eControl Reg(0x55);

Wit eControl Reg(0xAA) ;
}

0S_Vi el d(here):
}

Doesn't using static local variables take more memory
than with other RTOSes?

No, it doesn't. The RAM required for saving persistent local vari-
ables in a Salvo application is the same as the RAM required to
save auto local variables in conventional RTOSes.¢2 In each situa-
tion, RAM must be permanently®? allocated to the variable.

Can tasks share the same priority?

Salvo User Manual

When Salvo is configured to use queues, there's no reason why
more than one task cannot share the same priority. Tasks of equal

61 Some implementations (e.g. Salvo on x86-based machines with the Mix

Software Power C compiler) do not permit the use of auto variables.

62 In a conventional RTOS, local auto variables are by their very nature stored

on the stack, or in the task's context save area (if the local auto variable was in
a register to begin with).

63 e as long as the task is active.

Chapter 6 « Frequently Asked Questions (FAQ) 217

priority will round-robin (execute one after the another in a circular
queue) whenever they are the highest-priority eligible tasks. How-
ever, in many applications it is more efficient to give each task a
unique priority.

When Salvo is configured to use arrays, each task must have a
unique priority.

If an idle task is used in your Salvo application, it should be the
only task with the lowest priority (OSLONEST_PRI O). Other tasks
should use priorities between OSHI GHEST_PRIO and
OSLOVEST_PRI O- 1.

Can | have multiple instances of the same task?

Yes. A Salvo task is essentially an address in your program at
which your application will resume execution when the scheduler
sends it there. You can configure two or more Salvo tasks to point
to the same place in your program. For example,

voi d TaskDel ayFi veTi cks(void)

while (1) {
CS Del ay(5, here);
}
}

(BCr eat eTask(TaskDel ayFi veTi cks, OSTCBP(5), 8);
OSCr eat eTask(TaskDel ayFi veTi cks, OSTCBP(6), 9);

while (1) {
GSSched() ;
}

will create two Salvo tasks with different priorities, each of which
delays itself for 5 system ticks over and over. Note that without
reentrancy, the utility of multiple instances of the same task is lim-
ited. Note also that all static variables in the task function will be
"shared" by each instance of the Salvo task.

Does the order in which | start tasks matter?

No. To start a task, it must have been created first. Creating a task
initializes the fields in its task control block, but leaves it ineligible
to run. Starting a task makes it eligible and places it in the eligible
queue. Tasks are positioned within the eligible queue based on

218 Chapter 6 « Frequently Asked Questions (FAQ) Salvo User Manual

their priority. A task will first execute based on its priority, not on
when it was started.

If you start several tasks of equal priority together, they will begin
executing in the order they were started. If they remain at these
same priorities, they will continue to round robin.

By using OSSet Pri o() or OS_Prio() to change the current task's
priority you can control the order in which tasks execute.

How can | reduce code size when starting tasks?

You may face this question of you are explicitly starting tasks
separately from when they are created (by wusing
OSDONT_START_TASK with OSCr eat eTask()). Each task is referred
to by its tcb pointer, which is specified in the call to OSCre-
at eTask() . You can reduce the number of calls to OSSt ar t Task()
by placing it in a loop in order to start multiple tasks at once, e.g.

char i;

for (i =1, i <= OSTASKS: i++) {
0SSt art Task(OSTCBP(i)) ;
}

will start all of your tasks with just a single call to 0SSt ar t Task(),
thereby reducing the size of your application.

What is the difference between a delayed task and a
waiting task?

A task that is delayed is simply inactive for a specified number of
system ticks. It will then rejoin the eligible tasks when the delay
timer has expired. A task that is waiting will wait until an event
occurs. If the event never occurs, then the task is never made eligi-
ble again, unless a timeout was specified when the task was made
to wait. If the timeout timer expires before the event occurs, the
task is made eligible and carries with it a flag that indicates that a
timeout occurred. Your application program can handle this flag at
the task level.

In order to delay tasks, OSTi mer () must be called at the system
tick rate from your application. This run-time overhead is inde-
pendent of the number of tasks still delayed. Waiting tasks, on the

Salvo User Manual Chapter 6 « Frequently Asked Questions (FAQ) 219

other hand, do not require the existence of OSTi mer (), ¢ and re-
quire no processing power whatsoever while they are waiting.

Can | create a task to immediately wait an event?

Not with a single service call. A task can only wait an event by
calling OS_Wai t Xyz() while running. One way to start your appli-
cation with a bunch of tasks waiting for event(s) is to create them
with the highest priority (guaranteeing that they will run before all
others) and create the events with initial values of 0. When each
task runs, have it change its priority to the desired run-time priority
with OSSet Prio() (not OS_Prio()!), and have it wait the event.
When the events are signaled, the waiting tasks will run.

| started a task but it never ran. Why?

You may have incorrectly specified one or more parameters when
calling the relevant Salvo services — check the function return
codes to see if any errors were reported. A common error when
using the freeware libraries is to create a task with a tcb pointer
that exceeds OSTCBP(OSTASKS) .

If Salvo was initialized via OSI nit (), the task was successfully
created and started via OSCr eat eTask() , the scheduler OSSched()
is active, and no other task has destroyed or stopped the task in
question, then it probably had a lower priority than the other tasks
running, and hence never ran. Try elevating the task's priority. Use
the Salvo monitor OSRpt () to view the current status of all the
tasks.

What happens if | forget to loop in my task?

220

You'll get some rather odd results. If your application doesn't crash
immediately, the original task may leave its own function and con-
tinue through your code until it reaches a context switch, and will
thereafter resume execution after that context switch, which will be
part of another task! So you may have inadvertently created a sec-
ond instance of another task by failing to keep execution within the
intended task.

64 Unless they were made to wait with a timeout.

Chapter 6 « Frequently Asked Questions (FAQ) Salvo User Manual

Why did my low-priority run-time tasks start running
before my high-priority startup task completed?

It's common to use delays in a startup task (responsible for config-
uring peripherals like LCDs, for instance). The other tasks ran be-
cause the high-priority startup task was delayed. Regardless of its
priority, whenever a task is delayed or waiting for an event, other
lower-priority tasks are free to run.

If your application needs a startup task that uses delays, and if it's
imperative that no other tasks run before the startup task is com-
plete, then one elegant method is to initially create all the tasks but
only start the startup task, and then start the other tasks at the end
of the startup task. You can even "reuse" the startup task's tcb by
destroying the startup task and creating a new task with the same
tch.

When | signaled a waiting task, it took much longer than
the context switching time to run. Why?

A task that is made eligible will only run when it becomes the
highest-priority eligible task. Other eligible tasks with higher pri-
orities will run first, and will continue to run if they remain eligi-
ble. Also, interrupt service routines (ISRs) have the highest
priorities of all.

Can | destroy a task and (re-) create a new one in its
place?

Yes. As long as a task is destroyed, a new one can be created in its
place. A Salvo task is really just a means of executing a function in
ROM. Creating and starting a task allows that function to execute
along with the other tasks in a priority-based scheme.

Before destroying any task you must ensure that:

* «itis not waiting for any event,

* < isitin the delayed queue and

* < has not acquired any resources that other tasks
might need.

It is up to you to ensure that the above conditions are met. If you
are to use OSDest r oy() in a particular task that accesses resources,
you must release all resources before destroying the task. Failing to
do so would block any other tasks waiting for the resource previ-

Salvo User Manual Chapter 6 « Frequently Asked Questions (FAQ) 221

ously owned by the now-destroyed task. Only if those tasks were
waiting with a timeout would they ever run again.

Can more than one task wait on an event?

Yes. Up to all of the defined tasks can wait on a single event
simultaneously.

Does Salvo preserve the order in which events occur?
Yes.

Can a task wait on more than one event at a time?

Yes, but not simultaneously. At any time a task can only be wait-
ing on a single event. It can wait on more than one event sequen-
tially (e.g. first on one, then on the other), but not simultaneously.

In this example, a task first waits for an error message (a string),
then waits for a resource (an LCD display) to become available.
Once it receives the error message and obtains exclusive access to
the display, it writes the message to the display, waits one second,
releases the display for others to use, and then returns to waiting
for another message.

voi d TaskShowErr Msg(void)
{
static OStypeMsgP nmsgP;
static OStypeMsgP nmsgP2;

while (1) {
OS_Wai t Msg(MSG_ERROR_STRI NG P, &nsgP,
OSNO_TI MEQUT) ;
OS_Wai t Msg(MSG_LCD_DI SPLAY_P, &mrsgP2,
OSNO_TI MEQUT) ;
Di spStringOnLCD((char *) msgP);
OS_Del ay(ONE_SECOND) ;
OSSi gnal Msg(MSG_LCD DI SPLAY_P, (OStypeMsgP)
1);
}
}

By first acquiring the display resource and later releasing it,% the
user is guaranteed to see the error message for at least one second.
The error message will remain on the LCD display until this or an-

65 In this example, MSG_LCD_DI SPLAY is being used as a binary semaphore.

222 Chapter 6 « Frequently Asked Questions (FAQ) Salvo User Manual

other task obtains the LCD display resource via OS_Wait-

Msg(MSG_LCD DI SPLAY, ...) and writes a new string to it via
Di spStringOnLCIY() .

How can | implement event flags?

Salvo User Manual

Event flags are used to synchronize tasks to the occurrence of mul-
tiple events. Two types of synchronization are possible — conjunc-
tive synchronization, where the task can only proceed once all of
the events it's waiting on have occurred (i.e. logical AND), and
disunctive synchronization, where the task can proceed as soon as
any of the events it's waiting on has occurred (i.e. logical OR).

You can use Salvo's built-in event flag (eFlag) services(this is the
preferred method), or you can implement simple flags using binary
semaphores. See the Reference chapter in the Salvo User Manual
for more info on Salvo's event flag services.

To implement conjunctive synchronization (i.e. the logical AND of
multiple events) using binary semaphores, the task must wait on
multiple events in sequential order. In the example below, the task
waits for the occurrence of all three events (signified by binary
semaphores) before proceeding.

OS_Wai t Bi nSem(BI NSEML_P, OSNO_TI MEQUT,
Wi t For Syncl);

OS_Wai t Bi nSem(BI NSEM2_P, OSNO_TI MEQUT,
Wi t For Sync?2) ;

OS_Wai t Bi nSem(BI NSEMB_P, OSNO_TI MEQUT,
Wi t For Sync3) ;

The order in which the events occur (i.e. when each event is sig-
naled) is unimportant. As long as the task is the highest-priority
task waiting on each event, once all of the events have been sig-
naled the task will proceed.

To implement disjunctive synchronization (i.e. the logical OR of
multiple events) using binary semaphores, the task must wait on a
single event that can be signaled from multiple locations in your
application.

OS_Wai t Bi nSem(BI NSEMA_P, OSNO_TI MEQUT,
Wi t For Sync4) ;

Chapter 6 « Frequently Asked Questions (FAQ) 223

In this case the task can proceed as soon as any part of your appli-
cation has signaled the event. Subsequent event signaling will not
affect the task's execution until the next time it waits on the event.

What happens when a task times out waiting for an
event?

If the task does not acquire the resource within the timeout period,
it will be removed from the event queue (and the waiting queue)
and made eligible to run again. When it runs, a timeout flag will be
available at the task level to indicate that a timeout occurred. The
Salvo user service OSTi medQut () returns TRUE when this flag is
set, FALSE otherwise. The timeout flag is cleared when the task re-
turns to the scheduler.

If a task times out waiting for an event, even if the event subse-
quently occurs before the task runs again, the timeout flag will re-
main until the task runs and returns to the scheduler. The event will
also remain until a task waits on it.

Why is my high-priority task stuck waiting, while other
low-priority tasks are running?

The unavailability of an event always takes precedence over a
task's priority. Therefore, regardless of its priority, a task that waits
on an event that is not available will become a waiting task, and it
will remain a waiting task until either a) the event happens and the
task is the highest-priority task waiting for the event, or b) a time-
out (if specified) occurs.

This situation may simply be due to the fact that the event never
occurred, or it may be due to priority inversion.

When an event occurs and there are tasks waiting for it,
which task(s) become eligible?

The highest-priority waiting task becomes eligible. Only a single
task will become eligible, regardless of how many tasks of equal
priority are waiting for the event. All of Salvo's queues are priority
queues. Additionally, tasks of equal priorities are inserted into the
priority queues (i.e. they are enqueued) on a FIFO basis. For ex-
ample, if a task of the highest priority is enqueued into a priority
queue that already contains a task of highest priority, the task being
enqueued will be enqueued after the existing task. In other words,

224 Chapter 6 « Frequently Asked Questions (FAQ) Salvo User Manual

the first task to be enqueued with a particular priority will be the
first task to be dequeued when tasks of that particular priority
reach the head of the queue.

There is one exception to this behavior — namely, event flags.
When an event flag is signaled, all the tasks waiting on said event
flag will be made eligible.

How can | tell if a task timed out waiting for an event?

The macro OSTi medQut () is provided to detect timeouts. It returns
TRUE if the current task has timed out waiting for an event, and
FALSE otherwise. OSTi medCut () is only valid while the current
task is running.

Can | create an event from inside a task?

Salvo User Manual

Yes. You can create an event or a task anywhere in your code, as
long as you have previously allocated the required memory at
compile time. Keep in mind that operating on an event that is not
yet defined can cause unpredictable behavior. For example, sup-
pose you have two tasks, one to create and signal a resource, and
one that waits for it:

void Taskl(void)
OSCreateSem(SEML_P, 0); /* init to 0 */
while (1) {
OSS| gnal Sem(SEML_P) ;

}
}

voi d Task2(void)
while (1) {
OS_ Wi t Sen({ SEML_P, OSNO_TI MEOUT) ;

}
}

If your mai n() looks like this:
int main(void)

CSlnit();

Chapter 6 « Frequently Asked Questions (FAQ) 225

OSCr eat eTask(Taskl, TASK1_ P, 3);
OSCr eat eTask(Task2, TASK2 P, 1);
while (1) {

OSSched() ;

}
}

you will have unpredictable results because Task2() will attempt
to wait the semaphore SEML before Task1() can create it. That's
because Task2() has a higher priority than Task1(), and will
therefore run first when the OSSched() starts dispatching tasks.

To avoid this, you can either ensure that the task that creates the
resource has a higher priority than any task that uses it, or you can
create the resource before beginning multitasking via OSSched() .

If you plan on creating events or tasks from within an ISR, you
must configure sal vocfg. h appropriately to avoid interrupt-
related issues.

What kind of information can | pass to atask via a

message?

Messages are application-specific — that is, a message contains
whatever you want it to contain. Examples include characters,
numbers, strings, structures and pointers. Messages are passed via
pointer, and the default type for a Salvo message pointer is OSt y-
peMsgP, which is usually a void pointer. Since a void pointer can
point to anything, in order to obtain the information in the
message, you'll need to typecast the pointer's contents to the mes-
sage's inherent type.

The only restriction on Salvo messages is that all the messages in a
particular message queue should point to the same type of informa-
tion.

My application uses messages and binary semaphores. Is
there any way to make the Salvo code smaller?

226

Yes, use messages with values of (OStypeMsgP) 0 and
(OStypeMsgP) 1 instead of binary semaphores with values of 0
and 1, respectively. This way you can use OSCr eat eMsg() , OSSi g-
nal Msg() and OS_Wai t Msg() exclusively.

Chapter 6 « Frequently Asked Questions (FAQ) Salvo User Manual

Why did RAM requirements increase substantially when |
enabled message queues?

Each message queue requires both an ecb and a message queue
control block (mqcb) of fixed size. The number of ecbs and mqcbs
are determined by OSEVENTS and OSMESSAGE_QUEUES, respectively.
Additionally, each message queue also requires RAM for the ac-
tual queue. Message queues are the only events that require this
extra memory.

Can | signal an event from outside a task?

Yes. Events can be signaled and created from mainline code (e.g.
from within tasks, functions or inside nmai n()), and from within
interrupts. The default Salvo configuration expects events to be
created and signaled from mainline code. In order to create or sig-
nal tasks from interrupts and/or interrupts and mainline code, the
configuration parameters appropriate to the event's user service
(e.g. GSSi gnal Msg()) must be defined.

When | signal a message that has more than one task
waiting for it, why does only one task become eligible?

A task waits for a message when the corresponding mailbox is
empty. Signaling a message will fill the mailbox. The mailbox re-
mains full (i.e. contains a single message) until the task that was
waiting on the message runs, i.e. until the task becomes the high-
est-priority task and is dispatched by the scheduler. Put another
way, signaling a message fills the mailbox, and running the task
that's waiting on the message empties it. If the task never becomes
eligible to run, the mailbox will remain full, and signaling it with a
message will result in an error.

I'm using a message event to pass a character variable to
a waiting task, but I don't get the right data when |
dereference the pointer. What's going on?

Salvo User Manual

Let's say you're trying to pass a character to a task via a message.
To send the message you might write:

char tenpVar;

i.e.rrpVar ="'
GOSSi gnal Msg(MSG_CHAR _TO _TASK_P,
(CstypeMsgP) &t empVar);

Chapter 6 « Frequently Asked Questions (FAQ) 227

to send a "' to the task that's waiting for the
MSG_CHAR TO TASK, which might look like this:

static OStypeMsgP nmsgP;
static char nmsgRecei ved;

while (1) {
OS_ Wi t Msg(&rsgP, MSG CHAR TO TASK P,
OSNO_TI MEQUT) ;
nsgRecei ved = *(char *) nsgP;
switch (msgRecei ved) {
case '!':
printf("Received '!'"\n");
br eak;

defaul t:
printf("Received anything but '"I''"\n");
}

}

message

Because tasks obtain messages via pointers, the element referenced
by the message pointer must remain unchanged until
OS_Wai t Msg() succeeds. In the example above, if the global or
auto variable t enpVar is assigned another value before the waiting
task has a chance to obtain the message, the waiting task will re-
ceive a message quite different from what was intended. A safer
solution would be to signal the message with a pointer to a charac-

ter constant:

const char BANG = '!'

0SSi gnal Msg(MBG_CHAR TO TASK_P,
(OstypeMsgP) &BANG) ;

This way, no matter how long it takes for the receiving task to run
and obtain the message, it is guaranteed to be the '!' character.

What happens when there are no tasks in the eligible
queue?

The scheduler loops in a very tight loop, with interrupts enabled,
when there are no tasks eligible to run. As soon as a task is made

eligible, either through the actions of OSTi mer() or an
signaling an event, the scheduler will cause it to run.

interrupt

228 Chapter 6 « Frequently Asked Questions (FAQ) Salvo User Manual

In what order do messages leave a message queue?

Each message queue operates on a FIFO (first-in, first-out) basis.

What happens if an event is signaled before any task
starts to wait it? Will the event get lost or it will be
processed after task starts to wait it?

The event will not be lost, and the highest-priority task to wait the
event will get it, i.e. will remain eligible after OS_Wai t Xyz() in-
stead of going to the waiting state.

What happens if an event is signaled several times before
waiting task gets a chance to run and process that
event? Will the last one signal be processed and
previous lost? Or the first will be processed and the
following signals lost?

That depends on the event — if it's a binary semaphore or a mes-
sage, all further signaling results in OSSi gnal Xyz() returning an
error code, because the event is "full". The first event to be sig-
naled will be processed, and subsequent ones will be lost. In the
case of a counting semaphore, the value is simply incremented. In
the case of a message queue, additional messages are enqueued
until the queue is full. With these events, once the event is "full",
subsequent signals will be lost.

What is more important to create first, an event or the
task that waits it? Does the order of creation matter?

The order of creation doesn't matter. But when a task waits an
event, the event must exist before the task runs.

What if | don't need one event anymore and want to use
its slot for another event? Can | destroy event?

Absolutely! For example, you can destroy a binary semaphore and
create a counting semaphore in its place by calling OSCr eat eSen()
with the ecb you previously used for the binary semaphore. You
should only do this if you know that there aren't any tasks waiting
the binary semaphore.

Salvo User Manual Chapter 6 « Frequently Asked Questions (FAQ) 229

Can | use messages or message queues to pass raw data

between tasks?

Yes, with some restrictions. With messages, a null message pointer
is treated as an empty message, and a task will wait an empty mes-
sage forever. Therefore only non-zero raw data can be passed via
messages. Message queues are different in that a task will wait a
message queue indefinitely if there are no messages in it. There-
fore null message pointers are allowed in message queues, and raw
data of any value can be passed from one task to another using a
message queue. In this case, the message queue acts like a FIFO
buffer.

If you want to pass null-pointer messages to a task, use a message
queue of size 1.

How can | test if there's room for additional messages in a
message queue without signaling the message queue?

Interrupts

Use OSMsgQEpt y() . If the message queue is full — i.e. there is no
room for an additional message in the message queue —
OSMsgQEnpty() returns 0 (FALSE). If there is room,
OSMsgQEnpt y() returns the number of available slots in the mes-
sage queue.

Why does Salvo disable all interrupts during a critical

section of code?

It is common practice in an RTOS to disable interrupts during a
critical section of code. To maintain system performance, inter-
rupts should be disabled for the shortest times possible. However,
it's imperative that while an RTOS performs certain critical func-
tions, it must not be interrupted for fear of certain things in the
RTOS being corrupted.

The major sources of corruption due to interference from an inter-
rupt are access to a shared resource, and the operation of non-
reentrant functions. Salvo must guarantee that while performing
certain operations on its data structures (e.g. changing an event
control block), no access (read or write) from any other part of the
application is allowed. Salvo functions that access the data struc-

230 Chapter 6 « Frequently Asked Questions (FAQ) Salvo User Manual

tures include OSTi mer (), which is normally called from within a
periodic interrupt, and OSSi gnal Msg(), which might be called
from an entirely different interrupt.

Since Salvo services work without a general-purpose stack, certain
steps must be taken to prevent data corruption from interrupts. Use
the OSCALL_Xyz() configuration parameters if you want to be able
to call a particular Salvo service (e.g. OSSi gnal Sen()) from both
main-line code and an ISR.

I'm concerned about interrupt latency. Can | modify Salvo
to disable only certain interrupts during critical sections
of code?

Yes, and it will require Salvo Pro. The approach to take is to rede-
fine Salvo's OSEi () and OSDi () to only disable those interrupts
that are associated with calls to Salvo services, and leave other in-
terrupts alone. The implementation will differ from one target to
another based on the target's interrupt control scheme, its interrupt
vectors, its interrupt priorities, and whether Salvo controls inter-
rupts via functions, macros, or through compiler extensions.

As an example, a Salvo customer on the PIC18 needed essentially
zero jitter so that his interrupt-driven DSP algorithm ran at exactly
1280Hz. So, the Salvo solution for that particular chip (which has
two interrupt priority levels) was to put the DSP stuff on the high-
priority interrupt, and the rest on the low-priority interrupt, and
configure Salvo to only disable low-priority interrupts in its critical
sections. This, it turns out, was very easy for that particular target
and compiler — just a small header file to build a custom library
with the desired behavior. 5 minutes' work.

How big are the Salvo functions | might call from within
an interrupt?

OSTi mer () and OSSi gnal Xyz() are the Salvo services you might
call from an interrupt. They are all quite small and fast, and have
no nested subroutines. While it varies among different target proc-
essors, these services will in many cases be faster than the actual
interrupt save and restore.

Salvo User Manual Chapter 6 « Frequently Asked Questions (FAQ) 231

Why did my interrupt service routine grow and become
slower when | added a call to OSTimer()?

Some compilers assume the worst case with regard to register
saves and restores when an external function is called from within
an interrupt routine. As a result, the compiler may add a large
amount of code to save and restore registers or temporary registers
to preserve the program's context during an interrupt. Since it's al-
ways a good idea to have as fast an interrupt routine as possible,
one solution is to include the necessary Salvo files® in your inter-
rupt routine's source code instead of linking to the OSTi mer () and
related services as external functions (e.g. through the Salvo li-
brary). By including those Salvo files which completely define the
necessary call chains for OSTi ner () your compiler can "see" ex-
actly which registers and temporary registers must be saved, in-
stead of assuming the worst case and saving all of them.

Another option is to in-line OSTimer(). For more information, see
the OSUSE_| NLI NE_OSTI MER configuration option.

My application can't afford the overhead of signaling from
an ISR. How can | get around this problem?

Ideally you should signal from an ISR if the event that causes the
signaling is an interrupt. If this is not possible, in your ISR you can
set a simple flag (i.e. a bit) in a global variable, and then test-and-
clear it%7 in your main loop. If the flag is set, you then call the ap-
propriate signaling service prior to calling OSSched() , like this:

while (1) {
di sabl e_interrupts();
| ocal Flag = fl ag;
flag = 0;
enabl e_interrupts();
if (local Flag) {
GSSi gnal Bi nSem(bi nSenP) ;

}
OSSched() ;
}

This disadvantage of this approach is that it does not preserve the
order in which events occur, whereas signaling from an ISR will
preserve that order. This may affect the behavior of complex sys-
tems.

66
67

tiner.c.
Interrupts should be disabled while you test and clear the flag.

232 Chapter 6 « Frequently Asked Questions (FAQ) Salvo User Manual

Building Projects

What warning level should | use when building Salvo
projects?

Use the compiler's default warning level. More pedantic warning
levels may generate warnings that in some cases cannot be
avoided, and thus cause unnecessary confusion.

What optimization level should | use when building Salvo
projects?

Use the maximum optimization unless suggested otherwise.

Miscellaneous

Can Salvo run on a 12-bit PICmicro with only a 2-level
call...return stack?

Yes. Certain compilers (e.g. HI-TECH PICC) circumvent this limi-
tation by converting all function calls into long jumps through ta-
ble lookup. Therefore function calls require some additional
overhead and ROM, but call graphs of arbitrary depth are possible.

Will Salvo change my approach to embedded
programming?

Maybe. Stranger things have happened ... ©

Salvo User Manual Chapter 6 « Frequently Asked Questions (FAQ) 233

234 Chapter 6 « Frequently Asked Questions (FAQ) Salvo User Manual

Chapter 7 « Reference

Run-Time Architecture

In order to run properly, every Salvo application must follow three
basic rules. Failure to follow these rules may result in an applica-
tion that compiles successfully, but does not run as expected.
These rules are explained below.

Rule #1: Every Task Needs a Context Switch

Salvo User Manual

Each Salvo task must have at |east one context switch.

Tip In Salvo, context switches are denoted by a "0s_" prefix.

Functions with just an "OS" prefix (e.g. OSSi gnal Bi nSent()) are
not context switches and may usually be called from anywhere in
the Salvo application.

voi d HappyTask (void)
while (1) {
&_Del ay(10); // Return here in 10 ticks.

}
}

Listing 32: Task with a Proper Context Switch

In Listing 32 above, HappyTask() uses a single context switch (via
OS_Del ay()) to yield to the scheduler during its delay of 10 sys-
tem ticks. During the delay period, the task is in the delayed state,
and the application is free to run other, eligible tasks. Whenever
the scheduler dispatches HappyTask(), HappyTask() will run the
code inside its infinite loop, returning to the scheduler via
OS_Del ay() .

Note The requirement of having at least one context-switch per
task is a general one for cooperative RTOSes and is not specific to
Salvo.

235

Note The number of context switches a Salvo task can have is
limited only by available program memory.

void ForlornTask (void)

putchar('!"); // Bad — untinely exit fromtask.

}
void StuckTask (void)

while (1) {
MyFn(); // Bad — never returns to schedul er.

}
}

Listing 33: Tasks that Fail to Context Switch

In Listing 33 above, Forl or nTask() has no context switch. As a
result, when the scheduler dispatches that task, it will call
put char () once and then the application will continue with what-
ever code lies in program memory after Forl or nTask() .%% For -
| ornTask() will not yield to the scheduler immediately after

M/Fn() is executed. Therefore the application's behavior is unpre-
dictable.

Also in Listing 33 above, once the scheduler dispatches St uck-
Task(), it will call \yFn() indefinitely, and will never yield back
to the scheduler. While this behavior is predictable, it is not desir-
able, as all multitasking will stop.

Rule #2: Context Switches May Only Occur in Tasks

The only valid location for a Salvo context switch is within a task
(see In Listing 32, above).

68 Ttis likely to continue "into" St uckTask() if and only if the linker has placed

St uckTask() immediately after For | or nTask() in memory.

236 Chapter 7 » Reference Salvo User Manual

void StuckTask (void)

while (1) {
MyFn(); // Bad — where's the context switch?

}
void MyFn (void)

DoThi ngs();
0S Yield(); // Bad — not allowed inside a
/1 called function.

Listing 34: Incorrectly Context-Switching Outside of a
Task

In Listing 34 above, the scheduler will dispatch St uckTask() and
the task will, in turn, call MyFn() . After MyFn() calls DoThi ngs(),
it will attempt to yield to the scheduler via OS_Yi el d() . This will
fail, as Salvo's context-switcher is not designed for yielding back
to the scheduler at any call...return level other than the task's. The
run-time behavior when violating this rule is unpredictable.

In C, the ability to context-switch outside of a task, at arbitrary
call...return stack levels, requires considerable RAM for saving
call...return addresses, function parameters and local (auto) vari-
ables. Salvo is designed expressly to minimize RAM requirements,
and therefore does not support context-switching outside of tasks.

Note Context switches may not occur in mainline (background)
code outside of tasks, nor in interrupt service routines (ISRs).

Rule #3: Persistent Local Variables Must be Declared as
Static

Every local variable used in a Salvo task in a manner that requires
persistence across context switches must be declared as st ati c.

voi d TaskLowPrio (void)
{

static int i;

while (1) {
i = 20000;
do {
LED PORT &= ~LED_PORT_MASK;
LED PORT |= ((i >> 8) & LED PORT_MASK);
OS Del ay(1);

Salvo User Manual Chapter 7 « Reference 237

238

} while (--i);
}
}

Listing 35: Task Using Persistent Local Variable

In Listing 35 above, TaskLowPr i o() outputs the upper 8 bits of the
loop counter i to eight LEDs every system tick while decrement-
ingi. Ifi were not declared as static, i 's value would be unpre-
dictable and so would be the output to the LED port.

Declaring local variables that require persistence as st ati c is nec-
essary because Salvo's context switcher performs a minimal con-
text save that does not include local wvariables. Other tasks,
functions and ISRs may use the memory allocated to the local
variable for their own purposes when the task is not running,
changing it in unpredictable ways.

With care, local variables can be used as auto variables in Salvo
tasks. Whenever a local variable is initialized and fully used before
the next context switch, it can be declared as a simple local (auto)
variable instead of a st ati c one.

Chapter 7 » Reference Salvo User Manual

Salvo User Manual

voi d TaskCount El enents(void)

{

char i;
el ement * p;

p = p->nextP;

el se {
br eak;
}

}
LCDWite("The list has % el ements.\n", i);

0s_Del ay(del ay) :

Listing 36: Task Using Auto Local Variables

In Listing 36 above, i and p are used as local (auto) variables to
traverse a linked list and count the number of objects therein. Af-
terwards the result is displayed on an LCD, and the task continues.

Note When in doubt, declare local variables as static.

Chapter 7 « Reference 239

User Services

This section describes the Salvo user services that you will use to
build your multitasking application. Each user service description
includes information on:

* e the service type (function or macro),

* «the service prototype (for a function) or
declaration (for a macro),

» < where the service is callable from (the
foreground, the background or within a task),

» < which Salvo C source or include files contain
the source code for the service,

» « which configuration options (if any) enable the
service,

* + which configuration options (if any) affect the
service (i.e. alter its execution speed or code
size),

» e adescription of what the service does,

» «the parameter(s) (if any) expected by the
service call,

» o the service's return value(s) (if any),

» -« the service's stack usage (if any), in terms of
levels of call...return stack used,®®

* e notesparticular to the service,

» e related services and

* «an example using the service.

Salvo functions comprise the majority of the user services you will
call from C in your application. Salvo user services that do not re-
sult in a context switch are implemented as functions and are pre-
fixed by just "0s".

Salvo uses macros wherever a context-switch is implicit in the ac-
tion being performed (e.g. delaying for a number of ticks, via
OS_Del ay()). All of Salvo's services that result in a context-switch
are implemented via macros and are prefixed by "0S_".

69 For call...return stack depth calculations, OSUSE_| NSELI G_MACROis assumed
to be the default value, TRUE. If FALSE, those services that cause a task to be
placed in the eligible, delay and/or event queue(s) will consume an additional
call...return stack level. Stack usage does not take into account any library
functions invoked by the compiler.

240 Chapter 7 » Reference Salvo User Manual

Salvo User Manual

Note Salvo context-switching services are implemented as mac-
ros and do not have return values.

It is important not to confuse a Salvo macro with its underlying
function. For instance, the OS_Del ay() macro will cause the cur-
rent task to delay for the specified number of system ticks. On the
other hand, using the OsDel ay() function directly will have unpre-
dictable results, and your application may crash as a result. These
underlying functions are intended for use only within a Salvo
macro, and are therefore not documented in this section. For the
curious, they can be viewed in the Salvo source code.

Note Some services (e.g. OSCreat exyz() and OSSi gnal Xyz())
can be either a macro that invokes a function, or a standalone func-
tion, depending on OSCOMBI NE_EVENT_SERVI CES. In all cases the
argument list and return value and type are identical.

When compiling and linking Salvo into your application, the size
and speed of many user services is dependent on the chosen con-
figuration. By referring to the detailed descriptions of each user
service below and inspecting the output of your compiler, you may
be able to correlate changes in the size (in instructions) and/or
speed (in cycles) of the Salvo services in your application against
changes you've made to your compile-time configuration. Remem-
ber that each time you change the configuration options, you must
recompile all of Salvo before linking it into your application.

Note The foreground is the interrupt level of your application.
The background is the non-interrupt level, and includes mai n(),
Salvo tasks and all other functions not called via interrupts.

Chapter 7 « Reference 241

This page isintentionally left blank.

242 Chapter 7 « Reference Salvo User Manual

OS Delay(): Delay the Current Task and Context-switch

Notes

See Also

Salvo User Manual

Type: Macro (invokes OSDel ay())
Declaration: GS_Del ay (
OSt ypeDel ay del ay) ;
Callable from: Task only
Contained in: sal vonpt . h
Enabled by OSBYTES_OF _DELAY
Affected by: OSENABLE_STACK_CHECKI NG, OSLOGG NG
Description: Delay the current task by the amount
specified. Return to scheduler.
Parameters: del ay: an integer (>=0) specifying the
desired delay in system ticks.
Returns: -
Stack Usage: 2

A delay of 0 will stop the current task. A non-zero delay will de-
lay’® the current task by the number of ticks specified relative to
the current value of the system timer.

Do not call 0S_Del ay() from within an ISR!
In order to use delays, Salvo's timer must be installed.

Long delays can be accomplished in a variety of ways — See
"Timer and Timing" in Chapter 6 Frequently Asked Questions

(FAQ).

In the example below (system tick rate = 40Hz, t = 25ms, Hitachi
44780 LCD controller), OS_Del ay() is used to delay the LCD task
TaskDi sp() during startup while the LCD is being configured. By
using OS_Del ay() instead of an in-line delay, the other tasks may
run while TaskDi sp() is delayed and the LCD is initialized.

OS Del ayTS(), GS_Stop(), OSTi ner ()

70 When delaying a task repetitively, remember that there is an additional,

unpredictable delay between when the task's delay expires and when it
actually runs. This may happen if there are other, higher-priority tasks eligible
to run when the delayed task's delay expires. This can affect a task's "loop
delay."

Chapter 7 « Reference 243

Example

244

#define LCD CVMD_REG 0 /* for commands
#define LCD DATA REG 1 /* for data

#define LCD CVD CLS 0x01 /* clear display
#define LCD CVMD MODE 0x06 /* auto-inc address*/

*/
*/
*/

#define LCD CVMD ON OFF 0x0C /* on, no cursor, */
/* no blink */
#define LCD CVMD _FN _SET Ox3F
#define LCD BITMASK RS 0x01 /* reg sel ect */
#define LCD BITMASK RW 0x02 /* read/-wite */
#define LCD BlI TMASK E 0x04 /* E (strobe) */
void TaskDisp (void)
{
static OStypeMsgP nmsgP;
/* initialize the LCD Display */
char i; /* doesn't need to be static */
TRISD = 0x00; /* all LCD ports are outputs */
TRI SE = 0x00; /* " */
PORTE = 0x00; /* RS=0, -WRITE, E=0 */
/* we want to talk to the command register, */
/[* and we'll wait 50ns to ensure it's */
/* listening. */
LCDSel Reg(LCD _CVMD_REG);
OS _Del ay(2);
/* Hitachi recomends 4 consecutive wites */
/* to this register */
for (i =4; i--;
LCDW Dat a(LCD_CVMD_FN_SET) ;
/* configure LCD the "standard" way. */
LCDW Dat a(LCD_CVD_ON_OFF) ;
LCDW Dat a(LCD_CVMD_MODE) ;
LCDW Dat a(LCD_CVD _CLS);
/* wait another 50ms. */
OS Del ay(2);
/* now we're done initializing LCD display. */

while (1) {
OS_Wai t Msg(MSG_UPDATE DI SP_P, &msgP,
OSNO_TI MEQUT) ;

Chapter 7 » Reference

Salvo User Manual

OS DelayTS(): Delay the Current Task Relative to its
Timestamp and Context-switch

Notes

Salvo User Manual

Type: Macro (invokes OSDel ay())
Declaration: OS_Del ayTS (
OSt ypeDel ay del ay) ;
Callable from: Task only
Contained in: sal vonpt . h
Enabled by: OSBYTES_OF DELAY, OSBYTES_OF_TI CKS
Affected by: OSENABLE STACK_CHECKI NG, OSLOGG NG
Description: Delay the current task by the amount

specified, relative to the task's timestamp.
Return to scheduler.

Parameters: del ay: an integer (>=0) specifying the
desired delay in system ticks.

Returns: —

Stack Usage: 2

A delay of 0 will stop the current task. A non-zero delay will delay
the current task by the number of ticks specified relative to the
task's timestamp. The timestamp is automatically recorded by CS-
I nit() and whenever a task's delay times out. In order to use de-
lays with timestamps, Salvo's timer must be installed and the
counting of system ticks must be enabled via OSBYTES_OF_TI CKS.

If more than del ay and less than 2 x del ay system ticks occur be-
tween the task's delay expiring and the task running,”! the task will
attempt to resynchronize itself for the following delay period. The
behavior for more than 2 x del ay ticks is undefined.”?

Do not call 0S_Del ay() from within an ISR!

In the example below, TaskA() will always run every fourth sys-
tem tick because it is synchronized to the system timer. As long as
the delay between the task's delay expiring and the task actually
running’? never exceeds 2 del ay periods, the task will always run
at t, + (number of iterations x del ay).

71
72
73

Le. the task is " very late".
In this situation you may need to chose a longer system tick period.

This might happen if, for instance, TaskA()'s priority is low, and there are
other tasks eligible to run.

Chapter 7 « Reference 245

See Also OS Del ay(), OSGet TS() , OSSet TS() , OS_St op() , OSSyncTS() ,
OSTi ner ()

Example void TaskA (void)

while (1) {
OS Del ayTS(4);

}
}

int min (void)
{
CSlnit();

OSCr eat eTask(TaskA, OSTCBP(1), 4);

enabl e_interrupts();

while (1) {
GSSched() ;
}
}

246 Chapter 7 » Reference Salvo User Manual

OS_Destroy(): Destroy the Current Task and Context-
switch

Type: Macro (invokes OSDest r oy())
Declaration: GS_Destroy ();
Callable from: Task only
Contained in: sal vonpt . h
Enabled by: -
Affected by: OSENABLE_STACK_CHECKI NG
Description: Destroy the current task. Return to sched-
uler.
Parameters: -
Returns: —
Stack Usage: 1
Notes Once a task is destroyed, it cannot be restarted. However, a new

task can be created in its place by using the same tcb.
Do not call 0S_Destroy() from within an ISR!

In the example below, TaskStartup() creates and starts most of
the other tasks in the application. TaskDi sp() (see example for
OS_Del ay()) will run immediately after TaskSt art up() begins its
two-second delay. When the delay expires, TaskSt artup() will
resume, creating and starting TaskMsg(), TaskRdKey(), Task-
St at us(), TaskTx() and TaskRx(). However, none of these tasks
will run until TaskStartup() destroys itself and returns to the
scheduler. Once TaskRx() runs it will create TaskRcvRsp() in
place of TaskSt at us(), thereby reusing the tcb for another task.
TaskStartup() is not structured as an infinite loop — rather, it's
simply a one-time sequence of events, which ends when Task-
Startup() destroys itself and returns to the scheduler.

See Also OSCr eat eTask() , OSSt op()

Salvo User Manual Chapter 7 « Reference 247

Example void TaskStartup (void)

{
/* create all the tasks we need early on. */
/* Some of these tasks create other tasks */
/* and resources! Start them up, too. */

/* TaskDi sp() handl es di splay updates. It */
/* also creates MSG DI SP & SEM UPDATE DI SP. */
OSCr eat eTask(TaskDi sp, TASK DI SP_P,

TASK DI SP_PRI O) ;

/* Leave startup screen showi ng for 2s. */
OS Del ay(TWO _SEC, TaskStartupl);

/* TaskMsg() flashes nessages. It also */
/* creates MSG FLASH STRI NG */
OSCr eat eTask(TaskMsg, TASK MSG P,

TASK_MSG_PRI O) ;

/* TaskRdKey() reads the keypad. It also */
/* creates MSG KEY_PRESSED and creates and */
/* starts TaskRcvKeys(). */

OSCr eat eTask(TaskRdKey, TASK RD KEY_P,
TASK_RD KEY_PRI O ;

/* TaskStatus() nonitors the PSR on Driver. */

/* 1t also creates MSG WAKE STATUS and */

/* NMBG_LONG _OP_DONE. */

OSCr eat eTask(TaskSt at us, TASK _STATUS P,
TASK_STATUS PRI O ;

/* TaskTx() send cnds out to the Driver. It */
/* also creates MSG WAKE TX, MSG RSP_RCVD */
/* and MSG_TX BUFF_EMPTY. */
OSCr eat eTask(TaskTx, TASK TX P, TASK TX PRI O);

/* TaskRx() receives responses back fromthe */
/* Driver. It also creates SEM RX RBUFF and */
/* creates and starts TaskRcvRsp(). */
OSCr eat eTask(TaskRx, TASK RX P, TASK RX PRI O);

/* we're finished starting up, so kill this */
/* task permanently. TaskRcvKeys() will */
/* "take over" its tch — see */
/* TaskRdKeys() . */
OS Destroy();

248 Chapter 7 » Reference Salvo User Manual

OS _Replace(): Replace the Current Task and Context-

switch

Notes

See Also

Salvo User Manual

Type: Macro (invokes OSCr eat eTask())

Declaration: 05 _Replace (tFP, prio);

Callable from: Task only

Contained in: sal vonpt . h

Enabled by: -

Affected by: —

Description: Replace the current task with the one
specified. Return to scheduler.

Parameters: t FP: a pointer to the task's start address.
This is also the task's function prototype
name.

pri o: the desired priority for the task. If
OR'd with OSDONT_START_TASK, the task
will not be started.
Returns: -
Stack Usage: 3

The task that replaces the current task will use the same tcb. Once
a task is replaced, it can be restarted only with a call to OSCre-
at eTask() .

Do not call 0S_Repl ace() from within an ISR!

OS_Repl ace() is useful in various situations. For instance, you
could have a system initialization task that replaces itself with one
of your run-time tasks when all initialization is complete. Or you
could replace a large task containing a state machine with inde-
pendent tasks for each state. OS_Repl ace() can be used wherever
multiple tasks need never run at the same time, thus conserving tcb
RAM.

In the example below, TaskCount Up() runs first. After 250 itera-
tions, it replaces itself with TaskCount Down() . TaskCount Down()

also runs for 250 iterations, but at a faster rate, and replaces itself
with TaskCount Up() when done. The task priorities can be varied,
as shown. This continues indefinitely. Only a single tcb is used.

OSCr eat eTask() , OSDest r oyTask() , OSSt op()

Chapter 7 « Reference 249

Example voi d TaskCountUp (void);
voi d TaskCount Down (void);

voi d TaskCountUp (void)
{

static char i;

for (i =0; i <= 250; i++) {
PORTB = i ;

OS_Del ay(25);
}

OS_Repl ace(TaskCount Down, 5);
}

voi d TaskCount Down (void)
{

static char i;

for (i =250; i >=0; i--) {
PORTB = i;
OS _Del ay(5);
}
OS_Repl ace(TaskCount Up, 3);
}
int min (void)
{
CSlnit();

OSCr eat eTask(TaskCount Up, OSTCBP(1), 4);

while (1) {
GSSched() ;
}
}

250 Chapter 7 » Reference Salvo User Manual

OS_SetPrio(): Change the Current Task's Priority and
Context-switch

Type: Macro (invokes OSSet Pri o())

Declaration: G5_SetPrio (
OStypePrio prio);

Callable from: Task only

Contained in: sal vonpt . h

Enabled by: —

Description: Change the current task's priority. Return
to scheduler.

Parameters: pri o: the desired (new) priority for the
current task.

Returns: —

Stack Usage: 1

Notes 0 (OSHI GHEST_PRI O) is the highest priority, 15 (OSLONEST_PRI O)

is the lowest.
Do not call 0S_Set Pri o() from within an ISR!

Tasks can share priorities. Eligible tasks with the same priority will
round-robin schedule as long as they are the highest-priority eligi-
ble tasks.

The change in priority takes effect when the current task returns to
the scheduler.

In the example below, TaskSt art upEt c() is initially created with
a high priority. The first time it runs, it will run at that priority.
While running for the first time, it redefines its priority to be a
lower one. Each subsequent time it runs, it will run at the lower
priority. The task context-switches once at OS_Set Prio(), and
subsequently at OS_Yi el d() .

See Also OSCr eat eTask(), OSGet Pri o(), OSSet Pri o(),
OSDI SABLE_TASK PRI ORI TI ES

Salvo User Manual Chapter 7 « Reference 251

Example #defi ne MOST_I MPORTANT 0O
#define LESS_| MPORTANT 5

int min (void)

{
/“’; startup task gets highest priority. */
OSCr eat eTask(TaskSt ar t upEt c,
OSTCBP(1), MOST_I MPORTANT) ;
}
/* while starting up this task runs at */
/* the highest priority, then it changes */
/* its priority to a | ower one. */
voi d TaskStartupEtc (void)
{
/* do initialization and ot her */
/* startup code. */
/* MonitorSystem() will always be */
/* called fromthis task while */
/* running at a lower priority. */
OS_Set Pri o(LESS_| MPORTANT) ;
while (1) {
Moni t or System() ;
OS Yield();
}
}

252 Chapter 7 » Reference Salvo User Manual

OS_Stop(): Stop the Current Task and Context-switch

Type: Macro (invokes OS_Del ay() or
0S_Stop())

Declaration: Gs_Stop ();

Callable from: Task only

Contained in: sal vonpt . h

Enabled by: -

Affected by: OSBYTES_OF DELAY,
OSENABLE_STACK_CHECKI NG, OSLOGG NG

Description: Stop the current task. Return to scheduler.

Parameters:

Returns: -

Stack Usage: 1

Notes A stopped task can only be restarted via 0SSt ar t Task() .

Do not call 0S_St op() from within an ISR!

If delays are enabled via OSBYTES_OF_DELAYS, OS_Stop() stops
the current task via a call to OSDel ay(0) . Otherwise it calls OSS-
t op() . This is done to reduce the code size of your Salvo applica-
tion.

In the example below, TaskRunOnce() is created and started, and
will run as soon as it becomes the highest-priority eligible task. It
will run only once. In order to make it run again, a call to
OSSt art Task(TASK_RUN_ONCE) is required. Note that Task-
RunOnce() would also work without the infinite loop, but subse-
quent calls to OSStart Task(TASK_RUN_ONCE) would result in
unpredictable behavior because task execution would resume out-
side of TaskRunOnce() .

See Also OSSt art Task() , OSSt opTask()

Salvo User Manual Chapter 7 « Reference 253

Example int main (void)

{
&Cr eat eTask(TaskRunOnce, TASK RUN ONCE P, 6);
}
voi d TaskRunOnce (void)
while (1) {
/[* do one-time things ... */
} &_Stop();

}

254 Chapter 7 « Reference Salvo User Manual

OS WaitBinSem(): Context-switch and Wait the Current
Task on a Binary Semaphore

Notes

Salvo User Manual

Type: Macro (invokes OSWai t Event ())
Declaration: OS_Wai t Bi nSem (

OSt ypeEcbP echbP,

OSt ypeDel ay tineout);

Callable from: Task only

Contained in: sal vonpt . h

Enabled by: OSENABLE_BI NARY SEMAPHORES, OSEV-
ENTS

Affected by: OSENABLE_STACK_CHECKI NG,
OSENABLE_TI MEQUTS, OSLOGG NG

Description: Wait the current task on a binary sema-

phore, with a timeout. If the semaphore is
0, return to the scheduler and continue
waiting. If the semaphore is 1, reset it to 0
and continue. If the timeout expires be-
fore the semaphore becomes 1, continue
execution of the task, with the timeout
flag set.

Parameters: ecbP: a pointer the binary semaphore's
ecb.

ti meout : an integer (>=0) specifying the

desired timeout in system ticks.

Returns: -

Stack Usage: 2

Specify a timeout of OSNO_TI MEOUT if the task is to wait the binary
semaphore indefinitely.

Do not call 0S_Wai t Bi nSen() from within an ISR!
After a timeout occurs the binary semaphore is undefined.

In the example below for a rocket launching system, a rocket is
launched via a binary semaphore BI NSEM LAUNCH_ROCKET used as
a flag. The semaphore is initialized to zero so that the rocket does
not launch on system power-up.”* Once the rocket is ready and the
order has been given to launch (via OSSi gnal Bi nSen() elsewhere
in the code), TaskLaunchRocket () starts the rocket on its journey.
Since the rocket cannot be recalled, there is no need to continue
running TaskLaunchRocket (), and it simply stops itself. There-

74 That would be undesirable.

Chapter 7 « Reference 255

fore in order to launch a second rocket, the system must be re-
started.

See Also OSCr eat eBi nSem() , OSReadBi nSen(), OSSi gnal Bi nSem() ,
OSTryBi nSem()

Example #def i ne Bl NSEM_LAUNCH ROCKET_P OSECBP(2)

/* startup code: no clearance given to |aunch */
/* rocket. */
OSCr eat eBi nSen(Bl NSEM_LAUNCH _ROCKET_P, 0);

voi d TaskLaunchRocket (void)
{
/* wait here forever until the order is */
/* given to launch the rocket. */
OS_ Wi t Bi nSen{ Bl NSEM_LAUNCH_ROCKET_P,
OSNO_TI MEQUT) ;

/* launch rocket. */
| gni t eRocket Engi nes() ;

/* rocket is on its way, therefore task is */
/* no | onger needed. */
08_Stop() ;

256 Chapter 7 » Reference Salvo User Manual

OS _WaitEFlag(): Context-switch and Wait the Current
Task on an Event Flag

Notes

Salvo User Manual

Type: Macro (invokes OSWai t Event ())
Declaration: OS_Wai t EFl ag (

OSt ypeEcbP ecbP,

OSt ypeEFl ag mask,

OSt ypeOpti on options,

OSt ypeDel ay tinmeout);

Callable from: Task only

Contained in: sal vonpt . h

Enabled by: OSENABLE_EVENT_FLAGS, OSEVENTS
Affected by: OSBYTES_OF EVENT_FLAGS,

OSENABLE_STACK_CHECKI NG,
OSENABLE_TI MEQUTS, OSLOGA NG
Description: Wait the current task on an event flag, with
a timeout. The bits in the event flag speci-
fied by the nask parameter are tested ac-
cording to the condition specified by the
opt i ons parameter. If the condition is not
satisfied, return to the scheduler and con-
tinue waiting. If the condition is satis-
fied, continue without changing the event
flag. If the timeout expires before the
condition is satisfied, continue execution
of the task, with the timeout flag set.
Parameters: ecbP: a pointer the event flag's ecb.
mask: a bitmask to apply to the event flag.
options: OSANY_BI TS, CSALL_BI TS or
OSEXACT_BI TS.
ti meout : an integer (>=0) specifying the
desired timeout in system ticks.
Returns: —
Stack Usage: 2

Specify a timeout of OSNO_TI MEQUT if the task is to wait the event
flag indefinitely.

Do not call 0S_Wai t EFI ag() from within an ISR!
After a timeout occurs the event flag is undefined.
Salvo's event flag bits are "active high", i.e. an event is said to have

occurred when its corresponding bit in the event flag is set to 1.
The event has not occurred if the bit is cleared to O.

Chapter 7 » Reference 257

See Also

Example

258

When specifying OSANY_BI TS, OS_Wai t EFl ag() checks if any of
the corresponding nask parameter's bits in the event flag are set to
1, and if so, the task continues. With OSALL_BI TS, all of the corre-
sponding mask parameter's bits must be set to 1 for the task to con-
tinue. With OSEXACT_BI TS, the event flag must match the mask
parameter exactly for the task to continue.

In contrast to Salvo's other event services, successfully waiting an
event flag does not automatically reset the bits in the event flag
that resulted in the condition being satisfied. You must explicitly
clear event flag bits via OSCr EFl ag(). Failing to clear the
appropriate event flag bits will cause unpredictable results —
generally the task will fail to yield back to the scheduler.

In the example below for a secure access system with a power-
assisted door, three separate interlocks must be deactivated before
the door can be opened by TaskOpenDoor (). The three least sig-
nificant bits of an eight-bit event flag are used to signify that the
bottom, side and top interlocks have been deactivated by TaskRe-
| easeBott onLock(), etc. Bits three and four in the event flag sig-
nify whether the door is fully open or fully closed and are
maintained by TaskCheckDoor () . When the door is fully open, it's
safe to re-activate (release) the door locks so that when it closes it's
automatically locked shut.

The remaining three bits in the eight-bit event flag can be used for
other purposes entirely independent of the interlock mechanism.

OSCr eat eEFl ag() , OSC r EFl ag() , OSReadEFI ag() , OSSet E-
Fl ag()

#defi ne DOOR EFLAG P OSECBP(1)

#defi ne BOTTOM 0x01

#defi ne S| DE 0x02
#define TOP 0x04

#defi ne OPEN 0x08

#defi ne CLOSED 0x10

voi d TaskRel easeBottoniock (void)
{

while (1) {

/* wait for request to rel ease bottom | ock.*/

/* rel ease bottom door | ock. */
Rel easeBot t omLock() ;

Chapter 7 » Reference Salvo User Manual

/* tell TaskOpenDoor () about it. */
OSSet EFI ag(DOOR_EFLAG P, BOTTOM ;

/* verify that door is fully opened by */

/* by waiting for the signal. */

OS_Wai t EFl ag(DOOR_EFLAG P, OPEN, OSANY_BI TS,
OSNO_TI MEQUT) ;

/* re-engage bottom door |ock. \When door */
/* closes it will remain |ocked. */
OsSd r EFI ag(DOOR_EFLAG P, BOTTOM ;

EngageBot t onLock() ;

/* remain inactive until the door closes. */
OS Wi t EFl ag(DOOR_EFLAG P, CLCSED, OSANY_BI TS,
OSNO_TI MEQUT) ;
}

}

voi d TaskRel easeSi deLock (void)
while (1) {

Rel easeSi deLock();

OSSet EFI ag(DOOR_EFLAG P, Sl DE);

OS_Wai t EFl ag(DOOR_EFLAG P, OPEN, OSANY_BI TS,
OSNO_TI MEQUT) ;

OsSCl r EFI ag(DOOR_EFLAG P, SI DE);

EngageSi deLock();

OS_Wai t EFl ag(DOOR_EFLAG P, CLOSED, OSANY_BI TS,
OSNO_TI MEQUT) ;

}

}

voi d TaskRel easeTopLock (void)
while (1) {

Rel easeTopLock();

OSSet EFI ag(DOOR_EFLAG P, TOP);

OS_Wai t EFl ag(DOOR_EFLAG P, OPEN, OSANY_BI TS,
OSNO_TI MEQUT) ;

OsSCl r EFI ag(DOOR_EFLAG P, TOP);

EngageToplLock() ;

OS_Wai t EFl ag(DOOR_EFLAG P, CLOSED, OSANY_BI TS,
OSNO_TI MEQUT) ;

}

}
voi d TaskQpenTheDoor (void)

/* door is initially closed. */
OSCr eat eEFl ag(DOOR_EFLAG P, CLOSED);

while (1) {
/* wait forever for all interlocks to be */
/* rel eased. */

Salvo User Manual Chapter 7 « Reference 259

OS_W4i t EFI ag(DOOR_EFLAG P,
TOP | BOTTOM | SIDE, OSALL_BITS,
OSNO_TI MEQUT) ;

/* all locks are rel eased — open door. */
QpenDoor () ;

/* wait for the door to close again before */
/* repeating the cycle. */
OS_Wai t EFl ag(DOOR_EFLAG P, CLOSED, OSANY_BI TS,
OSNO_TI MEQUT) ;
}

}

voi d TaskCheckDoor (void)

while (1) {
/* check sensors every 1s. */
OS_Del ay(100);

/* if open door has closed contact on its */
/* sensor, then door must be open! */

i f (DoorFullyOpen()) {
CSSet EFI ag(DOOR_EFLAG P, OPEN);

}
el se {

OSd r EFl ag(DOOR_EFLAG P, OPEN);
}
/* simlarly, if closed door has cl osed */
/* ~contact on its sensor, then it nust be */
/* closed! */

i f (DoorFullyC osed()) {
OSSet EFI ag(DOOR_EFLAG P, CLGCSED);
}
el se {
OsCl r EFI ag(DOOR_EFLAG P, CLOSED);
}
}
}

260 Chapter 7 » Reference Salvo User Manual

OS_WaitMsg(): Context-switch and Wait the Current Task

on a Message

Notes

Salvo User Manual

Type: Macro (invokes CSWai t Event ())
Declaration: Gs_Wai t Msg (

OSt ypeEcbP echbP,

OSt ypeMsg nmsgP,

OSt ypeDel ay tineout);

Callable from: Task only

Contained in: sal vonpt . h

Enabled by: OSENABLE_MESSAGES, OSEVENTS

Affected by: OSENABLE_STACK_CHECKI NG,
OSENABLE_TI MEQUTS, OSLOGG NG

Description: Wait the current task on a message, with a

timeout. If the message is available, make
msgP point to it, and continue. If it's not
available, return to the scheduler and con-
tinue waiting. If the timeout expires be-
fore the message becomes available,
continue execution of the task, with the
timeout flag set.
Parameters: ecbP: a to the message's ecb.
nmsgP: a pointer to a message
ti nmeout : an integer (>=0) specifying the
desired timeout in system ticks.
Returns: —
Stack Usage: 2

Specify a timeout of OSNO_TI MEQUT if the task is to wait the mes-
sage indefinitely.

Do not call 0S_Wai t Msg() from within an ISR!

Should a timeout occur while waiting the message queue, the mes-
sage pointer is invalid. A task may only extract the message's con-
tents via the message pointer if it has successfully waited the
message queue event without a timeout.

In the example below, TaskRcvKeys() waits forever for the mes-
sage MSG _KEY_PRESSED. No processing power is allocated to
TaskRcvKeys() while it is waiting. Once the message arrives, its
contents (the key pressed) are copied to a local variable and appro-
priate action is taken. Note that correct casting and dereferencing
of the pointer msgP are required in order to extract the contents of

Chapter 7 « Reference 261

the message correctly. After TaskRcvKeys() acts on the key
pressed, it resumes waiting for the message.

See Also OSCr eat eMsg() , OSReadMsg() , OSSi gnal Msg(), OSTryMsg()
Example voi d TaskRcvKeys (void)
{

static char key;
static OStypeMsgP nsgP;

while (1) {
/* Wait forever for a new key. */
OS_Wai t Msg(MSG_KEY_PRESSED P,
&mrsgP, OSNO_TI MEQUT) ;

/* User pressed a key! — get it. */
key = *(char *) nsgP;

/* Act on key pressed. */

switch (tol ower(key)) {
case KEY_MEM

262 Chapter 7 » Reference Salvo User Manual

OS WaitMsgQ(): Context-switch and Wait the Current
Task on a Message Queue

Notes

Salvo User Manual

Type: Macro (invokes CSWai t Event ())
Declaration: Gs_Wai t MsgQ (

OSt ypeEcbP echbP,

OSt ypeMsg nmsgP,

OSt ypeDel ay tineout);

Callable from: Task only

Contained in: sal vonpt . h

Enabled by: OSENABLE_MESSAGE. QUEUES, OSEVENTS
Affected by: OSLOGGE NG, OSENABLE_STACK _CHECKI NG
Description: Wait the current task on a message queue,

with a timeout. If the message queue con-
tains a message, make nsgP point to it,
and continue. If it's empty, return to the
scheduler and continue waiting. If the
timeout expires before a message is added
to the message queue, continue execution
of the task, with the timeout flag set.
Parameters: ecbP: a pointer to the message queue's ecb.
nmsgP: a pointer to a message.
ti meout : an integer (>=0) specifying the
desired timeout in system ticks.
Returns: -
Stack Usage: 2

Specify a timeout of OSNO_TI MEOQUT if the task is to wait the mes-
sage queue indefinitely.

Do not call 0S_Wai t MsgQ() from within an ISR!

Should a timeout occur while waiting the message queue, the mes-
sage pointer is invalid. A task may only extract the message's con-
tents via the message pointer if it has successfully waited the
message queue event without a timeout.

In the first example below, TaskRcvl nt () forever waits a message
queue containing messages to objects of type i nt. When a mes-
sage arrives, the TaskRcvint () extracts the message from the
message queue and prints a message. The task continues printing
messages until the message queue is empty, whereupon the task a
context switch occurs.

Chapter 7 « Reference 263

Message queues can also be used to pass raw data. In the second
example below, TaskRcvRawDat a() extracts unsi gned-char -sized
raw data instead of message pointers from the message queue.

Note sizeof(raw data type) must not exceed
si zeof (CSt ypeMsgP) . E.g. on a target with 16-bit voi d pointers,
raw data of up to 16 bits in size can be passed in each message.

See Also OSCr eat eMsgQ() , OSReadMsgQ() , OSSi gnal MsgQ() ,
OSTryMsgQ()
Example #1 void TaskRcvint (void)
{

static int nyNum
static OStypeMsgP nmsgP;

while (1) {
/* Wait forever for a nessage. */
OS_Wai t MsgQ MSGQL, &mrsgP, OSNO_TI MEQUT) ;

/* A nmessage has arrived — get it. */
nmyNum = *(int *) msgP;

printf("The number was %d. \n", nmyNunj;

Example #2 /* send raw data in this nessage. */
GSSi gnal MsgQ(MSGQL_P, (OStypeMsgP) 'r');

\./.(.)i d TaskRcvRawDat a(void)
{

CSt ypeMsgP nsgP;

unsi gned char rcvdChar;

while (1) {
/* wait forever for a nessage. */
OCS Wai t MsgQ MBSGQL_P, &nsgP);

/* cast (don't dereference) nessage */
/* pointer since raw data was passed. */
| ocal UC = (unsigned char) nsgP;
printf("received % \n", rcvdChar);

264 Chapter 7 » Reference Salvo User Manual

OS_ WaitSem(): Context-switch and Wait the Current Task

on a Semaphore

Notes

See Also

Salvo User Manual

Type: Macro (invokes CSWai t Event ())

Declaration: OS_wai t Sem (
OSt ypeEcbP echbP,

OSt ypeDel ay tineout);

Callable from: Task only

Contained in: sal vonpt . h

Enabled by: OSENABLE_SEMAPHORES, OSEVENTS

Affected by: OSENABLE_STACK_CHECKI NG,
OSENABLE_TI MEQUTS, OSLOGG NG

Description: Wait the current task on a semaphore, with

a timeout. If the semaphore is 0, return to
the scheduler and continue waiting. If the
semaphore is non-zero, decrement the
semaphore and continue. If the timeout
expires before the semaphore becomes
non-zero, continue execution of the task,
with the timeout flag set.

Parameters: ecbP: a pointer to the semaphore's ecb.

ti meout : an integer (>=0) specifying the

desired timeout in system ticks.

Returns: —

Stack Usage: 2

Specify a timeout of OSNO_TI MEQUT if the task is to wait the sema-
phore indefinitely.

Do not call 0S_Wai t Sen() from within an ISR!
After a timeout occurs the semaphore is undefined.

In the example below, TaskRcvRsp() removes incoming charac-
ters from a receive buffer one at a time and processes them.
SEM RX_BUFF always indicates how many characters are present in
rxBuf f[], and is signaled by another task which puts the charac-
ters into rxBuf f[] one-by-one. TaskRcvRsp() runs as long as
there are characters present in rxBuff[] — when is empty,
TaskRcvRsp() waits. By using a semaphore for inter-task com-
munications there's no need to poll for the existence of characters
in the buffer, and hence overall performance is improved.

OSCr eat eSen() , OSReadSen() , GSSi gnal Sen{(), OSTrySemn()

Chapter 7 « Reference 265

Example void TaskRcvRsp (void)

{

static char rcChar;

while (1) {
/* wait until there are response chars */
/* waiting ... (TaskRx() signals us when */
/* there are). */
OS_Wai t Sem(SEM_RX_RBUFF_P, OSNO_TI MEQUT) ;
/* then deal with them */
/* get the next char fromthe buffer */
rcChar = rxBuff[rxHead];
r xHead++;
if (rxHead >= SI ZEOF_RX_BUFF) {

rxHead = 0;

}
r xCount - - ;
/* al phanunmeric characters are the _only_ */
/* chars (other than reserved ones) we */
/* expect to see in the incom ng rcChar. */
if (isalnum(rcChar) || (rcChar =="-"))
{
}
el se
{
}

}

}

266 Chapter 7 » Reference Salvo User Manual

OS Yield(): Context-switch

Notes

Salvo User Manual

Type:
Declaration:

Callable from:

Contained in:
Enabled by:
Affected by:
Description:
Parameters:
Returns:
Stack Usage:

Macro
oS Yield ();

Task only
sal vonpt . h

Return to scheduler.

1 or 2, depending on compiler and target.

OS Yield() causes an immediate, unconditional return to the

scheduler.

Do not call GS_Yi el d() from within an ISR!

In the example below, TaskUni nportant () is assigned a low pri-
ority and runs only when no other higher-priority tasks are eligible
to run. Each time it runs, it increments a counter by 1.

Chapter 7 « Reference 267

Example unsi gned |l ong int uninportantCounter = O;

int min (void)

{

OSCr eat eTask(TaskUni nport ant,
TASK_UNI MPORTANT_P, 14);

}

voi d TaskUni nportant (void)

while (1) {
uni npor t ant Count er ++;

OS Yield();

}
}

268 Chapter 7 » Reference Salvo User Manual

OSCIrEFlag(): Clear Event Flag Bit(s)

Notes

See Also

Salvo User Manual

Type: Function

Prototype: OstypeErr OSC rEFl ag (
OSt ypeEcbP ecbP,
OSt ypeEFl ag nask) ;

Callable from: Anywhere

Contained in: sal voef | ag. c, sal voevent. c
Enabled by: OSENABLE_EVENT FLAGS, OSEVENTS
Affected by: OSCALL_0OSSI GNALEVENT,

OSENABLE_STACK_CHECKI NG,
OSCOVBI NE_EVENT_SERVI CES,
OSLOGG NG, OSUSE_EVENT_TYPES

Description: Clear bits in an event flag. No task will be
made eligible by this operation.
Parameters: ecbP: a pointer to the event flag's ecb.
mask: mask of bits to be cleared.
Returns: OSERR_BAD_P if event flag pointer is incor-
rectly specified.

OSERR_EVENT_BAD_TYPE if specified event
is not an event flag.

OSERR_EVENT_CB_UNI NI T if event flag's
control block is uninitialized.

OSERR_EVENT_FULL if event flag doesn't
change.

OSNCERR if event flag bits are successfully
cleared.

Stack Usage: 1

No tasks are made eligible by clearing bits in an event flag.

This service is typically used immediately after successfully wait-
ing an event flag, since the bits in question are not automatically
cleared by OS_Wai t EFl ag() .

In the example below, a task is configured to run only when two
particular bits in an event flag are set. It then clears one of them
and returns to the waiting state. It will run again when and only
when both bits are set.

OS_ Wi t EFl ag() , OSCr eat eEFIl ag() , OSReadEFI ag() , OSSet E-
Fl ag()

Chapter 7 « Reference 269

Example #defi ne EFLAGL_P OSECBP(2)
voi d TaskC (void)

while (1) {
/* wait forever for both bits to be set */
OS_Wai t EFl ag(EFLAGL_P, 0x0C, OSALL_BI TS,
OSNO_TI MEQUT) ;

/* clear the upper bit, |eave the | ower */

/* one al one. */
OSCl r EFl ag(EFLAGL_P, 0x08);

270 Chapter 7 » Reference Salvo User Manual

OSCreateBinSem(): Create a Binary Semaphore

Type: Function

Prototype: OSt ypeErr OSCreat eBi nSem (
OSt ypeEcbP ecbP,
OSt ypeBi nSem bi nSem) ;

Callable from: Anywhere

Contained in: sal vobi nsem ¢

Enabled by: OSENABLE_BI NARY SEMAPHORES,
OSEVENTS

Affected by: OSCALL_OSCREATEEVENT,

OSENABLE_STACK_CHECKI NG,
OSCOVBI NE_EVENT_SERVI CES,
OSLOGG NG, OSUSE_EVENT_TYPES

Description: Create a binary semaphore with the initial
value specified.

Parameters: ecbP: a pointer to the binary semaphore's
ecb.

bi nSem the binary semaphore's initial
value (Oor1).

Returns: OSNGERR
Stack Usage: 1
Notes Creating a binary semaphore assigns an event control block (ecb)

to the semaphore.
A newly-created binary semaphore has no tasks waiting for it.

Signaling or waiting a binary semaphore before it has been created
will result in an error if OSUSE_EVENT_TYPES is TRUE.

You can also implement binary semaphores via messages — see
OSCr eat eMsg() .

In the example below, a binary semaphore is used to control access
to a shared resource, an I/O port. The port is initially available for
use, so the semaphore is initialized to 1.

See Also OS_Wai t Bi nSem() , OSReadBi nSen{() , OSSi gnal Bi nSen{(),

OSTryBi nSem()

Example /* PORTB is a general -purpose |/O port. */
#def i ne Bl NSEM PORTB_P OSECBP(6)

/* PORTB is initially available to task that */

Salvo User Manual Chapter 7 « Reference 271

/* wants to use it. */
OSCr eat eBi nSen(Bl NSEM PORTB_P, 1);

272 Chapter 7 » Reference Salvo User Manual

OSCreateCycTmr(): Create a Cyclic Timer

Notes

Salvo User Manual

Type: Function

Prototype: Ost ypeErr OSCreat eCycTnr (
OSt ypeTFP t FP,
OStypeTcbP tcbP,
OSt ypeDel ay del ay,
OSt ypeDel ay peri od,
OSt ypeCTMbde node);

Callable from: Background only

Contained in: sal voyclic.c

Enabled by: OSENABLE_CYLI C_TI MERS

Affected by: -

Description: Create a cyclic timer with the initial delay
and period specified.

Parameters: t FP: a pointer to the cyclic timer's start

address. This is also the cyclic timer's
function prototype name.
t cbP: a pointer to the cyclic timer's tcb.
del ay: the initial delay (> 0), in ticks be-
fore the cyclic timer is first called.
period: the time, in ticks (> 0), between
successive calls of the cyclic timer
mode: OSCT_ONE_SHOT (the cyclic timer
will run only once) or GSCT_CONTI NUOUS
(the cyclic timer will run indefinitely).
Returns: OSNCERR if task is successfully created.
OSERR_BAD P if the specified tcb pointer is
invalid (i.e. out-of-range).
OSERR_BAD_CT_MODE if node is unrecog-
nized.
OSERR_BAD CT_DELAY if del ay or peri od
are 0.
Stack Usage: 3

Cyclic timers are structured like common functions (with a clear
entry and exit), not like tasks. Cyclic timers take no arguments and

return no values.

Creating a cyclic timer assigns a task control block (tcb) to the cy-
clic timer.

If you prefer to create the task now and explicitly start it later, OR
OSCreat eCycTnr () 's mode parameter with

Chapter 7 « Reference 273

See Also

Example

274

OSDONT_START_CYCTMR. Then use OSStart CycTnr () to start the
cyclic timer at a later time.

Cyclic timers require that timeouts be enabled. Setting
OSENABLE_CYLI C_TI MERS to TRUE will automatically enable time-
outs.

In the example below, cyclic timer CycTnr 1() toggles bit 1 of an
I/O port. CycTnr 1() will begin running 23 system ticks after the
scheduler is called, and will repeatedly toggle the port pin every
177 system ticks. CycTnr 2() will set bit 2 of an I/O port 12 sys-
tems ticks after the scheduler is called, and will then stop.

OSCycTnr Runni ng() , OSDest royCycTnr (), OSReset CycTnr (),
OSSet CycTnr Period(),OSStart CycTnr (), OSSt opCycTnr ()

/* Cyclic timer toggles 1/O pin indefinitely. */
void CycTnrl (void)

{
PORT "= 0x02;
}
/* Cyclic timer sets I/0O pin once. */

void CycTnr2 (void)

PORT | = 0x04;
}

/* Create the cyclic timers. */

OSCr eat eCycTnr (CycTmr 1, OSTCBP(1), 23, 177,
OSCT_CONTI NUQUS) ;

OSCr eat eCycTnr (CycTmr 2, OSTCBP(5), 12, 7,
OSCT_ONE_SHOT) ;

Chapter 7 » Reference Salvo User Manual

OSCreateEFlag(): Create an Event Flag

Notes

Salvo User Manual

Type: Function

Prototype: Ost ypeErr OSCreat eEFl ag (
OSt ypeEcbP ecbP,
OSt ypeEf cbP ef cbP,
OSt ypeEFl ag eFl ag);

Callable from: Anywhere

Contained in: sal voefl ag. c

Enabled by: OSENABLE_EVENT_FLAGS, OSEVENTS
Affected by: OSCALL_OSCREATEEVENT,

OSENABLE_STACK_CHECKI NG,
OSCOVBI NE_EVENT_SERVI CES,
OSLOGG NG, OSUSE_EVENT_TYPES

Description: Create an event flag with the initial value
specified.
Parameters: ecbP: a pointer to the event flag's ecb.

ef cbP: a pointer to the event flag's efcb.
eFl ag: the event flag's initial value.
Returns: OSNGERR

Stack Usage: 1

Creating an event flag assigns an event control block (ecb) and an
event flag control block (efcb) to the event flag.

A newly-created event flag has no tasks waiting for it.

Signaling or waiting an event flag before it has been created will
result in an error if OSUSE_EVENT_TYPES is TRUE.

Event flags can be 8, 16 or 32 bits, depending on
OSBYTES_OF EVENT_FLAGS. OSCr eat eEFl ag() stores the value of
the event flag in the event flag's pre-existing event flag control
block (efcb) of type OSgl t ypeEf cb. The number of efcb's in your
application is set by OSEVENT_FLAGS. The first efcb is accessed via
OSEFCBP(1) , the second by OSEFCBP(2) , etc.

In the example below, an 8-bit event flag is used to signify the oc-
currence of keypresses from an 8-key machine control keypad.
Each bit maps to a single key. The event flag is initialized to all 0's
to indicate that no keypresses have occurred.
OSBYTES_OF_EVENT_FLAGS is set to 1 in this example's sal -
vocfg. h.

Chapter 7 « Reference 275

See Also OS_ Wi t EFl ag() , OSReadEFI ag() , OSSi gnal EFI ag() , OSTryE-

Fl ag()

Example /* event flag is event #3, uses event flag */
/* control block #1. */
#defi ne EFLAG KEYS P OSECBP(3)
#defi ne EFLAG KEYS CB P OSEFCBP(1)
/* Initially no keys have been pressed. */
OSCr eat eEFl ag(EFLAG_KEYS_P, EFLAG KEYS_CB_ P,

0x00) ;

276 Chapter 7 » Reference Salvo User Manual

OSCreateMsg(): Create a Message

Type: Function

Prototype: Ost ypeErr OSCreat eMsg (
OSt ypeEcbP echP,
Cst ypeMsgP nsgP) ;

Callable from: Anywhere

Contained in: sal vosg. c

Enabled by: OSENABLE MESSAGE, OSEVENTS
Affected by: OSCALL__OSCREATEEVENT,

OSENABLE_STACK_CHECKI NG,
OSCOVBI NE_EVENT_SERVI CES,
OSLOGG NG, OSUSE_EVENT_TYPES

Description: Create a message with the initial value
specified.
Parameters: ecbP: a pointer to the message's ecb.
nmsgP: a pointer to a message.
Returns: OSNCERR
Stack Usage: 1
Notes Creating a message assigns an event control block (ecb) to the

message. A newly-created message has no tasks waiting for it.
Messages are passed via pointer so that a message can point to
anything.

Signaling or waiting a message before it has been created will re-
sult in an error if OSUSE_EVENT_TYPES is TRUE.

Binary semaphores and resource locking can be implemented via
messages using the values (OSt ypeMsgP) 0 and (OSt ypeMsgP) 1
for the messages.

In the example below, a message is created to pass the key pressed
(which is detected by the task TaskReadKey()) to the task Task-
Handl eKey (), which acts on the keypress. The message is initial-
ized to zero because no keypress is initially detected. If, due to task
priorities and timing, TaskReadKey() signals a new message be-
fore TaskHandl eKey() reads the existing message, the new key
will be lost.

See Also OS_Wai t Msg(), OSReadMsg(), OSSi gnal Msg(), OSTryMsg()

Salvo User Manual Chapter 7 « Reference 277

Example /* pass key via a nessage. */
#defi ne MSG _KEY_PRESSED P OSECBP(4)

/”’" this task reads key presses froma keypad */

/* and sends themto TaskHandl eKey via a */
/* message. */
voi d TaskReadKey (void)
{
static char key; /* hol ds key pressed */
/* initially no key has been pressed. */

OSCr eat eMsg(MSG_KEY_PRESSED P, (OStypeMsgP) 0);

while (1) {
if (kbhit()) {
key = getch();

/* do debounci ng, key-repeat, etc. */
/* send new key via message. */

OSSi gnal Msg(MSG_KEY_PRESSED P,
(OStypeMsgP) &key);

}
/* wait 10msec, then test for keypress */
/* again. */
OS_Del ay(TEN_MSEC) ;
}
}
/* this task acts upon keypresses. */
voi d TaskHandl eKey (void)
{
static char key; /* hol ds new key */
static OStypeMsgP nmsgP; /* get nsg via ptr */
while (1) {
/* do nothing until a key is pressed. */
OS Wi t Msg(MSG_KEY_PRESSED P, &nsgP,
OSNO_TI MEQUT) ;
/* then get the new key and act on it. */
key = *(char *)nsgP;
switch (tol ower(key)) {
case KEY_UP:
MoveUp() ;
br eak;
}
}
}

278 Chapter 7 » Reference Salvo User Manual

OSCreateMsgQ(): Create a Message Queue

Notes

Salvo User Manual

Type: Function
Prototype: Ost ypeErr OSCr eat eMsgQ (
OSt ypeEcbP ecbP,

OSt ypeMycbP ngchP,
OSt ypeMsgQPP nmsgPP,
OSt ypeMsg(QSi ze size);

Callable from: Anywhere

Contained in: sal vonsgg. ¢

Enabled by: OSENABLE_MESSAGE_QUEUES, OSEVENTS
Affected by: OSCALL_OSCREATEEVENT,

OSENABLE_STACK_CHECKI NG,
OSCOVBI NE_EVENT _SERVI CES,
OSLOGG NG, OSUSE_EVENT_TYPES
Description: Create an empty message queue.
Parameters: ecbP: a pointer to the message queue's ecb.
mycbP: a pointer to the message queue's
message queue control block.
nmsgPP: a pointer to the buffer that will hold
the message queue's message pointers.
si ze: the number of messages (0 <si ze <
256) that the message queue can hold.
Returns: OSNGERR

Stack Usage: 1

Creating a message queue assigns an event control block (ecb) to
the message.

Each message queue has a message queue control block (mqcb)
associated with it. Salvo message queue services use mqcbs to
manage the insertion and removal of messages into and out of each
message queue. You must allocate memory for mqcbs using the
OSMESSAGE_QUEUES configuration option. You must associate a
unique mqcb with each message queue using a message queue con-
trol block pointer. These range from OSMQCBP(1) to
OSMQCBP(OSMESSAGE._ QUEUES) . A newly-created message queue
contains no messages.

A message queue’® holds its message pointers’® within a circular
buffer. You must declare this buffer in your source code as a sim-
ple array, and give OSCr eat eMsgQ() a handle to it via the nsgPP

75 Of type OSgl t ypeMsgQP.
76 Of type OSt ypeMsgP.

Chapter 7 « Reference 279

See Also

Example

280

parameter. The buffer must hold si ze message pointers. OSCr e-
at eMsgQ() does not have any effect on the contents of the buffer.

In the example below, a 7-clement and a 16-element message
queue are created with the buffers MgQ@Buffi[] and
MsgQBuf f 2[], respectively. The message queue control block IDs
are 1 and 2, since memory was allocated for two message queues
via OSMESSAGE_QUEUES in sal vocf g. h.

For this example sal vocf g. h contains:

#def i ne OSEVENTS 5
#def i ne OSMESSAGE _QUEUES 2

In this example, all of the OSLOC_XYZ configuration options are at
their default values. By using OSLOC_MSGQ and OSLOC_MXB you
can relocate the buffers and the mqcbs, respectively, into RAM
banks other than the default banks.

OS Wit MsgQ() , OSReadMsgQ(), OSSi gnal MsgQ() , CSTryMsgQ() ,
OSLOC_MsGEQ CSLOC_MXCB

/* use #defines for legibility */
#defi ne SEML_P OSECBP(1)
#defi ne SEM2_P OSECBP(2)
#defi ne BI NSEML_P OSECBP(3)
#def i ne MSGQL_P OSECBP(4)
#defi ne MSGR_P OSECBP(5)
#defi ne MXCB1_P OSMXCBP(1)
#defi ne MQCB2_P OSMQCBP(2)

#define SI ZEOF_MSGQL 7
#def i ne SI ZEOF_MSGQR 16

/* allocate nenory for buffers */
OSgl t ypeMsgQP MsgQBuf f 1[SI ZEOF_MSGQL] ;
OSgl t ypeMsgQP MsgQBuf f 2[SI ZEOF_MSGQR2] ;

/* create nmessage queues from existing */
/* buffers and nycbs. */
OSCr eat eMsgQ(MSGQL_P, MXBP1_P, MsgQBuff1l,

SI ZEOF_MBGQL) ;
OSCr eat eMsgQ(MSGQR_P, MXBP2 P, MsgQBuff 2,

S| ZEOF_VBGQR) ;

Chapter 7 » Reference Salvo User Manual

OSCreateSem(): Create a Semaphore

Type: Function

Prototype: Ost ypeErr OSCreat eSem (
OSt ypeEcbP echP,
CStypeSem sem);

Callable from: Anywhere

Contained in: sal vosem ¢

Enabled by: OSENABLE_SEMAPHORES, OSEVENTS
Affected by; 0SBl G_SEVMAPHORES,

OSCALL_ OSCREATEEVENT,
OSENABLE_STACK_CHECKI NG,
OSCOVBI NE_EVENT_SERVI CES,
OSLOGG NG, OSUSE_EVENT_TYPES

Description: Create a counting semaphore with the ini-
tial value specified.
Parameters: ecbP: a pointer to the semaphore's ecb.
sem the semaphore's initial value.
Returns: OSNCERR
Stack Usage: 1
Notes Creating a semaphore assigns an event control block (ecb) to the
semaphore.

A newly-created semaphore has no tasks waiting for it.

Signaling or waiting a semaphore before it has been created will
result in an error if OSUSE_EVENT_TYPES is TRUE.

In the example below, a counting semaphore is created to mark
how much space is available in a transmit ring buffer. The buffer is

initially empty, so the semaphore is initialized to the size of the
bufter.

See Also OS_Wai t Ser() , OSReadSen() , OSSi gnal Sen{), OSTrySen()

Salvo User Manual Chapter 7 « Reference 281

Example /* Ring buffer is used to receive characters. */
#defi ne SEM TX_RBUFF_P OSECBP(3)

/* initialize semaphore (ring buffer is */

/[* enpty). */
OSCr eat eSem(SEM _TX_RBUFF_P, 16);

282 Chapter 7 » Reference Salvo User Manual

OSCreateTask(): Create and Start a Task

Notes

Salvo User Manual

Type: Function

Prototype: OSt ypeErr OSCreat eTask (
CstypeTFP t FP,
OSt ypeTchP tchP,
OStypePrio prio);

Callable from: Background only

Contained in: salvoinit2. c

Enabled by: —

Affected by: OSLOGG NG, OSENABLE_ STACK_CHECKI NG
Description: Create a task with the specified start ad-

dress, tcb pointer and priority. Starts the
task unless overridden by the user in the
pri o parameter.

Parameters: t FP: a pointer to the task's start address.
This is also the task's function prototype
name.

t cbP: a pointer to the task's tcb.

pri o: the desired priority for the task. If
OR'd with OSDONT_START_TASK, the task
will not be started.

Returns: OSNOERR if task is successfully created.

OSERR_BAD P if the specified tcb pointer
is invalid (i.e. out-of-range).

Stack Usage: 3

Creating a task assigns a task control block (tcb) to the task.

0 (OSHI GHEST_PRI O) is the highest priority, 15 (OSLONEST_PRI O)
is the lowest. If the specified task priority is out-of-range, the task
will still be created, but with the lowest possible priority.

Tasks created via OSCr eat eTask() are automatically started, i.e.
they are in the eligible state.

If you prefer to create the task now and explicitly start it later, OR
OSCreat eTask()'s prio parameter with OSDONT_START_TASK.
Then use OSSt art Task() to start the task at a later time.

If task priorities are disabled via OSDI SABLE_TASK_PRI ORI Tl ES,

OSCr eat eTask()'s third argument (prio) is used only with
OSDONT_START_TASK, and the priority value is disregarded.

Chapter 7 « Reference 283

See Also

Example

284

Caution oscreateTask() overwrites the task control block
specified via the t cbP parameter, i.e. it overwrites the tcb. When
calling CSCr eat eTask() after task scheduling has started via OSS-
ched(), extreme caution must be used to avoid overwriting an ex-
isting eligible, running, delayed, waiting or stopped task.

In the example below, a single task is created from the function
TaskDoNot hi ng() by assigning it a tcb pointer of TASK1_P, and a
priority of 7.

OSst art Task(), OSSt opTask()

#defi ne TASK1_P OSTCBP(1)/* tasklDs start at 0 */

/* this task does nothing but run, context- */
/* switch, run, context-switch, etc. */
voi d TaskDoNothing (void)

while (1) {
OS Yield();

}
}
/* create a single task and run it (over and */
/* over). */
int min (void)
{

/* initialize Sal vo. */

CSlnit();

/* create a task to do nothing but context- */
/* switch. Tcb pointer is 0, priority is 7 */
/* (mddle). Acall to OSSTartTask() is not */
/* required ... */
OSCr eat eTask(TaskDoNot hi ng, TASK1 P, 7);

/* start multitasking. */
while (1) {
GSSched() ;
}
}
Chapter 7 » Reference Salvo User Manual

OSDestroyCycTmr(): Destroy a Cyclic Timer

Notes

See Also

Salvo User Manual

Type:
Prototype:

Callable from:
Contained in:
Enabled by:
Affected by:
Description:
Parameters:
Returns:

Stack Usage:

Function
OSt ypeErr OSDestroyCycTnr (
OSt ypeTchP tchP);

Background only
sal voyclic4.c

OSENABLE_CYCLI C_TI MERS

Destroy the specified cyclic timer.

t cbP: a pointer to the cyclic timer's tcb.
OSNCERR if cyclic timer is destroyed.
OSERR_BAD _CT if the tcb in question does

not belong to a cyclic timer.
3

OSDest royCycTnr () destroys both running and stopped cyclic

timers.

In the example below, CycTnr 3() is created and then destroyed
from within a task after being allowed to run for 200 system ticks.
The task then continues, creating another task — Task4()— which

uses the same tcb.

OSCr eat eCycTnr (), OSCycTnr Runni ng() , OSReset CycTnr (),
OSSet CycTnr Period(), GSStart CycTnr (), OSSt opCycTnr ()

Chapter 7 « Reference 285

Example
OSCr eat eCycTnr (CycTmr 3, OSTCBP(7), 1, 2,

OSCT_CONTI NUCUS) ;
OS _Del ay(200);
OSDestroyCycTnr (OSTCBP(7)) ;
OSCr eat eTask(Task4, OSTCBP(7), 12);

286 Chapter 7 » Reference Salvo User Manual

OSDestroyTask(): Destroy a Task

Notes

See Also

Salvo User Manual

Type: Function

Prototype: Ost ypeErr OSDestroyTask (
OSt ypeTchbP tchP,
CStypel D events);

Callable from: Task or Background
Contained in: sal vot ask3. c
Enabled by: -
Affected by: OSENABLE_STACK_CHECKI NG
Description: Destroy the specified task.
Parameters: t cbP: a pointer to the task's tcb.
events: OSEVENTS.
Returns: OSNCERR if specified task was successfully
destroyed.
OSERR if unable to destroy the specified
task.
Stack Usage: 3

OSDestroyTask() can destroy any task that is not already de-
stroyed or waiting an event.

The destroyed task's tcb is re-initialized.

The second parameter of OSEVENTS is required for all configura-
tions where events are enabled. If events are not enabled, then OS-
DestroyTask() takes only a single parameter.

In the example below, TaskMai n() has a relatively high priority of
3. When it runs, it creates another, lower-priorty task, TaskWar -

mUp() . During the next thirty seconds, TaskWar mp() runs when-
ever it is the highest-priority eligible task. Then TaskMai n()

destroys TaskWar mUp() . Thereafter, OSCr eat eTask() can be used
to create another task in TaskWar mJp()'s place, using the same tcb
pointer.

OSCr eat eTask(), OS Destroy()

Chapter 7 « Reference 287

Example OSCr eat eTask(TaskMai n, TASKMAI N, 3);

void TaskMain (void)

{
OSCr eat eTask(TaskWar nJp, TASKWARMUP_P, 7);

while (1) {

0S_Del ay(THI RTY_SEC) ;
OSDest r oy Task(TASKWARMUP_P, OSEVENTS) ;

}
}

288 Chapter 7 » Reference Salvo User Manual

OSGetPrio(): Return the Current Task's Priority

Notes

See Also

Salvo User Manual

Type: Macro (invokes OSGet Pri oTask())

Prototype: OStypePrio OSCGetPrio ();

Callable from: Task only

Contained in: sal voprio2.c

Enabled by: -

Affected by: OSENABLE_STACK_CHECKI NG

Description: Return the priority of the current (running)
task.

Parameters:

Returns: -

Stack Usage: 1

0 (OSHI GHEST_PRI O) is the highest priority, 15 (OSLOWEST_PRI O)
is the lowest.

In the example below, TaskB() lowers its priority each time it
runs, until it reaches the lowest allowed priority and remains there.

OS SetPrio(), OSGet PrioTask(), OSSet Pri o(), OSSet Pri o-
Task(), OSDI SABLE_TASK PRI ORI TI ES

Chapter 7 « Reference 289

Example void TaskB (void)

{
CStypePrio prio;

while (1) {

prio-- = OSGetPrio();
OS SetPrio(prio);
}
}

290 Chapter 7 » Reference Salvo User Manual

OSGetPrioTask(): Return the Specified Task's Priority

Type: Function
Prototype: OStypePrio OSCet PrioTask (
CSt ypeTchP tcbP);
Callable from: Task or Background
Contained in: sal voprio2.c
Enabled by: -
Affected by: OSENABLE_STACK_CHECKI NG
Description: Return the priority of the specified task.
Parameters: t cbP: a pointer to the task's tcb.
Returns: -
Stack Usage: 1
Notes 0 (OSHI GHEST_PRI O) is the highest priority, 15 (OSLOWEST_PRI O)

1s the lowest.

In the example below, Di spTaskPri o() displays the priority of the
specified task.

See Also OS SetPrio(),OSGetPrio(),0SSetPrio(),OSSetPrioTask(),
OSDI SABLE_TASK_PRI ORI Tl ES

Salvo User Manual Chapter 7 « Reference 291

Example #define TASKE_P OSTCBP(5)

\./.(.)i d Di spTaskPrio (OStypeTcbP tcbP)
{
printf("Task %l has priority %l. \n",
Ost 1 D(tchbP, OSTASKS), OSGetPrioTask(tcbP));

292 Chapter 7 » Reference Salvo User Manual

OSGetState(): Return the Current Task's State

Type: Macro (invokes OSGet St at eTask())
Prototype: OStypeState OSCet State ();
Callable from: Task only
Contained in: sal vonpt . h
Enabled by: -
Description: Return the state of the current (running)
task.
Parameters: -
Returns: Task state.
Stack Usage: 1
Notes The current task's state is always OSTCB_TASK_RUNNI NG. This ser-

vice is included for completeness.

In the example below, TaskG) verifies that it is in fact running.

See Also OSGet St at eTask()

Salvo User Manual Chapter 7 « Reference 293

Example void TaskC (void)
{
while (1) {
if (OSCGetState() != OSTCB_TASK_RUNNI NG
printf("Houston, we have a problem\n");

294 Chapter 7 « Reference Salvo User Manual

OSGetStateTask(): Return the Specified Task's State

Type: Function
Prototype: OStypeState OSCet State (
CSt ypeTcbP tcbhP);

Callable from: Task or Background

Contained in: sal vot ask5. ¢

Enabled by: -

Affected by: OSENABLE_STACK_CHECKI NG

Description: Return the state of the specified task.

Parameters: —

Returns: Task state.

Stack Usage: 1

Notes A task may be in one of the following states:

OSTCB_DESTROYED destroyed / uninitialized
OSTCB_TASK_STOPPED stopped
OSTCB_TASK_DELAYED delayed
OSTCB_TASK_WAI TI NG waiting on an event

OSTCB_TASK_WAI TING TO waiting on an event,
with a timeout if in an event
queue. Waited for an event
and timed out if in the
eligible queue
OSTCB_TASK ELI G BLE eligible to run
OSTCB_TASK_SI GNALED in the eligible queue,
having waited an event that
was signaled
OSTCB_TASK_RUNNI NG running

In the example below, mainline code verifies that a particular task
has indeed been stopped.

See Also CSCet St at e()

Salvo User Manual Chapter 7 « Reference 295

Example #define TASKC_P OSTCBP(3)

i f (OSGet StateTask(TASKC P) ! = OSTCB TASK_STOPPED)
/* sonmething's wong with Task((). */

296 Chapter 7 » Reference Salvo User Manual

OSGetTicks(): Return the System Timer

Notes

See Also

Salvo User Manual

Type: Function

Prototype: OSt ypeTi ck OSCGet Ticks (void);

Callable from: Anywhere

Contained in: sal voti ck.c

Enabled by %BYTES_O:_-“ CKS

Affected by: OSENABLE_STACK_CHECKI NG

Description: Obtain the current value of the system
timer (in ticks).

Parameters: -

Returns: Current system timer in ticks.

Stack Usage: 1

The system timer is initialized to 0 via OSI ni t () .

In the example below, the current value of the system timer is

stored in a variable.

OSSet Ti cks()

Chapter 7 « Reference

297

Example
CSt ypeTi ck ti cksNow,

/* obtain current value of systemticks. */
ti cksNow = OSCGet Ti cks();

On certain targets it may be advantageous to read the current sys-
tem ticks (OStinerTicks) directly instead of through OSGet -
Ti cks(). Possible scenarios include substantial function call
overhead and/or no need to manage interrupts.”’” In the example
below, the current value of the system timer is stored in a variable
by accessing Ost i ner Ti cks directly.

OSt ypeTi ck ti cksNow;

/* obtain current value of systemticks. */
di sabl e_interrupts();

ti cksNow = OSti mer Ti cks;

enabl e_interrupts();

77T Both of these conditions occur on the baseline PICmicro devices, e.g.
PIC12C5009.

298 Chapter 7 » Reference Salvo User Manual

OSGetTS(): Return the Current Task's Timestamp

Notes

See Also

Salvo User Manual

Type: Macro (invokes OSGet TSTask())

Prototype: OSt ypeTS OSGet TS (voi d);

Callable from: Task only

Contained in: sal vodel ay3. ¢

Enabled by OSBYTES_OF_TI CKS

Affected by: OSENABLE_STACK_CHECKI NG

Description: Obtain the value of the current task's time-
stamp (in ticks).

Parameters: —

Returns: Current task's timestamp in ticks.

Stack Usage: 1

When a task is created, its timestamp is initialized to an OSt ypeTS-
sized version of the system timer ticks, i.e. (OSt ypeTS) OSti ner -
Ti cks.

In the example below, the current task's timestamp is displayed
whenever it times out.

See OS_Del ayTS() for more information on timestamps.

OS Del ayTS(), GSSet TS() , OSSyncTS()

Chapter 7 « Reference 299

Example void Task (void)

while (1) {
OS Del ay(7); 78

printf("Task % tined out at %\ n",
Ost | D(OscTchP, OSTASKS), OSGetTS());

78 The timestamp is redefined whenever a delay expires, whether through

OS_Del ay() or OS_Del ayTS() .

300 Chapter 7 » Reference Salvo User Manual

OSInit(): Prepare for Multitasking

Notes

Salvo User Manual

Type:
Prototype:
Callable from:
Contained in:
Enabled by:
Affected by:

Description:
Parameters:
Returns:
Stack Usage:

Function
void OSlnit (void);

Background only
salvoinit.c

OSBYTES_OF DELAYS, OSCLEAR GLOBALS,
OSENABLE_STACK_CHECKI NG, OSEVENTS,
OSLOGE NG, OSTASKS

Initialize Salvo's pointers, counters, etc.

2

CSlI ni t () must be called first, before any other Salvo functions.

The executable code size of OSI ni t () can be minimized by setting
OSCLEAR_GLOBALS to FALSE. Do this only if you are certain that
your compiler initializes all global variables to 0 at runtime, and
you do not call OSI ni t () more than once in your application.

OSl ni t () does not initialize tcbs or ecbs — this is done on a per-tcb
and per-ecb basis when tasks and events are created, respectively.

In the example below, OGSl nit () is called before any other Salvo

calls.

Chapter 7 « Reference 301

Example int main (void)

{
/“’.r initialize Salvo. */
Cslnit();
/* start multitasking. 5
while (1) {
GSSched() ;
}
}

302 Chapter 7 » Reference Salvo User Manual

OSMsgQCount(): Return Number of Messages in Message
Queue

Type: Function

Prototype: Cst ypeMsgQSi ze OSMsgQCount (
OSt ypeTchbP echP);

Callable from: Anywhere

Contained in: sal vonsgg4. ¢

Affected by: OSCALL_OSMSGQCOUNT

Description: Check whether the specified message
queue has room for additional mes-
sage(s).

Parameters: ecbP: a pointer to the message queue's ecb.

Returns: Number of messages in message queue,
i.e. returns 0 if message queue is empty.

Stack Usage: 1

Notes OSMsgQCount () can be used to obtain the current status of the

message queue. OSMsgQCount () returns the count record in the
message queue's message queue control block (mqcb) — therefore
it's very fast.

No error checking is performed on the ecbP parameter. Calling
OSMsgQCount () with an invalid ecbP, or an ecbP belonging to an
event other than a message queue, will return an erroneous result.

In the example below, CSMsgQCount () is used to obtain the num-
ber of messages in a message queue, and the space available for
new messages. When using OSMsgQCount () to calculate available
space in a message queue, it must be subtracted from the size pa-
rameter originally used to create the message queue.

See Also OS_ Wi t MsgQ() , OSCr eat eMsgQ() , OSMsgQENMPt y() , OS-
ReadMsgQ() , GSSi gnal MsgQ() , OSTryMsgQ()

Salvo User Manual Chapter 7 « Reference 303

Example #defi ne MSGQL_P OSECBP(1)

printf("nsgQ contains % nmessages\n",

OsMsgQCount (MSGQL_P)) ;
printf("mgQ has room for %l nessages\n",
S| ZEOF_MSGQL - OSMsgQCount (MSGQL_P)) ;

304 Chapter 7 » Reference Salvo User Manual

OSMsgQEmpty(): Check for Available Space in Message

Queue

Notes

Salvo User Manual

Type: Function

Prototype: Ot ypeMsgQSi ze OSMsgQENDtY (
OSt ypeTchbP echP);

Callable from: Anywhere

Contained in: sal vonsggs3. ¢

Affected by: OSCALL_OSMSGREMPTY

Description: Check whether the specified message
queue has room for additional mes-
sage(s).

Parameters: ecbP: a pointer to the message queue's ecb.

Returns: Number of available (empty) spots in mes-

sage queue, i.e. returns 0 (FALSE) if
message queue is full.
Stack Usage: 1

Each message queue can contain up to a maximum number of
messages. I[f messages are added to the message queue (via GSSi g-
nal MsgQ()) faster than they are removed (via OS_Wit MsgQ()),
the queue will eventually fill up. OSMsgQEnpt y() can be used to
obtain the current status of the message queue without signaling
the message queue.

No error checking is performed on the ecbP parameter. Calling
OSMsgQEnpt y() with an invalid ecbP, or an ecbP belonging to an
event other than a message queue, will return an erroneous result.

Note ocsMsgQenpt y() performs pointer subtraction when comput-
ing the available room in the specified message queue. On some’®
targets, this may result in very slow execution. Since interrupts are
disabled during OSMsgQEnpty(), this is not desirable.
OSMsgQCount () always executes very quickly, and is preferred in
these cases.

In the first example below, mainline code signals a message queue
with a message from the user's nsg array only if space is available.
If not, an error counter is incremented. This example will give er-
roneous results if messages are also signaled to the same message
queue from within an interrupt handler. That's because interrupts

79 For example, on an 8-bit target where data pointers are 16 bits.

Chapter 7 « Reference 305

See Also

Example #1

Example #2

306

are enabled between the call to OSMsgQEnpt y() and the call to Os-

Si gnal MsgQ() . In that case, OSSi gnal MsgQ()'s return code of
OSERR_EVENT_FULL can be used to detect the inability to enqueue a
message into a message queue.

In the second example below, the message queue is filled to capac-
ity with new message pointers of ascending value, starting at 0.

0S Wi t MsgQ(), OSCr eat eMsgQ() , OSMsgQCount () , OS-
ReadMsgQ() , GSSi gnal MsgQ() , OSTryMsgQ()

#defi ne MSGB_P OSECBP(4)
unsi gned int counter;

if (OSMegQENpPty(MSGRB_P)) {
OSSi gnal MsgQ(MSGQB_P, (OStypeMsgP) &nsg[i]);

el se {
count er ++;

}

OSt ypeMsgQSi ze roomlLeft;
roonLeft = OSMsgQENpty(MSGQL_P) ;

for (i =0; i < roonlLeft; i++) {
OSSi gnal MsgQ(MSGQL_P, (OstypeMsgP) i);
}

Chapter 7 » Reference Salvo User Manual

OSReadBinSem(): Obtain a Binary Semaphore
Unconditionally

Type: Function

Prototype: OSt ypeBi nSem OSReadBi nSem (
OSt ypeEcbP echP);

Callable from: Anywhere

Contained in: sal vobi nsem ¢

Enabled by: OSENABLE_BI NARY SEMAPHORES,
OSENABLE_EVENT_READI NG, OSEVENTS

Affected by: OSCALL_OSRETURNEVENT

Description: Returns the binary semaphore specified by
echP.

Parameters: ecbP: a pointer to the binary semaphore's
ecb.

Returns: Binary semaphore (0 or 1).

Stack Usage: 1

Notes OSReadBi nSent() has no effect on the specified binary semaphore.

Therefore it can be used to obtain the binary semaphore's value
without affecting the state(s) of any task(s).

No error checking is performed on the ecbP parameter. Calling
OSReadBi nSen() with an invalid ecbP, or an ecbP belonging to an
event other than a binary semaphore, will return an erroneous re-
sult.

In the example below, a binary semaphore employed as a resource
is tested before making a decision to delay a task.

See Also OS_Wai t Bi nSen() , OSCr eat eBi nSen{(), OSTryBi nSen{), OSSi g-
nal Bi nSem()

Salvo User Manual Chapter 7 « Reference 307

Example S . .
/[* initially, resource #2 is avail able. */

OSCr eat eBi nSen(B NSEM RSRC2_P, 1);
void TaskD (void)
while (1) {

i (OSReadBi nSen{ Bl NSEM RSRC2_P)) {
} MW Fn() ;

el se {
CS Del ay(100);
}

308 Chapter 7 » Reference Salvo User Manual

OSReadEFlag(): Obtain an Event Flag Unconditionally

Notes

See Also

Salvo User Manual

Type: Function
Prototype: OSt ypeEFl ag OSReadEFI ag (
OSt ypeEcbP echP);
Callable from: Anywhere
Contained in: sal voeflag2. c
Enabled by: OSENABLE EVENT FLAGS,
OSENABLE_EVENT_READI NG, OSEVENTS
Affected by: OSCALL_OSRETURNEVENT
Description: Returns the event flag specified by ecbP.
Parameters: ecbP: a pointer to the event flag's ecb.
Returns: Event flag.
Stack Usage: 1

OSReadEFI ag() has no effect on the specified event flag. There-
fore it can be used to obtain the event flag's value without affecting
the state(s) of any task(s).

No error checking is performed on the ecbP parameter. Calling
OSReadEFI ag() with an invalid ecbP, or an ecbP belonging to an
event other than an event flag, will return an erroneous result.

In the example below, TaskF() waits on one of two bits to be set

in an event flag pointed to by EFLAG P. OSReadEFl ag() is then
used to determine which of the two bits was set.

OS Wi t EFl ag() ,08d r EFIl ag() , OSCr eat eEFI ag() , CSSet E-
Fl ag()

Chapter 7 « Reference 309

Example void TaskF (void)

{
CSt ypeEFI ag eFl ag;

while (1) {
OS_Wai t EFl ag(EFLAG_P, 0xC0, OSANY_BI TS,
OSNO_TI MEQUT) ;
eFl ag = OSReadEFl ag(EFLAG P);

if (eFlag & 0x80) {

/* topnost bit was set ... */
}
el se {

/* other bit was set ... */
}

310 Chapter 7 » Reference Salvo User Manual

OSReadMsg():Obtain a Message's Message Pointer

Unconditionally

Notes

See Also

Salvo User Manual

Type: Function

Prototype: Gst ypeMsgP OSReadMsg (
OSt ypeEcbP echP);

Callable from: Anywhere

Contained in: sal vonsg. ¢

Enabled by: OSENABLE_MESSAGES,
OSENABLE_EVENT_READI NG, OSEVENTS

Affected by: OSCALL_OSRETURNEVENT

Description: Returns a pointer to the message specified
in echP.

Parameters: ecbP: a pointer to the message's ecb.

Returns: Message pointer.

Stack Usage: 1

OSReadMsg() has no effect on the specified message. Therefore it
can be used to obtain the message's message pointer without af-
fecting the state(s) of any task(s).

No error checking is performed on the ecbP parameter. Calling
OSReadMsg() with an invalid ecbP, or an ecbP belonging to an
event other than a message, will return an erroneous result.

In the example below, a task checks to see if a message is non-

empty before signaling the message.8? Thus it avoids losing the
message.

OS_ Wi t Msg() , OSCr eat eMsg(), OSSi gnal Msg(), OSTryMsg()

80 If the application allowed signaling the message from an interrupt, additional

interrupt control would be required in TaskC() in order to guarantee that the
message is empty before signaling it.

Chapter 7 « Reference 311

Example /* send this when there's a problem */
const char strlinpMsg[] = "lnportant Message!\n";

void TaskC (void)

while (1) {
/“’.c del ay one systemtick as |ong as MsSG */
/* has a nessage init. */
whi | e (OSReadMsg(MSG P)) {

OS Del ay(1);

}
/* now that MSG is enpty, we can send our */
/* inportant nessage. */
OsSi gnal Msg (MSG_P, (OStypeMsgP) &strl npMsg);

}

}

312 Chapter 7 » Reference Salvo User Manual

OSReadMsgQ(): Obtain a Message Queue's Message
Pointer Unconditionally

Notes

See Also

Example

Salvo User Manual

Type: Function

Prototype: Cst ypeMsgP OSReadMsgQ (
OSt ypeEcbP echP);

Callable from: Anywhere

Contained in: sal vomsgq. ¢

Enabled by: OSENABLE_EVENT READI NG,
OSENABLE_MESSAGE.QUEUES, OSEVENTS

Affected by: OSCALL_OSRETURNEVENT

Description: Returns a pointer to the next message in
the message queue specified in ecbP.

Parameters: ecbP: a pointer to the message's ecb.

Returns: Message pointer.

Stack Usage: 1

OSReadMsgQ() has no effect on the specified message queue.
Therefore it can be used to obtain the message queue's message
pointer without affecting the state(s) of any task(s).

No error checking is performed on the ecbP parameter. Calling
OSReadMsgQ() with an invalid ecbP, or an ecbP belonging to an
event other than a message queue, will return an erroneous result.

In the example below, message queue #2 is slowly filled with a
new character message every few seconds. TaskB() monitors the
message queue every second. Whenever there are one or more
valid messages in the message queue, TaskB() displays the first
message's contents.8! As the waiting task (not shown) waits the
message queue and obtains the messages, TaskB()'s output will
change as well.

OS Wi t MsgQ(), OSCr eat eMsgQ() , OSSi gnal MsgQ() ,
OSTryMsgQ()

/* message queue #2 contains single chars. */
#defi ne MSGQR_P OSECBP(6)

81 Note that TaskB(), as written, cannot distinguish between successive,

identical messages. Therefore it will report on a stream of messages
'h'e 110" as 'h''e'')'o'. However, the waiting task will receive all five
characters in the string.

Chapter 7 « Reference 313

314

void TaskB (void)

{
static char ol dchar;
char newchar;
OSt ypeMsgP nsgP;
while (1) {
OS_Del ay(ONE_SEC) ;
/* test nessage queue #2 */
nsgP = OSReadMsgQ MSGQR_P) ;
/* get the nessage if there is one. */
if (msgP) {
newchar = *(char *) nsgP;
if (newchar != oldchar) {
ol dchar = newchar;
printf("The new nmessage is: %\n.",
newchar) ;
}
}
}

Chapter 7 » Reference Salvo User Manual

OSReadSem(): Obtain a Semaphore Unconditionally

Type: Function
Prototype: OSt ypeSem OSReadSem (
OSt ypeEcbP echP);
Callable from: Anywhere
Contained in: sal vosem ¢
Enabled by: OSENABLE_EVENT READI NG,
OSENABLE _SEMAPHORES, CSEVENTS
Affected by: OSCALL_OSRETURNEVENT
Description: Returns the current value of the semaphore
specified in ecbP.
Parameters: ecbP: a pointer to the semaphore's ecb.
Returns: Semaphore.
Stack Usage: 1
Notes OSReadSen() has no effect on the specified semaphore. Therefore

it can be used to obtain the semaphore's value without affecting the
state(s) of any task(s).

No error checking is performed on the ecbP parameter. Calling
OSReadSen() with an invalid ecbP, or an ecbP belonging to an
event other than a semaphore, will return an erroneous result.

In the example below, a binary semaphore is used to manage a 15-

character ring buffer. In case of an error, the program displays a
descriptive messages? before re-initializing the buffer.

See Also OS_Wai t Sem() , OSCr eat eSen{) , OSSi gnal Sen(), OSTrySem()

82 printf () does notuse the system's Tx facilities.

Salvo User Manual Chapter 7 « Reference 315

Example /* initially, Tx buffer has roomfor 15 chars. */
#defi ne S| ZEOF_TXBUFF 15

/* nmanage the Tx buffer as a resource. */
OSCr eat eSem(SEM TXBUFF_P, S| ZEOF_TXBUFF) ;

/* if there's a Tx error, flush and recreate */
/* the buffer after displaying a nessage. */
if (TxErr)
{

Di sabl eTxl nts();

printf("Error: % chars stuck in Tx buffer.\n",

SI ZEOF_TXBUFF - OSReadSem(SEM TXBUFF_P));

Fl ushTxBuf f () ;

OSCr eat eSen(SEM _TXBUFF_P, SI ZEOF TXBUFF) ;

Enabl eTxI nts();

316 Chapter 7 » Reference Salvo User Manual

OSResetCycTmr(): Reset a Cyclic Timer

Notes

See Also

Salvo User Manual

Type: Function

Prototype: OSt ypeErr OSReset CycTnr (
OStypeTcbP tcbP);

Callable from: Background only

Contained in: sal vocyclic6.c

Enabled by: OSENABLE_CYCLI C_TI MERS

Affected by: —

Description: (Re-)set the specified cyclic timer.

Parameters: t cbP: a pointer to the cyclic timer's tcb.

Returns: OSNCERR if cyclic timer is successfully re-
set.

OSERR_BAD _CT if the tcb in question does
not belong to a cyclic timer.
Stack Usage: 3

OSReset CycTnr () restarts the cyclic timer with its period regard-
less of whether the cyclic timer is running or not.

A cyclic timer can be re-synchronized with GSReset CycTnr () .
In the example below, a task waits for a signal to restart a cyclic
timer. When that signal is received, the cyclic timer is stopped and

restarted. Regardless of how close it was previously to timing out,
it will now time out in its normal period.

OSCr eat eCycTnr (), OSCycTnr Peri od(), OSCycTnr Runni ng(),
OSDest royCycTnr (), OSStart CycTnr (), OSSt opCycTnr ()

Chapter 7 » Reference 317

Example e
OS_Wai t Bi nSenm(Bl NSEM_RESTART_CYCTMR3,

OSNO_TI MEQUT) ;
OSReset CycTnr (OSTCBP(6)) ;

318 Chapter 7 » Reference Salvo User Manual

OSRpt(): Display the Status of all Tasks, Events, Queues

and Counters

Notes

Salvo User Manual

Type: Function

Prototype: void GSRpt (
CSt ypel D t asks,
CStypel D events);

Callable from: Task or Background
Contained in: sal vorpt.c

Enabled by: -

Affected by: OSBYTES_OF COUNTS,

OSBYTES_OF DELAYS,
OSENABLE_STACK_CHECKI NG,
OSENABLE_STATI STI CS, CS-
MON_HI DE_I NVALI D_PTRS,
OSMON_SHOW ONLY_ACTI VE, OS-
MON_SHOW TOTAL_DELAY,
OSUSE_EVENT_TYPES

Description: Display the current status of all Salvo
tasks, events and counters in tabular form.
Parameters: t asks: OSTASKS.
event s: OSEVENTS.
Returns: -
Stack Usage: 3+printf()'s stack usage

OSRpt () requires a working printf() function in the target
application.®3 OSRpt () is quite large and is intended for use only in
those systems that have sufficient code space (e.g. x86-based sys-
tems) to include it in the target application.

OSRpt () displays the current task, the members of the eligible and
delayed queues (shown in their priority order), and the fields of
each task control block (tcb) and event control block (ecb). If so
configured, it also displays error, warning and timeout counter val-
ues, the maximum call ... return depth, and the total delay of the
tasks in the delay queue.

OSRpt () reads and displays Salvo's data structures on-the-fly, i.e.
no local copy is made. Depending on the speed at which the
printf() function is able to output characters, OSRpt () may take
quite a while to complete. This may result in a display of informa-

83 Some libraries (e.g. Hi-Tech PICC) contain a dummy putch() function

called by printf(). You must supply your own, working putch() for
printf () outputto occur.

Chapter 7 « Reference 319

tion that appears to be contradictory (e.g. a task is shown in the
eligible queue and simultaneously waiting for an event). In order to
avoid this, your application must control or disable interrupts while
OSRpt () is executing.

See Also Chapter 5 « Configuration

Example T
/* display the current status of all tasks */
/* and events (and counters, if so enabl ed) */
/* to the systenis termnal screen. */

OSRpt (OSTASKS, OSEVENTS) ;

A call to OSRpt () resulted in the following display on a simple
terminal program connected via RS-232 to a Salvo system® with a
working printf():

Salvo v2.2.beta? HMax call...rtn stack depth: 3

CtxSwus, total=idleteligible: 1000358326 = 922445444 + 77912882

Errors: © Warnings: @ Timeouts: 255 Ticks: 33163186
EligQ: t6,t3,t8

DelayQ: t7,t1,t2,t5,t4 Total delay: 60 ticks
task stat prio addr t-> e-> d-> delay
1 wait 2 6F8h .oel t2z 22
2 wait 3 BF8h . e2 t5 1@
3 elig 4 BFBh t 8 n/a
4 wait 5 6F8h . e 4 . 13
5 wait 5 6GF8h t 4 e 4 t4 13
6 elig 1 BFSh t 3 n/a
T dlyd 8 TOAh £ 2
8 elig 15 70Dh n/a
eunt type t-> value
1 Sem t 1 [¢]
2 Semt 2 [¢]
3 Sem . 2]
4 Semt S <]
5 Sem . 255

Figure 31: OSRpt() Output to Terminal Screen

In Figure 31 we can see that when OSRpt () was called, three tasks
were eligible, five were waiting and/or delayed, and over one bil-

lion context switches had occurred over a nearly four-day-long pe-
riod.85

84 This output is from the program in \ sal vo\ denp\ d1\ sysa, running on a
PIC16C77 with a 4MHz crystal.

85 System tick rate of 100Hz.

320 Chapter 7 » Reference Salvo User Manual

OSSched(): Run the Highest-Priority Eligible Task

Type: Function

Prototype: voi d OSSched (void);
Callable from: mai n()

Contained in: sal vosched. ¢

Enabled by: -

Affected by: OSCLEAR_UNUSED_POI NTERS,

OSCLEAR WATCHDOG TI MER,
OSENABLE_STACK_CHECKI NG, OSEN-
ABLE_STATI STI CS, OSLOGG NG,
OSOPTI M ZE_FOR_SPEED,

Description: Dispatch Salvo's tasks via a cooperative
multitasking priority-based scheme.

Parameters: -
Returns: -
Stack Usage: 2 if OSUSE_I NLI NE_OSSCHED is FALSE.
Tasks will run 2 levels below scheduler.
1 if OSUSE | NLI NE_OSSCHED is TRUE.
Tasks will run 1 level below scheduler.
Notes OSSched() causes the highest-priority task currently in the eligible

queue to execute.
Your application must call GsI ni t () before calling GSSched() .

Your application must repeatedly call 0SSched() in order for mul-
titasking to continue.

In the example below, 0SSched() is called from within an infinite

loop.

See Also OSCr eat eTask(), OSI nit (), OSStart Task()

Salvo User Manual Chapter 7 « Reference 321

Example int min (void)

{
/* OS nmust be initialized. */
CSlnit();
[; create and start several tasks ... */

OSCr eat eTask(Task0, OSTCBP(1), TASKO_PRI ORI TY)
OSCr eat eTask(Taskl, OSTCBP(2), TASK1 PRI ORI TY)

f; tasks are ready to run — begin mlti- */
/* tasking. */
while (1) {

/* OSSched() is usually the only function */
/* called inside this never-ending |loop. */
OSSched() ;

}
}

322 Chapter 7 » Reference Salvo User Manual

OSSetCycTmrPeriod(): Set a Cyclic Timer's Period

Notes

See Also

Salvo User Manual

Type:
Prototype:

Callable from:
Contained in:
Enabled by:
Affected by:
Description:
Parameters:

Returns:

Stack Usage:

Function

OSt ypeErr OSSet CycTnr Period (
OSt ypeTchbP tcbP,
OstypeDel ay period);

Background only
sal vocyclich.c

OSENABLE_CYCLI C_TI MERS

(Re-)set the specified cyclic timer's period.

t cbP: a pointer to the cyclic timer's tcb.

peri od: the new period.

OSNCERR if cyclic timer's period is success-
fully redefined.

OSERR_BAD _CT if the tcb in question does
not belong to a cyclic timer.

3

OSSet CycTnr Peri od() (re-)sets the cyclic timer's period regard-
less of whether the cyclic timer is running or not.

A cyclic timer's period can be changed on-the-fly with GS-

Set CycTnr Peri od() .

In the example below, the cyclic timer's period is changed from its
previous value to 200 system ticks. If it is already running, it will
begin running once every 200 system ticks as soon as its current

period timer times out.

OSCr eat eCycTnr (), OSCycTnr Runni ng(), OSDestroyCycTnr (),
OSReset CycTir (), OSSt art CycTnr (), OSSt opCycTnr ()

Chapter 7 « Reference

323

Example _
OSSet CycTnr Peri od(OSTCBP(11), 200);

324 Chapter 7 « Reference Salvo User Manual

OSSetEFlag(): Set Event Flag Bit(s)

Notes

Salvo User Manual

Type:
Prototype:

Callable from:
Contained in:
Enabled by:
Affected by:

Description:

Parameters:

Returns:

Stack Usage:

Macro or Function

OSt ypeErr OSSet EFl ag (
OSt ypeEcbP ecbP,
OSt ypeEFl ag nask) ;

Anywhere

sal voefl ag. c, sal voevent. c
OSENABLE_EVENT_FLAGS, OSEVENTS
OSLOGA NG, OSENABLE_STACK _CHECKI NG,

OSCOVBI NE_EVENT_SERVI CES,
OSUSE_EVENT_TYPES

Set bits in an event flag. If any bits
change, every task waiting it is made eli-
gible.

ecbP: a pointer to the event flag's ecb.

mask: mask of bits to be set.

OSERR_BAD P if event flag pointer is incor-
rectly specified.

OSERR_EVENT_BAD_TYPE if specified event
is not an event flag.

OSERR_EVENT_CB_UNI NI T if event flag's
control block is uninitialized.

OSERR_EVENT_FULL if event flag doesn't
change.

OSNCERR if event flag bits are successfully
set.

1

All tasks8¢ waiting an event flag are made eligible by forcing any
zeroed bits to one in the event flag via OSSet EFI ag() . Upon run-
ning, each such task will either continue running or will return to
the waiting state, depending on the outcome of its call to
OS_Wai t EFl ag() . Thus, multiple tasks waiting a single event flag
can be made eligible simultaneously.

In the example below, two tasks are each waiting different bits of
an event flag. When those bits are set via OSSet EFl ag(), both
tasks are made eligible. Each task will run when it becomes the
highest-priority eligible task.

86

Chapter 7 « Reference

Not just the highest-priority waiting task.

325

See Also OS_ Wi t EFl ag(), Osd r EFl ag() , OSCr eat eEFl ag() , OSReadE-
Fl ag()

Example #def i ne EFLAG2_P OSECBP(4)

/“’.c force TaskA() and TaskB() to wake up. */
OSSet EFl ag(EFLAG_P, 0x03);

void TaskA (void)

while (1) {
/* wait forever for bit 0 to be set */
OS_ Wi t EFl ag(EFLAG_P, 0x01, OSALL_BI TS,
OSNO_TI MEQUT) ;

/* clear it and continue */
OSd r EFl ag(EFLAG2_P, 0x01);

}
}

void TaskB (void)

while (1) {
OS_Wi t EFl ag(EFLAG2_P, 0x02, OSALL_BITS,
OSNO_TI MEQUT) ;
OSCl r EFl ag(EFLAG_P, 0x02);

}
}

326 Chapter 7 » Reference Salvo User Manual

OSSetPrio(): Change the Current Task's Priority

Notes

See Also

Salvo User Manual

Type: Function
Prototype: void OSSetPrio (
OStypePrio prio);

Callable from: Task only

Contained in: sal voprio.c

Enabled by: -

Affected by: OSENABLE_STACK_CHECKI NG

Description: Change the priority of the current (run-
ning) task.

Parameters: priority: the desired (new) priority for
the current task.

Returns: —

Stack Usage: 1

0 ((BHI GHEST_PRI O) is the highest priority, 15 ((BLO/\EST_PRI O)
1s the lowest.

Tasks can share priorities. Eligible tasks with the same priority will
round-robin schedule as long as they are the highest-priority eligi-
ble tasks.

The new priority will take effect immediately after the next context
switch.

In the example below, TaskSt at usLED() is dedicated to flashing
an LED at one of two rates — 1 Hz for a simple heartbeat indication,
and 25Hz for an alert indication. The system timer ticks every
10ms. When an alert is not present, it's sensible to run Task-
Stat usLED() at a low priority, so that other more important tasks
can run. However, when an alert condition occurs, it's imperative
that the user see the LED flash at 25Hz, so TaskSt at usLED() ele-
vates itself to a higher priority to ensure that it runs often enough
to flash the LED at 25Hz. This example assumes that all other
tasks are either delayed or waiting at any particular time. Note that
in this example TaskStat usLED() will fail to flash the LED at
25Hz if it is blocked (i.e. if there are always higher-priority tasks
running) at priority 14 when alert is TRUE.

OS SetPrio(),0SGetPrio(),0SCGetPrioTask(), OSSetPri o-
Task(), OSDI SABLE_TASK_PRI ORI Tl ES

Chapter 7 » Reference 327

Example char alert = FALSE;, /* global, set & reset */
/* el sewhere in code */

voi d TaskStatusLED (void)
while (1) {
/* toggle alert LED */
PORT_LED "~= 0x01;

/* if there's an alert, elevate the task's */
/* priority (to ensure that we see the LED*/

/* flash) and change the flash rate to */
/* 25Hz to be sure to catch the user's */
/* attention. */
if (alert)

OSSet Pri o(5);
0S Del ay(2);
}

/* otherwise lower the task's priority to */
/* rock-bottomand toggle the LED at 1Hz. */
el se
{
CSSet Pri o(OSLONEST_PRI O) ;
OS_Del ay(50);
}
}
}

328 Chapter 7 » Reference Salvo User Manual

OSSetPrioTask(): Change a Task's Priority

Type: Function

Prototype: OstypeErr OSSet PrioTask (
OSt ypeTchbP tchP,
OStypePrio prio);

Callable from: Task or Background
Contained in: sal vot ask6. c
Enabled by: -
Affected by: OSENABLE_STACK_CHECKI NG
Description: Change the priority of the specified task.
Parameters: t cbP: a pointer to the task's tcb.
pri o: the desired (new) priority for the
specified task.
Returns: OSNCERR if specified task's priority was

changed successfully
OSERR if OSSet Pri oTask() was unable to
change the specified task's priority.
Stack Usage: 3

Notes OSSet Pri oTask() can change the priority of any task that is not
already destroyed or waiting an event.

0 ((BHI GHEST_PRI O) is the highest priority, 15 ((BLO/\EST_PRI O)
1s the lowest.

Tasks can share priorities. Eligible tasks with the same priority will
round-robin schedule as long as they are the highest-priority eligi-
ble tasks.

The new priority will take effect immediately.

In the example below, every ten minutes TaskE() elevates the pri-

ority of TaskC() for one minute, then reduces TaskC()'s priority
back to its original priority.

See Also OSGet Pri oTask(), OSDI SABLE_TASK_PRI ORI TI ES

Salvo User Manual Chapter 7 « Reference 329

Example /* initially, run TaskD() at priority 7. */
OSCr eat eTask(TaskD, TASKD P, 7);
OSCr eat eTask(TaskE, TASKE P, 3);

void TaskE (void)
while (1) {
/* delay ten m nutes. */
OS_Del ay(TEN_M NUTES) ;

/* elevate TaskD()'s priority. */
OSSet Pri oTask(TASKD P, 5);

/* del ay another mnute. */
0S_Del ay(ONE_M NUTE) ;

/* restore TaskD()'s priority. */
OSSet Pri oTask(TASKD P, 7);

330 Chapter 7 » Reference Salvo User Manual

OSSetTicks(): Initialize the System Timer

Type: Function

Prototype: voi d OSSet Ti cks (
OStypeTick tick);

Callable from: Anywhere

Contained in: sal voti cks. c

Enabled by: OSBYTES_OF_TI CKS

Affected by: OSENABLE_STACK_CHECKI NG

Description: (Re-)define the current value of the system
timer (in ticks).

Parameters: ti ck: an integer (>=0) value for the sys-
tem timer.

Returns: —

Stack Usage: 1

Notes The system timer is initialized to 0 via OSI ni t () .

In the example below, the current value of the system timer is reset
to zero during runtime.

See Also OSCet Ti cks()

Salvo User Manual Chapter 7 « Reference 331

Example

332

/* reset systemticks to O. */
OSSet Ti cks(0);

On certain targets it may be advantageous to write the current sys-
tem ticks (OstinerTicks) directly instead of through OSSet -
Ti cks(). Possible scenarios include substantial function call
overhead and/or no need to manage interrupts. In the example be-
low, the current value of the system timer is reset to zero during
runtime.

/* reset systemticks to O. */
di sabl e_interrupts();

CstimerTi cks = 0;

enabl e _interrupts();

Chapter 7 » Reference Salvo User Manual

OSSetTS(): Initialize the Current Task's Timestamp

Type: Macro (invokes OSSet TSTask())
Prototype: voi d OSSet TS (
OSt ypeTS tinestanmp);
Callable from: Task only
Contained in: sal vodel ay3. ¢
Enabled by OSBYTES_OF_TI CKS
Description: (Re-)define the current task's timestamp
(in ticks).
Parameters: ti mest anp: an integer (>=0) value for the
timestamp.
Returns: -
Stack Usage: 1
Notes When a task is created, its timestamp is initialized to an OSt ypeTS-
sized version of the system timer ticks, i.e. (OSt ypeTS) OSti ner -
Ti cks.

In the example below, the task resets its timestamp upon starting. It
then preserves its timestamp prior to invoking OS_Del ay() as part
of a hardware initialization sequence. Thereafter, it will time out
every 6 ticks relative to when it started. If OS_Del ay() had been
used, it would time out every six ticks relative to when
OS_Del ay() was called.

See OS_Del ayTS() for more information on timestamps.

See Also OS_Del ayTS(), OSGet TS() , OSSyncTS()

Salvo User Manual Chapter 7 « Reference 333

Example void Task (void)

{
OSt ypeTS ti nest anp;

/* synchronize delays with the start of this */
/* task, i.e. timestanmp = now. */
OSSet TS((Ost ypeTS) OSGet Ti cks());

/* do various things here. */
0s_Yiel d();

/* initialize sone peripheral that requires */
/* a short delay. Must preserve tinestanp */

/* when calling OS Delay(). */

t”i' mestanmp = OSGet TS() ;

OS Del ay(1);

OSSet TS(ti nmest anp) ;

/* continue initializing said peripheral. */

while (1)

{
/* as long as no nore than 5 ticks have * | 87
/* passed since this task was started, */
/* the task will timeout at timestamp + 6 */
/* ticks, and then tinmestamp + 12, + 18, */
/* etc. */

OS Del ayTS(6) ;

87 5 ticks because of the system timer's inherent +/- 1 tick accuracy.

334 Chapter 7 » Reference Salvo User Manual

OSSignalBinSem(): Signal a Binary Semaphore

Notes

See Also

Salvo User Manual

Type: Macro or Function

Prototype: Ost ypeErr OSSi gnal Bi nSem (
OSt ypeEcbP echP);

Callable from: Anywhere

Contained in: sal vobi nsem c

Enabled by: OSENABLE_BI NARY_SEMAPHORES,
OSEVENTS

Aftected by: OSCALL_GCSSI GNALEVENT,

OSENABLE_STACK_CHECKI NG,
OSCOVBI NE_EVENT _SERVI CES,
OSLOGG NG, OSUSE_EVENT _TYPES
Description: Signal a binary semaphore. If one or more
tasks are waiting for the semaphore, the
highest-priority task is made eligible.
Parameters: ecbP: a pointer to the semaphore's ecb.
Returns: OSERR_BAD_P if binary semaphore pointer
is incorrectly specified.
OSERR_EVENT_BAD_TYPE if specified event
is not a binary semaphore.
OSERR_EVENT_FULL if binary semaphore is
already 1.
OSNOERR 0n Success.
Stack Usage: 1

No more than one task can be made eligible by signaling a binary
semaphore.

In the example below, a binary semaphore is used to signal a wait-
ing task. TaskWavef or nGener at or () outputs an 8-bit waveform
to a DAC whenever it receives a signal to do so. The binary sema-
phore is initialized to 0, so TaskWavef or nGener at or () remains in
the waiting state until the BI NSEM_GEN_WAVEFORM is signaled else-
where in the program, whereupon it outputs an array of 8-bit val-
ues to a port. It then resumes waiting until Bl NSEM_GEN_WAVEFORM
is signaled again.

OS_ Wi t Bi nSen{) , OSCr eat eBi nSen() , OSReadBi nSent) ,
OSTryBi nSem()

Chapter 7 « Reference 335

Example

#def i ne BI NSEM GEN_WAVEFORM P OSECBP(5)

OSCr eat eBi nSen(Bl NSEM_GEN_WAVEFORM P, 0);

/* tell waveformgenerating task to create a */
/* single waveform */
GSSi gnal Bi nSem(Bl NSEM_GEN_WAVEFORM P) ;

voi d TaskWavef or nzenerator (void)
{

char i;

while (1) {
/* wait forever for signal to generate */
/* waveform */
OS_Wai t Bi nSem(Bl NSEM_GEN_WAVEFORM P,
OSNO_TI MEQUT) ;

/* output waveformto DAC */
for (i = 0; i < 256; i++) {
DACPORT = WAVEFORM TABLE[i];
}
}
}

336 Chapter 7 » Reference Salvo User Manual

OSSignalMsg(): Send a Message

Notes

Salvo User Manual

Type: Macro or Function
Prototype: Ost ypeErr OSSi gnal Msg (
OSt ypeEcbP echP,
CsSt ypeMsgP nsgP) ;

Callable from: Anywhere

Contained in: sal vonsg. ¢

Enabled by: OSENABLE MESSAGES, OSEVENTS
Affected by: OSCALL_OSSI GNALEVENT,

OSENABLE_STACK_CHECKI NG,

OSCOVBI NE_EVENT _SERVI CES,

OSLOGG NG, OSUSE_EVENT _TYPES
Description: Signal a message with the value specified.

If one or more tasks are waiting for the

message, the highest-priority task is made

eligible.
Parameters: ecbP: a pointer to the message's ecb.
nmsgP: a pointer to a message.
Returns: OSERR_BAD_P if message pointer is incor-
rectly specified.

OSERR_EVENT_BAD_TYPE if specified event
is not a message.
OSERR_EVENT_FULL if message is already
defined.
OSNOERR on success.
Stack Usage: 1

No more than one task can be made eligible by signaling a mes-
sage.

In the example below, a message is used (in place of a binary
semaphore) to control access to a shared resource, an LCD. When
either TaskDi spl ay() or TaskFl ashWar ni ng() needs to write to
the display, it must first acquire the display by successfully waiting
on the message MSG_LCD_RSRC. Once obtained, the task can write
to the LCD. When finished, it must release the resource by signal-
ing the message.

TaskFl ashwar ni ng() displays a warning message for five sec-
onds by writing to the display and then delaying itself for five sec-
onds before releasing the resource. The use of a message to control
access to the LCD prevents TaskDi spl ay() from overwriting the
LCD while the warning message is displayed.

Chapter 7 « Reference 337

See Also OS_Wai t Msg(), OSCr eat eMsg() , OSReadMsg() , OSTryMsg()

Example #defi ne M5G DI SP_UPDATE_P OSECBP(2) /[* flag */
#define MSG LCD RSRC P OSECBP(3) /* rsrc */
#defi ne MSG_WARNI NG _P OSECBP(4) /* flag */

char strLCD[LCD LENGTH+1]; /* 1 row chars + \0 */

voi d TaskDi splay (voi d)

{
static OStypeMsgP nsgP;
/* display is initially available to all. */
OSCr eat eMsg(MSG_LCD RSRC P, (CstypeMsgP) 1);
while (1) {
/* wait until display update is required */
OS_Wai t Msg(MSG_DI SP_UPDATE_P, &nsgP,
OSNO_TI MEQUT) ;
/* wait if we can't acquire the resource. */
OS Wit Msg(MSG _LCD _RSRC P, &nsgP,
OSNO_TI MEQUT) ;
/* wite global string to display. */
WitelLCD(strLCD);
/* free display for others to use. */
GSSi gnal Msg(MSG_LCD RSRC P, (CstypeMsgP) 1);
}
}
voi d TaskFl ashWarning (void)
{
static OStypeMsgP nmsgP, nsgP2;
while (1) {
/* wait for the warning ... */
OS_Wai t Msg(MSG_WARNI NG_P, &nsgP,
OSNO_TI MEQUT) ;
/* grab the LCD, |ocking others out. */
OS WA t Msg(MSG LCD _RSRC P, &nsgP2,
OSNO_TI MEQUT) ;
/* Flash warning on LCD for 5 seconds. */
WitelLCD((char *)nsgP);
OS_Del ay(FI VE_SEC) ;
/* refresh / restore LCD, and free it. */
WitelLCD(strLCD);
GsSi gnal Msg(MSG_LCD RSRC P, (CstypeMsgP) 1);
}
}

338 Chapter 7 » Reference Salvo User Manual

OSSignalMsgQ(): Send a Message via a Message Queue

Notes

See Also

Salvo User Manual

Type:
Prototype:

Callable from:
Contained in:
Enabled by:
Affected by:

Description:

Parameters:

Returns:

Stack Usage:

Macro or Function
OSt ypeErr OSSi gnal MsgQ (
St ypeEcbP ecbP,
OSt ypeMsgP nsgP) ;
Anywhere
sal vonmsgg. c
OSENABLE_MESSAGE QUEUES, OSEVENTS
OSCALL_OSSI GNALEVENT,
OSENABLE_STACK_CHECKI NG,
OSCOVBI NE_EVENT _SERVI CES,
OSLOGG NG, OSUSE_EVENT _TYPES
Send a message to a task via the message
queue specified with ecbP. If one or more
tasks are waiting the message queue, the
highest-priority task is made eligible.
ecbP: a pointer to the message queue's ecb.
nmsgP: a pointer to a message.
OSERR_BAD_P if message queue pointer is
incorrectly specified.
OSERR_EVENT_BAD_TYPE if specified event
is not a message queue.
OSERR_EVENT_CB_UNI NI T if the message
queue's control block is uninitialized.
OSERR_EVENT_FULL if message queue is
full.
OSNOERR on success.
1

No more than one task can be made eligible by signaling a mes-

sage.

In the example below, Commands[] is a constant array of one-
character commands. A message queue is used to send multiple
commands to a waiting task. The two successive calls to OSSi g-
nal Msg() will place the HALT ('h") and EXIT ('x') commands into
the message queue, but only if room is available. Upon arrival of
the messages, the receiving task will act accordingly.

OS Wi t MsgQ(), OSCr eat eMsgQ(), OSReadMsgQ(), OSTryMsgQ()

Chapter 7 « Reference

339

Example const char Commands[4] = { 'a',

GSSi gnal MsgQ(MSGB_P, (OStypeMsgP) &Conmands|[2]);
OSSi gnal MsgQ(MSGB_P, (OstypeMsgP) &Conmands|[3]);

340 Chapter 7 « Reference Salvo User Manual

OSSignalSem(): Signal a Semaphore

Notes

See Also

Salvo User Manual

Type: Macro or Function
Prototype: Ost ypeErr OSSi gnal Sem (
OSt ypeEcbP echP);
Callable from: Anywhere
Contained in: sal vosem ¢
Enabled by: OSENABLE SEMAPHORES, OSEVENTS
Affected by: OSBI G_SEMAPHORES,

OSCALL_OSSI GNALEVENT,
OSENABLE_STACK_CHECKI NG,
OSCOVBI NE_EVENT _SERVI CES,
OSLOGG NG, OSUSE_EVENT _TYPES
Description: Increment a counting semaphore. If one or
more tasks are waiting for the semaphore,
the highest-priority task is made eligible.
Parameters: ecbP: a pointer to the semaphore's ecb.
Returns: OSERR_BAD_P if semaphore pointer is in-
correctly specified.
OSERR_EVENT_BAD_TYPE if specified event
is not a semaphore.
OSERR_EVENT_FULL if semaphore is al-
ready at its maximum allowed value.
OSNCERR on success.
Stack Usage: 1

No more than one task can be made eligible by signaling a sema-
phore.

8- or 16-bit semaphores can be selected via the
OSBI G_SEMAPHORES configuration option.

In the example below, a counting semaphore is used to keep track
of how many characters are waiting in the receive buffer r xBuf f .
Another task that waits on SEM RX_BUFF will remove and process
them, one at a time, from the buffer. By communicating between
the tasks with a semaphore, the tasks can run at different priorities
— TaskRx() can run at a high priority to ensure that the UART's
receive buffer is not overrun, and the processing task (which waits
on SEM RX_BUFF) can run at a lower priority while parsing incom-
ing command strings.

OS Wi t Sen() , OSCr eat eSen() , OSReadSen() , OSTrySem()

Chapter 7 « Reference 341

Example {

342

void TaskRx (voi d)

/* initially there are no Rx chars for */

/* TaskRcvRsp() to process.
OSCr eat eSenm(SEM_ RX_RBUFF_P, 0);

/* The task to interpret

*/

responses is driven */

/* solely by TaskRx()'s collecting inconming */

/* incomng chars for it,
/* it from here.
OSCr eat eTask(TaskRcvRsp,

TASK_RCV_RSP_PRI O ;

so we'l

| aunch */
*/

TASK_RCV_RSP_P,

/* deal with Rx chars. */

while (1) {
/* if there are any Rx chars waiting, */
/* signal the command interpreter. */

whil e (Si oRxQue(Port) > 0)
{

/* put new Rx char into |ocal buffer */
rxBuf f[rxTail] = (char) SioGetc(Port, 10);
/* massage buffer pointers */
rxTail ++;
r xCount ++;
if (rxTail >= SIZEOF_RX_BUFF)
rxTail = 0;
/* signal the conmand interpreter that */
/* there's work to be done. In this */
/* inplementation we signal once for */
/* every new character received. */
GSSi gnal Sem(SEM RX_RBUFF_P) ;
}

/* wait a while and poll again. */

0S_Del ay(1);

}

Chapter 7 » Reference

Salvo User Manual

OSStartCycTmr(): Start a Cyclic Timer

Notes

See Also

Salvo User Manual

Type: Function
Prototype: OStypeErr OSStart CycTnr (
OSt ypeTchP tchP);
Callable from: Background only
Contained in: sal vocyclic2.c
Enabled by: OSENABLE_CYCLI C_TI MERS
Affected by: —
Description: Start the specified cyclic timer.
Parameters: t cbP: a pointer to the cyclic timer's tcb.
Returns: OSNCERR if cyclic timer is successfully
started.

OSERR_BAD _CT if the tcb in question does
not belong to a cyclic timer.
OSERR_BAD P if the specified tcb pointer is
invalid (i.e. out-of-range).
OSERR_CT_RUNNI NGif the cyclic timer is
already running.
Stack Usage: 3

OSSt art CycTnr () can only start a cyclic timer that is stopped.

If OSStart CycTnr () operates on a cyclic timer that has not yet
started (e.g. it was created with OSDONT_START_CYCTMR), then it
will begin with its delay period, followed by its normal period. If,
on the other hand, the cyclic timer was already started and then
stopped, invoking OSSt art CycTnr () will cause it to restart after
its normal period.

In the example below, Task3() allows the cyclic timer to run for
400ms®® while bit 3 of the port is high, and stops the cyclic timer
from running when bit 3 is low. This is repeated indefinitely, and
requires that the cyclic timer be in continuous mode.

OSCr eat eCycTnr (), OSCycTnT Runni ng(), OSDest royCycTnr (),
OSReset CycTnr (), GSSet CycTnr Peri od(), OSSt opCycTnr ()

88 Assumes 10ms system tick period.

Chapter 7 « Reference 343

Example voi d Task3(void)

while (1) {
CS Del ay(40);

PORT "= 0x08;

if (PORT & 0x08) {

0SSt art CycTnr (OSTCBP(1)) ;
}
el se {

0SSt opCycTnr (OSTCBP(1)) ;

344 Chapter 7 « Reference Salvo User Manual

OSStartTask(): Make a Task Eligible To Run

Type: Function
Prototype: OstypeErr OSStart Task (
OSt ypeTchP tchP);
Callable from: Anywhere
Contained in: sal vot ask. ¢
Enabled by: -
Affected by: OSLOGGE NG, OSENABLE_STACK _CHECKI NG
Description: Start the specified task.
Parameters: t cbP: a pointer to the task's tcb.
Returns: OSNCERR if task is successfully started.

OSERR if either the specified tcb pointer is
invalid (i.e. out-of-range), or if the speci-
fied task's state is not
OSTCB_TASK_STOPPED.

Stack Usage: 3

Notes OSStart Task() can only start a task that is in the stopped
(OSTCB_TASK_STOPPED) state.

Starting a task simply places it into the eligible queue. It will not
run until it becomes the highest-priority eligible task.

A task that has been started is in the eligible state.

A task must be created via OSCreat eTask() before it can be
started via OSSt art Task() .

In the example below, TaskToggl eLED() is created but is only
made eligible to run via the call to OSSt art Task(). Without the

call to OSStart Task(), the task would remain stopped indefi-
nitely.

See Also OSCr eat eTask(), OSI nit ()

Salvo User Manual Chapter 7 « Reference 345

Example

/* this task toggles an LED each tinme it */
/* runs, i.e. whenever it's the highest- */
[* priority eligible task. */

voi d TaskToggl eLED (void)

while (1) {
/* toggle LED on pin O of PORT B */
PORTB "= 0x01;

OS Yield();
}
int min (void)
{
/* create and start TaskToggl eLEDO() with */
/* the lowest priority. We'll observe the */
/* LED toggling when no other tasks are */
/* eligible to run. */
OSCr eat eTask(TaskToggl eLED, OSTCBP(5),
OSDONT_START_TASK | OSLOVWEST_PRI O ;
OSst art Task(OSTCBP(5)) ;
while (1) {
GSSched() ;
}
}

346 Chapter 7 » Reference Salvo User Manual

OSStopCycTmr(): Stop a Cyclic Timer

Notes

See Also

Salvo User Manual

Type:
Prototype:

Callable from:
Contained in:
Enabled by:
Affected by:
Description:
Parameters:
Returns:

Stack Usage:

Function
OSt ypeErr OSSt opCycTnr (
OSt ypeTchP tchP);

Background only
sal vocyclic3.c

OSENABLE_CYCLI C_TI MERS

Stop the specified cyclic timer.

t cbP: a pointer to the cyclic timer's tcb.

OSNCERR if cyclic timer is already stopped
or is successfully stopped.

OSERR_BAD _CT if the tcb in question does
not belong to a cyclic timer.

3

0SSt opCycTnr () takes no action when the cyclic timer is already

stopped.

In the example below, the cyclic timer occupying the fifth task
control block is stopped.

OSCr eat eCycTnr (), OSCycTnr Runni ng(), OSDest royCycTnr (),
OSReset CycTnr (), CSSet CycTnr Peri od(), OSStart CycTnr ()

Chapter 7 « Reference 347

Example
0SSt opCycTnr (GSTCBP(5)) ;

348 Chapter 7 « Reference Salvo User Manual

OSStopTask(): Stop a Task

Type: Function
Prototype: OstypeErr OSStopTask (
OSt ypeTchP tchP);
Callable from: Task or Background
Contained in: sal vot ask2. c
Enabled by: -
Affected by: OSENABLE_STACK_CHECKI NG
Description: Stop the specified task.
Parameters: t cbP: a pointer to the task's tcb.
Returns: OSNCERR if specified task was successfully
stopped.

OSERR if OSSt opTask() was unable to stop
the specified task.
Stack Usage: 3

Notes 0SSt opTask() can stop any task that is not already destroyed or
waiting an event.

A stopped task can be restarted with 0SSt ar t Task() .

In the example below, TaskSt opBeep() exists only to stop another
task, TaskBeep(). TaskSt opBeep() waits forever for the binary
semaphore Bl NSEM_STOP_BEEP to be signaled. When this occurs, it
calls 0SSt opTask(), which stops TaskBeep(). TaskSt opBeep()
then begins waiting the binary semaphore again. By setting Task-
St opBeep() 's priority to be higher than TaskBeep()'s, TaskSt op-
Beep() is able to stop TaskBeep() at the earliest opportunity.

This example also illustrates how program control can pass from
an interrupt through a task and affect another task, even if 0SSt op-
Task() is not called from an interrupt. By calling GSSi gnal Bi n-
Sem(Bl NSEM STOP_BEEP) from an ISR, TaskBeep() will be
stopped by TaskSt opBeep() before its earliest opportunity to run
again.

See Also oSSt art Task(), OS_St op()

Salvo User Manual Chapter 7 « Reference 349

Example OSCr eat eTask(TaskBeep, TASK_BEEP_P, 7);
OSCr eat eTask(TaskSt opBeep, TASK _STOPBEEP_P, 6);
OSCr eat eSem(Bl NSEM _STOP_BEEP_P, 0);

\'/'(')i d TaskSt opBeep (void)

while (1) {
OS_Wai t Bi nSem(Bl NSEM_STOP_BEEP_P,
OSNO_TI MEQUT) ;
0SSt opTask() ;
}
}

350 Chapter 7 » Reference Salvo User Manual

OSSyncTS(): Synchronize the Current Task's Timestamp

Type: Macro (invokes OSSyncTSTask())

Prototype: voi d (BSynCTS (_
OStypel nterval interval);

Callable from: Task only

Contained in: sal vodel ay2. ¢

Enabled by: —

Affected by: OSENABLE_DELAYS, OSENABLE_TI CKS

Description: Synchronize the current task's timestamp
against the current timer ticks.

Parameters: i nterval : a signed offset relative to the
current timer ticks.

Returns: -

Stack Usage: 2

Notes OSSyncTS() is used in conjunction with OS_Del ayTS() to syn-

chronize the current task's delays against an absolute value of the
system's timer ticks. With GSSyncTS(), you can increment or dec-
rement the value of current task's timestamp.%°

In the example below, TaskPeri odi c() begins by running every
16 system ticks. If the global variable shi ft Ti cks is found to be
non-zero, it is copied to a local variable of f set, cleared, and then
used to phase-shift TaskPeri odi c() with a resolution of 1 system
tick.

See Also 0OS_Del ayTS(), OSGet TS() , OSSet TS()

89 Use osSet TS() to change the absolute value of the current task's timestamp.

Salvo User Manual Chapter 7 « Reference 351

Example Ostypel nterval shiftTicks; /* -15 to +15 */

void TaskPeriodic (void)

{
OSt ypel nterval of fset;

while (1) {
CS Del ayTS(16);

if (shift) {
di sabl e_interrupts();
of fset = shiftTicks;
shiftTicks = 0;
enabl e_interrupts();
OSSyncTS(of f set) ;

352 Chapter 7 » Reference Salvo User Manual

OSTimer(): Run the Timer

Notes

Salvo User Manual

Type: Function

Prototype: void OSTiner (void);

Callable from: Foreground (preferred) or background.
Contained in: sal votiner.c

Enabled by: OSBYTES_OF DELAYS, OSBYTES OF TI CKS
Affected by: OSDI SABLE_ERROR _CHECKI NG,

OSENABLE_DELAYS,
OSENABLE_STACK_CHECKI NG,
OSENABLE_TI CKS, OSTI MER_PRESCALAR

Description: Perform Salvo's timer-based services.
Parameters: -

Returns: -

Stack Usage: 2 if OSUSE_I NLI NE_OSTI MER is FALSE.

1 if OSUSE_I NLI NE_OSTI MER is TRUE.

If delay, elapsed time and/or timeout services are desired,
OSTi mer () must be called at the desired system tick rate. Context
switching and event services do not require OSTi mer () to be in-
stalled.

The rate at which OSTi ner () is called by your application (typi-
cally every 5-100ms) must allow sufficient time for OSTi mer () to
complete its actions.

In the example below, the timer is called from within an interrupt
service routine (ISR) as a periodic event. Each time OSTi ner () is
called it checks to see if any delayed or waiting tasks have timed
out, and if so, re-enters them into the eligible queue.

OSTi ner () is very small and is easily incorporated into an ISR
without major deleterious effects.

Chapter 7 « Reference 353

Example void interrupt ISR (void)

{

/* OSTimer() is called on every tinerQ */

/* interrupt. */

if (TOF) {
/* must clear tinerO interrupt flag. */
TAOF = 0;
/* let Salvo handl e del ays, ticks */
/* and tineouts. */
OSTiner () ;

}

/* handl e other interrupt sources. */

354 Chapter 7 » Reference Salvo User Manual

OSTryBinSem(): Obtain a Binary Semaphore if Available

Type: Function

Prototype: OSt ypeBi nSem OSTryBi nSem (
OSt ypeEcbP echP);

Callable from: Anywhere

Contained in: sal vobi nsen®. c

Enabled by: OSENABLE_BI NARY SEMAPHORES,
OSENABLE_EVENT_READI NG, OSEVENTS

Affected by: OSCALL_OSRETURNEVENT

Description: Returns the binary semaphore specified by
ecbP. If the semaphore is 1, reset it to 0.

Parameters: ecbP: a pointer to the binary semaphore's
ecb.

Returns: Binary semaphore (0 or 1).

Stack Usage: 1

Notes OSTryBi nSeny() 1is like OS_Wai t Bi nSen{(), but it does not context-

switch the current task if the binary semaphore is not available (i.e.
has a value of 0). Therefore OSTr yBi nSen() can be used outside of
the current task to obtain the binary semaphore, e.g. in an ISR.

No error checking is performed on the ecbP parameter. Calling
OSTryBi nSen() with an invalid ecbP, or an ecbP belonging to an
event other than a binary semaphore, will return an erroneous re-
sult.

In the example below, TaskC() has a higher priority than TaskD()
and obtains the binary semaphore whenever it is set to 1. Signaling
the binary semaphore does not change the state of TaskC(). As
long as TaskC() 1is running, TaskD() will wait forever for the bi-
nary semaphore.?0

See Also OS_ Wi t Bi nSen() , OSCr eat eBi nSen() , OSReadBi nSent) , OS-
Si gnal Bi nSem()

90 This assumes that TaskD() unsuccessfully waited the binary semaphore

before TaskC() started running.

Salvo User Manual Chapter 7 « Reference 355

Example [* priority of 3 %
void TaskC (void)

while (1) {
i f (OSTryBi nSem(BI NSEM2_P)) {
printf("binSem #2 was 1, now 0.\n");

}
el se {
printf("binSem#2 is 0.\n");
}
OS Yield();
}
}
[* priority of 9 (lower) */

void TaskD (void)
while (1) {

OS_Wai t Bi nSen(BI NSEM2_P,
OSNO_TI MEQUT) ;

356 Chapter 7 » Reference Salvo User Manual

OSTryMsg(): Obtain a Message if Available

Type: Function

Prototype: Gst ypeMsg OSTryMsg (
OSt ypeEcbP echP);

Callable from: Anywhere

Contained in: sal vonsg2. ¢

Enabled by: OSENABLE MESSAGES,
OSENABLE_EVENT_READI NG, OSEVENTS

Affected by: OSCALL_ OSRETURNEVENT

Description: Returns a pointer to the message specified

by ecbP. If the message exists, the mes-
sage's own pointer is cleared.

Parameters: ecbP: a pointer to the message's ecb.
Returns: Message pointer.
Stack Usage: 1

Notes OSTryMsg() is like OS Wi t Msg(), but it does not context-switch

the current task if the message is not available (i.e. the message
pointer has a value of 0). Therefore OSTryMsg() can be used out-
side of the current task to obtain the message, e.g. in an ISR.

No error checking is performed on the ecbP parameter. Calling
OSTryMsg() with an invalid ecbP, or an ecbP belonging to an
event other than a binary semaphore, will return an erroneous re-
sult.

Waiting on a message (i.e. via OS_Wi t Msg()) is not permitted
within an interrupt service routine. In the example below,
OSTryMsg() is used within the ISR in order to obtain a message
without waiting. Regardless of whether or not a message was
available, the message will be empty at the end of the ISR.

See Also OS_ Wi t Msg(), OSCr eat eMsg() , OSReadMsg() , OSSi gnal Msg()

Salvo User Manual Chapter 7 « Reference 357

Example void interrupt myl SR (void)
{
OSt ypeMsgP nsgP;

/* get message pointer (may be 0). */
nmsgP = OSTryMsg(MSG3_P) ;

while (1) {
/* do sonething with the nessage. */
}
el se
{
/* nessage wasn't avail abl e. */

358 Chapter 7 » Reference Salvo User Manual

OSTryMsgQ(): Obtain a Message from a Message Queue

if Available

Notes

See Also

Salvo User Manual

Type: Function

Prototype: Gst ypeMsgQ OSTryMsgQ (
OSt ypeEcbP echP);

Callable from: Anywhere

Contained in: sal vomsgq2. ¢

Enabled by: OSENABLE MESSAGE QUEUES,
OSENABLE_EVENT_READI NG, OSEVENTS

Affected by: OSCALL_ OSRETURNEVENT

Description: Returns a pointer to the first available

message in the message queue specified
by ecbP. If the message queue contains
any messages, remove the message from

the queue.
Parameters: ecbP: a pointer to the message queue's ecb.
Returns: Message pointer.
Stack Usage: 1

OSTryMsgQ() is like OS Wit MsgQ(), but it does not context-
switch the current task if the message queue is empty. Therefore
OSTryMsgQ() can be used outside of the current task to obtain the
message in the message queue, e.g. in an ISR.

No error checking is performed on the ecbP parameter. Calling
OSTryMsgQ() with an invalid ecbP, or an ecbP belonging to an
event other than a binary semaphore, will return an erroneous re-
sult.

In the example below, after each call to the scheduler, a char mes-
sage is removed from a message queue and then re-inserted. As
long as no services involving this message queue are called from
within an interrupt, this will rotate the order of the messages in the
message queue indefinitely. For example, a message queue con-
taining the four single-character messages 's', 't', 'o' and 'p' becomes
't', va, vpv and 'S"

OS Wi t MsgQ(), OSCr eat eMsgQ() , OSReadMsgQ() , OSSi g-
nal MsgQ()

Chapter 7 « Reference 359

Example Cst ypeMsgP nsgP;

while (1) {
GSSched() ;

msgP = OSTryMsgQ(MSGXB_P);
if (msgP) {
printf("renoved nmessage % from nsgQ \n",
*(char *) msgP);
OSSi gnal MsgQ MSG®B_P, msgP) ;

printf("re-inserted nessage into nmsgQ\n");

}
}

360 Chapter 7 » Reference Salvo User Manual

OSTrySem(): Obtain a Semaphore if Available

Type: Function

Prototype: OSt ypeSem OSTrySem (
OSt ypeEcbP echP);

Callable from: Anywhere

Contained in: ssal vosent. ¢

Enabled by: OSENABLE_SEMAPHORES,
OSENABLE_EVENT_READI NG, OSEVENTS

Affected by: OSCALL_OSRETURNEVENT

Description: Returns the semaphore specified by ecbP.

If the semaphore is non-zero, decrement
it.

Parameters: ecbP: a pointer to the semaphore's ecb.
Returns: Semaphore.
Stack Usage: 1

Notes OSTrySen() is like OS Wi t Sen(), but it does not context-switch

the current task if the semaphore is not available (i.e. has a value of
0). Therefore OSTrySen() can be used outside of the current task
to obtain the semaphore, e.g. in an ISR.

No error checking is performed on the ecbP parameter. Calling
OSTrySen() with an invalid ecbP, or an ecbP belonging to an
event other than a binary semaphore, will return an erroneous re-
sult.

In the example below, OSTrySen() is used by Fl ushBuf f er () 91 to
flush a buffer that is managed through a counting semaphore. Af-
terwards, i holds the count of the items that were in the the buffer
before it was flushed.

See Also OS_ Wi t Sen() , OSCr eat eSen() , OSReadSen{() , OSSi gnal Sem()

91 Note that FI ushBuf f er () is a simple function, and not a task. The flushing

operation could also be performed in a task.

Salvo User Manual Chapter 7 « Reference 361

Example /* buffer is initially enpty. * |
OSCr eat eSen(SEM2_P, 0);

void FlushBuffer (void)

{
char i;
/* count and renpve the buffer's contents. */
i = 0;
while (OSTrySem(SEM2_P)) {
i ++;
}
}

362 Chapter 7 » Reference Salvo User Manual

Additional User Services

OSAnyEligibleTasks (): Check for Eligible Tasks

Notes

Salvo User Manual

Type: Macro

Declaration: OCSAnyEl i gi bl eTasks()

Callable from: Outside OSSched() (background) or inside
a task or its subroutines.

Contained in: sal vomac. h

Enabled by: -

Affected by: —

Description: Detect if any tasks are currently eligible to
run.

Parameters: -

Returns: TRUE if one or more tasks are eligible,
FALSE otherwise.

Stack Usage: 0

OSAnyEl i gi bl eTasks() cannot predict when waiting and/or de-
layed tasks will become eligible. This must be considered when
using OSAnyEl i gi bl eTasks() .

OSAnyEl i gi bl eTasks() returns FALSE if a task is running and no
tasks are eligible.

In the first example below, a Salvo application's main loop has
been modified to run an alternative process (e.g. some legacy code
written in assembler) in addition to the scheduler. This alternative
process must terminate within a short time in order to avoid prob-
lems scheduling tasks. By invoking the alternative process only
when no tasks are eligible, it can "steal cycles" that the scheduler
does not currently need.

In the second example, a user function (not a task) is called only
when the system is idling, i.e. when tasks are eligible to run. This
idling function must execute quickly so as not to affect task execu-
tion.

Note that in both examples, Salvo's idling hook could be used in
place of OSAnyEl i gi bl eTasks() if it were not already in use.

Chapter 7 « Reference 363

Example #1 i{nt main (void)

while (1) {
OSSched() ;

if (!CSAnyEli gi bl eTasks()) {
/* do alternative background process */
#asm
#i ncl ude "nystuff.asnt
#endasm

}
}
}

Example #2 i{nt main (void)

while (1) {
OSSched() ;

if (!CSAnyEl i gi bl eTasks())
DoWhi | el dl'i ng();

364 Chapter 7 » Reference Salvo User Manual

OScTcbExt0|1]2|3|4|5, OStcbExt0]|1|2|3|4|5(): Return a Tcb

Extension

Notes

See Also

Salvo User Manual

Type:
Declaration:

Callable from:

Contained in:
Enabled by:
Affected by:
Description:

Parameters:
Returns:
Stack Usage:

Macro

OScTcbExt 0[1|2|3]|4|5, OStc-
bExt 0[1[2|3[4[5(t cbP)

OScTcbExt 0[1]2|3|4]5 should only be called
from the task level. OSt c-
bExt 0]|1|2|3]4|5() can be called from any-
where.

sal vonac. h

OSENABLE_TCBEXTO|1[2|3/4|5

OScTcbExt 0]1|2|3|4|5 returns the specified
tcb extension of the current task. OSt c-
bExt 0|1|2|3]4|5 returns the specified tcb
extension of the specified task.

Tcb extension.
0.

These macros are used to obtain the desired tcb extension from the

task's tcb.

OSENABLE_TCBEXTO|1|2|3]4|5, OSTYPE_TCBEXTO|1]2[34/5

Chapter 7 « Reference 365

Example _ _
voi d Comirask (void)

{

/* ascertain node at startup */
switch (OScTcbExt3) ({

case SW HANDSHAKI NG
while (1) {
/* do comms w XON XOFF */
OpenSWIART() ;

0s_Yield();
br eak;

case HW HANDSHAKI NG
while (1) {
/* do comms w DITR & CTS */
QpenHWIART() ;

0s_Yield();
}

br eak;

defaul t:
br eak;
}

}

int min (void)

{

/“’.c we want hardware handshaki ng ...*/
OSCr eat eTask(Conmirask, OSTCBP(7), 5);
OSt chExt 3(OSTCBP(7)) = HW HANDSHAKI NG,

while (1) {
GSSched() ;
}
}

366 Chapter 7 » Reference Salvo User Manual

OSCycTmrRunning(): Check Cyclic Timer for Running

Notes

See Also

Salvo User Manual

Type: Function

Prototype: Ost ypeErr OSCycTnr Runni ng (
OStypeTcbP tcbP);

Callable from: Background only

Contained in: sal vocyclic7.c

Enabled by: OSENABLE_CYCLI C_TI MERS

Affected by: —

Description: Detect if cyclic timer is running or not.

Parameters: t cbP: a pointer to the cyclic timer's tcb.

Returns: FALSE if cyclic timer is stopped, or if the
tcb in question does not belong to a cyclic
timer.

TRUE if cyclic timer is running.
Stack Usage: 1

OSCycTnr Runni ng() indicates whether or not a cyclic timer is run-
ning.

In the example below, a task waits for a signal to restart a cyclic
timer. When that signal is received, the cyclic timer is stopped and
restarted. Regardless of how close it was previously to timing out,
it will now time out in its normal period.

OSCr eat eCycTnr (), OSCycTnr Peri od(), OSDest royCycTnr (),
OSReset CycTr (), OSSt art CycTnr (), OSSt opCycTnr ()

Chapter 7 « Reference 367

Example o ,
i f (OSCycTnr Runni ng(OSTCBP(3)))

/* do sonething if cyclic timer is running. */

}

368 Chapter 7 » Reference Salvo User Manual

OSProtect(), OSUnprotect(): Protect Services Against

Corruption by ISR

Notes

See Also

Salvo User Manual

Type: Macro

Declaration: OSProtect (), OSUnprotect()

Callable from: Background

Contained in: sal voport Xyz. h

Enabled by: -

Affected by: —

Description: Disable or enable interrupts, respectively,
if such control is required on given target.

Parameters: -

Returns: n/a

Stack Usage: 0, unless defined otherwise.

When compiling for a target that does not have a software stack,
certain steps must be taken to protect servicse with multiple call-
graphs. By calling OSProtect () immediately before each such
service, and OSUnpr ot ect () immediately thereafter, the service is
protected against any corruption that might occur if an interrupt
that calls the service were to occur simultaneously.

These macros are empty for all targets whose compilers pass pa-
rameters on a stack. To ensure cross-platform compatibility, all
Salvo applications should use OSProt ect () and OSUnpr ot ect ()
as specified, even if these macros are empty for a particular com-
piler.

Warning Because a stackless compiler may ovetlay the local /
parameter areas of one or more services with multiple callgraphs,
OSProtect () and OSUnprotect () should be used around every
service whose OSCALL_XYZ is set to OSFROM_ANYWHERE.

In the example below, GSSi gnal Bi nSent() is called from mainline
code and from within an ISR. Therefore OSPr ot ect () and OSUn-
protect () are required in the mainline code.

OSCALL_OSXYZ, OSFROM _ANYWHERE, OSDi (), OSEi (), Salvo Com-
piler Reference Manuals

Chapter 7 « Reference 369

Example voi d Test Code (void)
{

if (PutTx1Buff(data)) {
OSProtect ();
GSSi gnal Bi nSen{ Bl NSEM_TXBUFF_P) ;
OSUnprotect();

}
}
void interrupt ISR (void)
{
if (txState == TXSTATE_DONE) {
txState = TXSTATE I DLE;
GSSi gnal Bi nSem(Bl NSEM_TXDONE_P) ;
}
}

370 Chapter 7 » Reference Salvo User Manual

OSTaskStopped(): Check whether Task has Stopped

Notes

See Also

Example

Salvo User Manual

Type: Macro

Declaration: OSTaskSt opped (OStypeTchbP tchP);
Callable from: anywhere

Contained in: sal vomac. h

Enabled by: -

Affected by: —

Description: Detect if the current task is stopped.
Parameters: —

Returns: TRUE if task is stopped, FALSE otherwise.
Stack Usage: 0

OSTaskSt opped() does not check the validity of the task handle

passed to it.

In the example below, the task pointed to by TASK_FREQ P is (re-)

started if already stopped. Otherwise it is stopped.

OS_Wi t Sen{ SEM_CMD_CHAR P, OSNO_TI MEOUT) ;

if (cnd = getcharl()) {

switch (tolower((char) crmd)) {

case 'f':
i f (OSTaskSt opped(TASK FREQ P)) {
OSst art Task(TASK_FREQ P) ;

user _nmsg(STR_TASK _CMD STR TABS "f:" \
' Started task freq().");

}

el se {
0SSt opTask(TASK_FREQ P) ;

user _nmsg(STR_TASK _CMD STR TABS "f:" \
' Stopped task freq().");

}

br eak;

Chapter 7 « Reference

371

OSTimedOut(): Check for Timeout

Notes

372

Type: Macro

Declaration: GSTi medQut ()

Callable from: Task only

Contained in: sal vomac. h

Enabled by: OSENABLE_TI MEQUTS

Affected by: —

Description: Detect if the current task timed out waiting
for an event.

Parameters: -

Returns: TRUE if a timeout occurred, FALSE other-
wise.

Stack Usage: 0

By specifying a non-zero timeout in OS Wit BinSen(),
OS_ Wit Msg(), OS_Vai t MsgQ() or OS_Wait Sen(), you can con-
trol program execution in the case where an event does not occur
within a specified number of system ticks. This is very useful in
handling errors that may result from expected events failing to oc-
cur.

Once a timeout occurs, the task is no longer waiting the event. The
fact that a timeout occurred only indicates that the task did not suc-
cessfully wait the event in the allotted time ... it does not in any
way reflect on the current status of the event, or on other tasks
waiting the event.

In the example below, a bidirectional communications channel is
used to send commands and receives a response (acknowledg-
ments) for each command sent. A new command can be sent only
after the acknowledgment for the previous command has been re-
ceived. By specifying a response timeout (RSP_TI MEQUT) that's lar-
ger than the expected time for the receiver to respond to a
command, TaskTx() can conditionally wait for the response in-
stead of waiting indefinitely if the acknowledgment never arrives.

When a timeout occurs, a task's execution resumes where it was
originally waiting for the event, and the Salvo function OSTi nme-
dout () returns TRUE until the task context-switches back to the
scheduler. TaskTx() checks to see if a timeout occurred after it
acquires the message.

Chapter 7 » Reference Salvo User Manual

See Also

Example

Salvo User Manual

OS Wit Bi nSen(), OS_Wai t Msg(), OS_Wai t MsgQ(),
OS_ Wit Sem()

void TaskTx (void)

{

static OStypeMsgP nmsgP;

/* No cmds have been sent yet, so no
/* responses have been received.
OSCr eat eMsg(MSG_RSP_RCVD P, (COStypeMsgP) 0);

while (1) {
/* send command to receiver.

/* wait here until response has been
/* received for the command we sent.
/* if we tined out, reset the expected
/* response, STOP, clear the buffer and
/* tell the user.
OS_Wai t Msg(MSG_RSP_RCVD_P, &nsgP,

RSP_TI MEQUT) ;

if (OSTinedQut()) {
Fl ushCmdl nterpreter();
set STOP() ;
txBuff[0] = O;
Fl ashisg(&rsgBadConms) ;
}

/* continue processing outgoi ng commands.

Chapter 7 « Reference

*/
*/

*/

*/
*/
*/
*/
*/

*/

373

OSVersion(), OSVERSION: Return Version as Integer

Notes

374

Type: Macro

Declaration: OSVer si on() , OSVERSI ON

Callable from: Anywhere

Contained in: sal vover. h

Enabled by: -

Affected by: —

Description: Returns the version number.

Parameters: —

Returns: Returns the version number as an unsigned
integer.

Stack Usage: 0

Salvo wuses three version number fields: OSVER MAJOR,
OSVER_M NOR and OSVER_SUBM NOR. Each field is a numeric inte-
ger constant. They are combined into a single symbol, OSVERSI ON,
in the following manner:

OSVERSI ON = OSVER_MAJOR * 100
+ OSVER MNOR * 10
+ OSVER_SUBM NOR

Therefore in v3.0.0, OSVERSI ON equals 300.

OSVer si on() is identical to OSVERSI ON.

Chapter 7 » Reference Salvo User Manual

Example printf("Salvo version: %d (v%.%.%)\n",
"0' + OSVER_MAJOR,
"0" + OSVER_M NOR,
'0" + OSVER_SUBM NCR,
OSVersion());

Salvo User Manual Chapter 7 « Reference

375

User Macros

This section describes the Salvo user macros that you will use to
build your multitasking application.

The macros are described below.

OSECBP(), OSEFCBP(),0SMQCBP(), OSTCBP(): Return a
Control Block Pointer

Type: Macro

Declaration: OSECBP(i ndex)
OSEFCBP(i ndex)
OSMQCBP(i ndex)
OSTCBP(i ndex)

Callable from: n/a

Contained in: sal vo. h

Enabled by: -

Affected by: —

Description: Shorthand for pointer to specified control
block.

Parameters: i ndex: an index from 1 to OSEVENTS, 1 to

OSEVENT_FLAGS, 1 to OSMESSAGE._QUEUES
or 1 to OSTASKS, respectively.

Returns: pointer to (i.e. address of) desired event,
message queue or task control block, re-
spectively.

Stack Usage: n/a

Notes RAM memory for control blocks is allocated at compile time using

the OSEVENTS, OSEVENT_FLAGS, OSMESSAGE_QUEUES and OSTASKS
configuration options. Instead of obtaining the compile-time ad-
dress of a particular event, event flag, message queue or task con-
trol block by using

&CSechAreali-1]
&Csef cbAreali - 1]
&OSnmgcbAreali - 1]
&CSt cbAreali-1]

you can and should use these macros.

376 Chapter 7 » Reference Salvo User Manual

Example

#defi ne TASK1_P OSTCBP(1)
#defi ne TASK2_P OSTCBP(2)
#defi ne SEML_P OSECBP(1)

OSCr eat eTask(Taskl, TASKL P, 7);

OSCr eat eSen(SEML_P, 14);

Salvo User Manual

Chapter 7 « Reference

377

User-Defined Services

OSDisablelntsHook(), OSEnablelntsHook(): Interrupt-

control Hooks

Notes

See Also

378

Type: Function

Declaration: voi d OSDi sabl el nt sHook(void)
voi d OSEnabl el nt sHook(void)

Called from: OSDi () and OSEi ()

Contained in: sal vo. h if left undefined, otherwise in

user source code.

Enabled by: OSENABLE_| NTERRUPT_HOCKS

Affected by: —

Description: User-defined.

Parameters: -

Returns: -

Stack Usage: Dependent on user definition.

You may find it useful or necessary to perform certain operations
coincident with Salvo's disabling and (re-)enabling of interrupts
during critical sections of code.

If these functions are enabled via OSENABLE_|I NTERRUPT _HOOKS,
OSDi sabl el nt sHook() is called immediately after disabling
interrupts, and OSEnabl el nt sHook() 1is called immediately before
(re-)enabling interrupts. Therefore each function is called with
interrupts disabled.

By default, these functions are undefined.
In the example below, two separate counters, di Count er and ei -

Count er, are used to count the number of times that Salvo disables
and (re-)enables interrupts, respectively.

O8hi (), CSEi ()

Chapter 7 » Reference Salvo User Manual

Example unsi gned long int di Counter, eiCounter;

voi d OSDi sabl el nt sHook(void)
{

di Count er ++;

}

voi d OSEnabl el nt sHook(void)
{

ei Count er ++;

}

Salvo User Manual Chapter 7 « Reference 379

OSldlingHook(): Idle Function Hook

Notes

380

Type: Function

Declaration: void OSldli ngHook(voi d)

Called from: GSSched()

Contained in: User source code, called from sched. c.
Enabled by %ENABLE_l DLI NG_HCIK

Affected by: -

Description: User-defined.

Parameters: -

Returns: -

Stack Usage: Dependent on user definition.

Salvo's scheduler normally runs in a tight loop when no tasks are
eligible to run, i.e. when it is idling. By defining an idle function
and setting OSENABLE_| DLI NG HOXK to TRUE, you can do some-
thing useful while the system is idling. Your idle function should
be short and fast, as time spent in it delays the operation of the
scheduler.

By default, OGSl dl i ngHook() is undefined. However, Salvo librar-
ies configured for the idling hook contain a dummy OSI dl i ng-
Hook() function to avoid linker errors when the user fails to define
a oSl dl i ngHook() .

In the example below, the least significant bit on an output port is
toggled whenever there are no eligible or running tasks.

Chapter 7 » Reference Salvo User Manual

Example voi d CSldlingHook(void)
{
PORTB "= 0x01;
}

Salvo User Manual Chapter 7 « Reference 381

OSSchedDispatchHook(), OSSchedEntryHook(),
OSSchedReturnHook(): Scheduler Hooks

Notes

382

Type: Function

Declaration: voi d OSSchedDi spat chHook(void)
voi d OSSchedEnt ryHook(void)
voi d OSSchedRet ur nHook(void)

Called from: GSSched()
Contained in: User source code, called from sched. c.
Enabled by: OSENABLE_OSSCHED DI SPATCH HOOK,

OSENABLE_OSSCHED_ENTRY_HOOK, and
OSENABLE_OSSCHED RETURN_HOOK, re-

spectively
Affected by: -
Description: User-defined.
Parameters: -
Returns: —
Stack Usage: Dependent on user definition.

It may be useful when debugging a Salvo application to have run-
time information on the scheduler's behavior. These hooks are pro-
vided so that user-defined functions can be invoked at strategic
times within OSSched() 's execution.

OSSchedEnt r yHook() is called immediately upon entry into the
scheduler. 0SSchedDi spat chHook() is called immediately prior to
dispatching the current eligible task, with interrupts enabled and
OScTcbP pointing to the current task's control block. OSSchedRe-
turnHook() is called immediately after the current task returns
(yields) to the scheduler ... the current task can be in any state, in-
terrupts are enabled, and OScTcbP still points to the current task's
control block.

When the system is idling (i.e. there are no eligible tasks), neither
0SSchedDi spat chHook() nor OSSchedRet ur nHook() will be
called.

By default, 0SSchedDi spat chHook(), OSSchedEnt r yHook() and
OSSchedRet ur nHook() are all undefined.

In the example below, PORTB[5] is set just prior to dispatching the
current task, and is cleared after the current task yields back to the
scheduler. The time that PORTB[5] is high represents the dispatch
overhead in OSSched(), plus the task's execution time. The time

Chapter 7 » Reference Salvo User Manual

between successive rising edges of PORTB[5] represents the instan-
taneous context-switching speed of the application.

Example voi d OSSchedDi spat chHook (void)
{

}

voi d OSSchedRet ur nHook (void)

PORTB | = 0x20;

PORTB &= ~0x20;
}

Salvo User Manual Chapter 7 « Reference 383

Return Codes

Many Salvo user services have return codes to indicate whether or
not they were called successfully. Some are listed below. See the
individual user service descriptions for more information on return
codes.

OSNOERR: No error.

An error was encountered while executing

OSERR: .
the user service.

An invalid pointer was passed to the user

OSERR_TASK_BAD_P: .
- - - SCrvice.

OSERR_EVENT_NA: The specified event was not available

The specified event (e.g. message) is al-

OSERR_EVENT_FULL: ready full.

The specified control block (e.g. for mes-
sage queues or event flags) has not yet
been initialized.

OERR_EVENT_CB-
_UNINIT:

The current task has timed out while wait-

OSERR_TI MEQUT: .
- ing for an event.

Table 5: Return Codes

Salvo Defined Types

384

The following types are defined for use with Salvo user services.
Because the types are affected by configuration options, when in-
terfacing to Salvo user services you should always declare vari-
ables with these defined types. Failing to do so is likely to result in
unpredictable behavior.

Salvo has two classes of predefined types: those where the memory
(RAM) location of the object is not specified (normal,
OSt ypeXyz), and those where the location is explicitly specified
(qualified, osgl t ypeXyz). The need for both types arises on those
processors with banked RAM. If your target processor has a single
linear RAM space, the two types are identical. When in doubt, use
the qualified type if one exists.

The normal types are used in the Salvo source code when declaring

auto variables, parameters and function return values. You can also
use the normal types when declaring your own local variables (e.g.

Chapter 7 » Reference Salvo User Manual

Salvo User Manual

message pointers of type OSt ypeMsgP), and when typecasting (e.g.

GSSi gnal Msg(MSGP,

(OstypeMsgP) &array[2]));

The qualified types are used to declare Salvo's global variables,
and are also provided so that you can properly declare your own
global variables for Salvo, e.g. message queues — OSgl t ypeMsgQP
MsgQBuf f [SI ZEOF_MBGQ .

Tip Refer to the Salvo source code for examples of when to use
normal or qualified Salvo types.

The normal types are:

OSt ypeBi nSem

binary semaphore: OSt ypeBool ean

OStypeBitFi el d:

size of bit fields in structures: i nt or char,
depending on
OSUSE_CHAR S| ZED BI TFI ELDS

CSt ypeBool ean:

Boolean: FALSE (0) or TRUE (non-zero)

counter: OSt ypel nt 8u/ 16u/ 32u, depend-

St ypeCount : ing on OSBYTES_OF_COUNTS
delay: OSt ypel nt 8u/ 16u/ 32u, dependin
CStypebel ay: on }(;SBYT:;Z_O:_DELAYS pename
OSt ypeDept h: stack depth counter: OSt ypel nt 8u
OSt ypeEch: event control block: structure
OSt ypeEf cb: event flag control block: structure
OBt ypeEF! ag: event ﬂag: OSt ypel nt gu/ 16u/ 32u, de-
pending on configuration
OBt ypeEr r: fu.nction return code or error / warning /
timeout counter: OSt ypel nt 8u
CSt ypeEType: event type: OSt ypel nt 8u
Gst ypel D object ID: CSt ypel nt 8u
OSt ypel nt 8u: integer: 8-bit, unsigned

CSt ypel nt 16u:

integer: 16-bit, unsigned

OSt ypel nt 32u:

integer: 32-bit, unsigned

CStypel nterval :

interval: OSt ypel nt 8/ 16/ 32, depending on
OSBYTES_OF DELAYS

Cst ypeMych:

message queue control block: structure

CSt ypeMsg:

message: voi d or const , depending on
OSMESSAGE_TYPE

Ost ypeMsgQSi ze:

number of messages in a message queue:
OSt ypel nt 8u

OSt ypeOpt i on:

generic option: OSt ypel nt 8u

Chapter 7 « Reference 385

386

task priority: OSt ypel nt 8u, values from 0

Ost ypePri o:
yp to 15 are defined
OBty pePS: timer pre.:scalar: st ypel qt 8u/ 16u/ 32u,
depending on configuration
semaphore: OSt ypel nt 8u or
OSt ypeSem OSt ypel nt 16u, depending on configura-

tion

CStypeSt at e:

task state: OSt ypel nt 8u, values from 0 to 7
are defined

CSt ypeSt at us:

task status: bitfields of type OSt ypel nt 8u
for a task's running bit, state and priority

Cst ypeTch: task control block: structure

Ost ypeTcbExt : tcb extension: voi d *, user-(re-)definable

ks Uk 0t 6 5,
timestamp: OSt ypel nt 8u/ 16u/ 32u,

CSt ypeTS: depending on configuration of

OSBYTES_OF DELAYS

Table 6: Normal Types

The normal pointer types are:

OSt ypeChar EcbP: pointer to banked (OSLOC_ECB) char
OSt ypeChar TcbP: pointer to banked (OSLOC_TCB) char
) pointer to banked (OSLOC_ECB) event con-
OBt ypeEchP: trol block
OBt ypeEf chP: pointer to banked (OSLOC_EFCB) event flag
' control block
OBt ypeMychP: pointer to banked (OSLOC_MQCB) message
) queue control block
OSt ypeMsgP: pointer to message
OSt ypeMsgPP: pointer to pointer to message
ointer to banked (OSLOC MsSGQ) pointer to
Ost ypeMsgQPP: pmessage (-)p
OBt ypeTebP: plcj)ll(r)lct:ir to banked (OSLOC_TCB) task control
) pointer to banked (OSLOC_ECB) pointer to
CBtypeTchPP: banked (OSLOC_TCB) task control block
OSt ypeTFP: pointer to (task) function
Table 7: Normal Pointer Types
The qualified types are:
Chapter 7 » Reference Salvo User Manual

Salvo User Manual

OSgl t ypeCount :

qualified OSt ypeCount : banked
(OSLOC_COUNT) counter

OSgl t ypeDept h:

qualified OSt ypeDept h: banked
(OsLOC_DEPTH) stack depth counter

Osgl t ypeEch:

qualified OSt ypeEch: banked (OSLOC_ECB)
event control block

OSgl t ypeEf cb:

qualified OSt ypeEf cb: banked
(OsLOC_EFCB) event flag control block

Osgl typeErr:

qualified OSt ypeEr r : banked (OSLOC_ERR)
error counter

OSgl typed St at :

qualified OSt ypeQ St at : banked
(OSLOC_GLSTAT) global status bits

OSgl t ypeLogMsg:

qualified char : banked (OSLOC_LOGVSG)
log message character or string

qualified OSt ypeMycb: banked

OSgl t ypeMychb: (OSLOC_MQXCB) message queue control
block
05l typePs: qqahﬁed OSt ypePS: banked (GSLOC_PS)
timer prescalar
) qualified OSt ypeTch: banked (OSLOC_TCB)
gl typeTeb: task control block
oSgl t ypeTi ck: qualified OSt ypeTi ck: banked

(OSLOC_TI CK) system ticks

Table 8: Qualified Types

The qualified pointer types are:

OSgl t ypeCTchP:

qualified OSt ypeTcbP: banked
(OSLOC_CTCB) pointer to banked task con-
trol block

OSgl t ypeEchP:

qualified OSt ypeEcbP: banked
(OSLOC_ECB) pointer to banked event con-
trol block

OSgl t ypeMsgQP:

qualified OSt ypeMsgP: banked
(OSLOC_MB@&Q) pointer to message

OSgl t ypeSi gQP:

qualified OSt ypeTcbP: banked
(OsSLOC_SI Q) pointer to banked task con-
trol block

OSgl t ypeTcebP:

qualified OSt ypeTcbP: banked
(OsLOC_ECB) pointer to banked task con-
trol block

Table 9: Qualified Pointer Types

Chapter 7 « Reference 387

Salvo Variables

388

Note When declaring pointers using predefined Salvo pointer
types on targets that have banked RAM, always declare each
pointer on its own, like this:

OSt ypeMsgP nsgPl;
OSt ypeMsgP nsgP2;

Failing to do so (i.e. declaring multiple pointers by comma-
delimiting them on one line) will result in an improper declaration.

Salvo's global variables (declared in sal vonmem c) are listed below.
The variable, the qualified type corresponding to the variable and a
description of the variable are listed for each one. Advanced pro-
grammers may find it useful to read these variables during runtime
or while debugging. In some development environments (e.g. Mi-
crochip MPLAB), these variable names will be available for sym-
bolic debugging.

Warning Do not modify any of these variables during runtime —
unpredictable results may occur.

pointer to current

OBcTcbP Osgl t ypeCTcbP task's task control
block

OSct xSws osgl t ypeCount context switch
counter

Osdel ay QP 0osgl t ypeDel ayQP pointer to delay
queue

OSecbAr ea]] osgl t ypeEch event control block
storage

OSef cbAr ea] | 0osgl t ypeEf cb event flag control
block storage

OSel i gQP osgl t ypeEl i gQP pointer to eligible
queue

CSerrs 0Sgl t ypeErr runtime error
counter

Osf r ameP Gsgl t ypeFr ameP frame pointer®?

OSgl St at Osgl typed Stat | global status bits

92 Used in some Salvo context switcher to assist in stack frame operations.

Chapter 7 » Reference Salvo User Manual

idle function calls

OSi dl eCt xSws OSgl t ypeCount
counter

Osl ogMsg[] OSgl t ypeLogMsg log .(debug) message
string

CSl ost Ti cks OSgl t ypelLost Ti ck accumulated timer

ticks

OSmax St kDept h

OSgl t ypeDept h

maximum stack
depth achieved by
Salvo functions

message queue con-

OSnmgcbAr ea OSgl t ypeMych
m L] gl typeMy trol block storage
o6 t nAddr 0Sgl t ypeTFP task's return / resume
address
. signaled event queue
s P, . .
Gfsligg?q?u p oSyl t ypeSi gQP insert and removal
pointers
OSst kDept h OSgl t ypeDept h current stack dc?pth
of Salvo function
OBt cbAr ea[| osgl t ypeTch task control block
storage
Osti mer Ti cks Osgl t ypeTi ck system timer ticks
counter
OSt i mer PS 0sgl t ypePS runtime timer pre-
scalar
OSti meout s OSgl t ypeErr runtime trmeout
counter
QSwar ns OSgl t ypeErr runtime warning

counter

Salvo Source Code

The Salvo source code is organized into files that handle tasks, re-
sources, queues, data structures, utility functions, the monitor, and
the many #def i nes that are used to configure Salvo for a variety

Salvo User Manual

of applications.

Table 10: Salvo Variables

You can always review the source code if the manual is unable to
answer your question(s). Modifying the source code is not recom-
mended, as your application may not run properly when compiled
with a later release of Salvo. Where applicable, user #def i nes and
hooks for user functions are provided so that you can use Salvo in

Chapter 7 « Reference

389

390

conjunction with features that are not yet supported in the current

release.

Salvo's source (*. h and *. c) files are listed below.

Punpki n\ Sal vo\ I nc\ sal vo. h

Punpki n\ Sal vo\ | nc\ sal voadc.
Punpki n\ Sal vo\ | nc\ sal vocri .
Punpki n\ Sal vo\ | nc\ sal voct x.
Punpki n\ Sal vo\ | nc\ sal vodef .
Punpki n\ Sal vo\ | nc\ sal vof pt .
Punpki n\ Sal vo\ | nc\ sal vol bo.
Punpki n\ Sal vo\ | nc\ sal vol i b.
Punpki n\ Sal vo\ | nc\ sal vol oc.
Punpki n\ Sal vo\ I nc\ sal vol vl .
Punpki n\ Sal vo\ | nc\ sal vonac.
Punpki n\ Sal vo\ | nc\ sal vontg.
Punpki n\ Sal vo\ | nc\ sal vonem
Punpki n\ Sal vo\ | nc\ sal vonpt .
Punpki n\ Sal vo\ | nc\ sal voocp.
Punpki n\ Sal vo\ | nc\ sal voprg.
Punpki n\ Sal vo\ | nc\ sal vopsh.
Punpki n\ Sal vo\ | nc\ sal vosch.
Punpki n\ Sal vo\ | nc\ sal voscg.
Punpki n\ Sal vo\ I nc\ sal vostr.
Punpki n\ Sal vo\ | nc\ sal vot yp.
Punpki n\ Sal vo\ | nc\ sal vover.
Punpki n\ Sal vo\ | nc\ sal vowar .

>S5 0 0O ST 0 0O 0O 0T 0 0O S OSSO oS ooooTo

Punpki n\ Sal vo\ Src\ sal vobi nsem ¢
Punpki n\ Sal vo\ Src\ sal vobi nsen2. c
Punpki n\ Sal vo\ Src\ sal vochk. c
Punpki n\ Sal vo\ Src\ sal vocyclic.c
Punpki n\ Sal vo\ Src\ sal vocycli c2.
Punpki n\ Sal vo\ Src\ sal vocycli c3.
Punpki n\ Sal vo\ Src\ sal vocycl i c4.
Punpki n\ Sal vo\ Src\ sal vocycl i c5.
Punpki n\ Sal vo\ Src\ sal vocycl i c6.
Punpki n\ Sal vo\ Src\ sal vocycli c7.
Punpki n\ Sal vo\ Src\ sal vodebug. c
Punpki n\ Sal vo\ Src\ sal vodel ay. c
Punpki n\ Sal vo\ Src\ sal vodel ay2. c
Punpki n\ Sal vo\ Src\ sal vodel ay3. c
Punpki n\ Sal vo\ Src\ sal vodestroy.c
Punpki n\ Sal vo\ Src\ sal voefl ag. c
Punpki n\ Sal vo\ Src\ sal voefl ag2. ¢
Punpki n\ Sal vo\ Src\ sal voei d. c

Punpki n\ Sal vo\ Src\ sal voevent. c
Punpki n\ Sal vo\ Src\ sal vohook _idle.c

OO0 000

Punpki n\ Sal vo\ Src\ sal vohook _interrupt.c

Punpki n\ Sal vo\ Src\ sal vohook_wdt . c
Punpki n\ Sal vo\ Src\ sal voidl e. c
Punpki n\ Sal vo\ Src\sal voinit.c
Punpki n\ Sal vo\ Src\sal voinit2.c
Punpki n\ Sal vo\ Src\sal voinit3.c
Punpki n\ Sal vo\ Src\sal voinit4.c

Chapter 7 » Reference

Salvo User Manual

Punpki n\ Sal vo\ Src\ sal vointvl.c
Punpki n\ Sal vo\ Src\ sal vol i cense. c
Punpki n\ Sal vo\ Src\ sal vonem ¢
Punpki n\ Sal vo\ Src\ sal vonsg. c
Punpki n\ Sal vo\ Src\ sal vonsg2. ¢
Punpki n\ Sal vo\ Src\ sal vonsgq. c
Punpki n\ Sal vo\ Src\ sal vonsgq2. c
Punpki n\ Sal vo\ Src\ sal vonsgq3. c
Punpki n\ Sal vo\ Src\ sal vonsgqg4. c
Punpki n\ Sal vo\ Src\ sal voprio.c
Punpki n\ Sal vo\ Src\ sal vopri o2.c
Punpki n\ Sal vo\ Src\ sal voqdel . ¢
Punpki n\ Sal vo\ Src\ sal voqgi ns. c
Punpki n\ Sal vo\ Src\ sal vorpt.c
Punpki n\ Sal vo\ Src\ sal vosched. c
Punpki n\ Sal vo\ Src\ sal vosem ¢
Punpki n\ Sal vo\ Src\ sal vosen®. ¢
Punpki n\ Sal vo\ Src\ sal vost op. c
Punpki n\ Sal vo\ Src\ sal vot ask. c
Punpki n\ Sal vo\ Src\ sal vot ask2.
Punpki n\ Sal vo\ Src\ sal vot ask3.
Punpki n\ Sal vo\ Src\ sal vot ask4.
Punpki n\ Sal vo\ Src\ sal vot ask5.
Punpki n\ Sal vo\ Src\ sal vot ask6.
Punpki n\ Sal vo\ Src\ sal vot ask7.
Punpki n\ Sal vo\ Src\ sal vot ask8.
Punpki n\ Sal vo\ Src\ sal voti ck. c
Punpki n\ Sal vo\ Src\ sal votid.c
Punpki n\ Sal vo\ Src\ sal votiner.c
Punpki n\ Sal vo\ Src\ sal voutil.c
Punpki n\ Sal vo\ Src\ sal vover.c

OO0OO0O0O00OO0O0

Listing 37: Source Code Files

Compiler-specific header and source files are listed in each com-
piler's Salvo Compiler Reference Manual.

Note Salvo source code uses tab settings of 2, i.e. tabs are
equivalent to 2 spaces.

Locations of Salvo Functions

Salvo User Manual

Below is a list of each Salvo function (including user services and
certain internal functions called by user services, shown in italics)
and the source file in which it resides. This list is provided to assist
source code users in resolving compile-time link errors due to the
failure to include a particular Salvo source code file in their pro-
ject.

Chapter 7 « Reference 391

392

Note Under certain configurations, those functions marked with
an "*' may be macros or in-lined code instead of functions.

OsC rEFl ag() *
OSCr eat eBi nSen() *
OSCr eat eEFl ag() *
OSCr eat eEvent ()
OSCr eat eMsg() *
OSCr eat eMsgQ)() *
OSCr eat eSen() *
OSCr eat eTask()
OSCt xSw() *

OSDel ay()
OSDel Del ayQ()
OSDel PrioQ()
OSDel TaskQ()
OSDest roy()
OSDest royTask()
OSDi spTebP()
CSel ()

OSGet Prio()*
OSGet Pri oTask()
OSGet Ti cks()
OSGet St at e()
OSGet St at eTask()
OsGet TS()
CSl ni t ()

OSl ni t Ecb()
OSlnitPrioTask()
CSl nit Tcbh()

CSl nsDel ayQ()
OSlnsElig()*

OSl nsPrioQ)

OSl nsTaskQ()
OSLogErr () *
OSLogMsg() *
OSLogWar n() *
OSMakeSt r ()
OSMsgQENPt y ()
OSPri nt Ecb()
QSPri nt EcbP()
OSPri nt Tcb()
OSPri nt TcbP()
OSRet ur nBi nSem()
OSRet ur nEFI ag()
OSRet ur nMsg()
OSRet ur nMsgQ)()
OSRet ur nSem()
OSRpt ()

OSSaveRt nAddr ()
OSSched() *
OSSchedEnt r yHook()
OSSchedDi spat chHook()
OSSchedRet ur nHook()
OSSet EFl ag() *
GSSet Pri o()

Chapter 7 » Reference

sal voefl ag. c
sal vobi nsem ¢
sal voefl ag. c
sal voevent. c
sal vonsg. c

sal vonmsgqg. ¢
sal vosem ¢
salvoinit2.c
sal voportxyz. h
sal vodel ay. c
sal voqgdel . c
sal voqgdel . ¢
sal vot ask7. c
sal vodestroy. c
sal vot ask3. c
sal vorpt.c

sal voei d. c

sal vopri o2.c
sal vopri 02.c
sal voticks.c
sal vot ask. c
sal vot ask5. ¢
sal vodel ay2. c
salvoinit.c
salvoinit4d.c
salvoinit2.c
salvoinit3.c
sal vogi ns. c
sal vogi ns. c
sal vogi ns. c
sal vot ask8
sal vodebug.
sal vodebug.
sal vodebug.
sal vodebug.
sal vormrsgQq3
sal vorpt.c
sal vorpt.c
sal vorpt.c
sal vorpt.c
sal vobi nsen®. c
sal voefl ag2.c
sal vonsg2. c
sal vormrsgQq2. c
sal vosen?. c
sal vorpt.c
salvoutil.c
sal vosched.
sal vosched.
sal vosched.
sal vosched.
sal voef | ag.
sal voprio.c

OO0 00O0

OO0 00

Salvo User Manual

OSSet Pri oTask() sal vot ask6. c

OSSet Ti cks() sal voti cks. c
OSSet TS() sal vodel ay2. c
GsSi gnal Bi nSen() * sal vobi nsem ¢
GSSi gnal Event () sal voevent. c
Gssi gnal Msg() * sal vonsg. c
GsSi gnal MsgQ() * sal vonsgqg. ¢
Gssi gnal Sen() * sal vosem c
0SSt art Task() sal vot ask. c
OSSst op() sal vostop. ¢
0SSt opTask() sal vot ask2. ¢
GSSyncTS() sal vodel ay3. c
OSTaskUsed() sal vot ask7. c
OSTaskRunni ng() sal vot ask4. c
st () salvotid.c
OSTiner()* sal votimer.c
OSWai t Event () sal voevent. c

Listing 38: Location of Functions in Source Code

Abbreviations Used by Salvo

The following abbreviations are used throughout the Salvo source

code:
addr ess addr
array A
bi nary bin
change change, chg
check chk
circul ar circ
cl ear clr
Ccreate create
configuration config
cont ext ctx
current curr, c
cyclic tiner cycTnr
del ay del ay
delete de
depth depth
destroy destroy
di sabl e dis
di sabl e interrupt(s) di
ecb pointer ecbP
eligible elig
enabl e en
enabl e interrupt(s) ei
enter enter
event event, e
event control bl ock ecb
event flag eFl ag
event flag control block ef cb
event type eType
error err

Salvo User Manual Chapter 7 « Reference 393

from

gl obal

gl obal type

i dentifier

i ncl ude guard
initialize

i nsert

I ength

| ocal

| ocation

maxi num
nmessage
nessage queue
nessage queue contro
ni ni num

not avail abl e
number
operating system
poi nt er

pointer to a pointer
prescal ar

previ ous
priority

gueue

report

reset

restore

return

save

schedul er
semaphor e

set

si gnal

st ack

status
statistics
string

switch
synchroni ze

t ask

task control bl ock
task function pointer
tcb extension
tcb pointer
tick

ti meout

timer

ti mestanmp
toggl e

utility

val ue

ver sion
wai t (ing) (for)
war ni ng

bl ock

num

ptr, p
pp
PS

prev
prio

Q

rpt

rst
rstr
rtn
save
sched
sem
set

si gnal
st k

st at
stats
str

SwW
sync
task, t
tch

t FP

t cbExt
tchP
tick

ti meout
timer
TS

t gl
util
val

ver
wait, w
war n

Listing 39: List of Abbreviations

Chapter 7 » Reference

Salvo User Manual

Chapter 8 « Libraries

Library Types

Note This chapter provides an overview of using and
(re-)building Salvo libraries. Only general issues that affect all of
Salvo's libraries are covered here.

For library particulars, please refer to your compiler's Salvo Com-
piler Reference Manual.

Salvo ships with two types of precompiled libraries — standard li-
braries and freeware libraries. The standard libraries contain all of
Salvo's basic functionality, configured for each supported compiler
and target processor. The standard libraries are included in their
respective Salvo standard distributions. The freeware libraries are
identical to the corresponding standard libraries except for the rela-
tively limited numbers of supported tasks and events, and are in-
cluded in the Salvo Lite distributions.

Salvo Pro users can create applications using the Salvo source
files, the standard libraries, or a combination thercof. All other
Salvo users must use libraries when creating their applications. For
functionality and flexibility greater than that provided by the li-
braries, you'll need to purchase Salvo for full access to the Salvo
source code, and all the configuration options.

Libraries for Different Environments

Native Compilers

Salvo User Manual

The various Salvo distributions contain libraries for two different
kinds of compilers — native and non-native compilers.

By native compilers we mean compilers that generate output (usu-
ally in . hex format) for a specific embedded target. You would use
a native compiler to create a Salvo application for a real product.
Native compilers are usually cross-compilers, i.e. they run on one
machine architecture (usually x86-based PCs) and generate code
for another (e.g. TTI MSP430).

395

Non-native Compilers

Using the Libraries

396

By non-native compilers we mean compilers that generate code for
another target altogether (usually an x86-based PC). Salvo's sup-
port for these "pure" compilers® is intended to facilitate cross-
platform development of Salvo applications for embedded targets.
Users can build C console applications and test, run, and debug
them on their main development machine (e.g. a PC) before build-
ing the same application for the intended embedded target (e.g. a
PICmicro MCU). The editing and debugging features available on
PCs are powerful tools that can aid in project management, testing
and debugging.

If you wish to develop your embedded application on the PC and
then recompile your Salvo application for your embedded target,
keep in mind that the non-native compilers generally lack any sup-
port for non-console-oriented subsystems that may exist on your
embedded target. Therefore you will need to simulate things like
serial /O, A/D, D/A, interrupts, etc.

This "build on two, run on one" technique can be quite useful. For
example, you could write, test and debug a Salvo application that
passes floating-point data between two tasks via a message queue.
The PC's enormous® resources (stdout buffers, memory, etc.),
coupled with a good IDE, present an ideal environment for devel-
oping this sort of application. You could debug your application
using printf() or the IDE's debugger. Once your application
works on the PC — and as long as you've used C library functions
that are also included in your target compiler's libraries — then
building a Salvo application for the embedded target should be a
snap!

In order to use a Salvo library, place the OSUSE_LI BRARY and
OSLI BRARY_XYZ configuration options particular to your compiler
into your sal vocf g. h. These configuration options ensure that the
same configuration options used to generate the chosen library will
also be used in your source code.

For example, to use the full-featured standard library for HI-TECH
PICC and the PIC16F877A, your sal vocfg. h file would contain
only:

93
94

As opposed to cross-compilers.
When compared to an embedded microcontroller.

Chapter 8 « Libraries Salvo User Manual

#defi ne OSUSE_LI BRARY TRUE

#defi ne OSLI BRARY_TYPE csL
#def i ne OSLI BRARY_CONFI G OSA
#def i ne OSLI BRARY_VARI ANT osB

Listing 40: Example salvocfg.h for Use with Standard
Library

and your project would link to the standard library sl p42Cab. | i b.

Please see Chapter 5 « Configuration for more information on these
configuration options. Figure 25: Salvo Library Build Overview il-
lustrates the process of building a Salvo application from a Salvo
library.

Note oscowpl LER and OSTARGET are not included in the sal -
vocf g. h file listed above. That's because in most cases Salvo can
automatically detect the compiler in use and then set the target
processor accordingly. This is done in the preprocessor via prede-
fined symbols supplied by the compiler.

Overriding Default RAM Settings

Salvo User Manual

Each library is compiled with default values for the number of ob-
jects (tasks, events, etc.). By setting configuration parameters in
sal vocf g. h it's possible to increase or decrease the RAM allo-
cated to Salvo, and hence the number of objects in your applica-
tion.

If the number of objects in your application is smaller than what
the library is compiled for, or your application doesn't use certain
objects (e.g. message queues) that have their own, dedicated con-
trol blocks, you can reduce Salvo's RAM usage. Just add the ap-
propriate configuration options to sal vocfg. h and rebuild your
project.

For example, to set the amount of RAM allocated to tasks in the
above example to just two, your sal vocf g. h file would contain:

#def i ne OSUSE_LI BRARY TRUE
#def i ne OSLI BRARY_TYPE OSL
#def i ne OSLI BRARY_CONFI G OSA
#def i ne OSLI BRARY_VARI ANT OSB
#def i ne OSTASKS 2

Listing 41: Example salvocfg.h for Use with Standard
Library and Reduced Number of Tasks

Chapter 8 « Libraries 397

and you would link these three files:

mai n. obj, sal vonem obj, sl p42Cab.lib

to build your application. By adding the following two lines to
your sal vocf g. h:

#def i ne OSEVENT_FLAGS 0
#def i ne OSMESSAGE_QUEUES 0

Listing 42: Additional Lines in salvocfg.h for Reducing
Memory Usage with Salvo Libraries

you can prevent any RAM from being allocated to event flag and
message queue control blocks, respectively.

Caution This technique frees RAM for other uses in your appli-
cation, and must be used with caution. If you reduce OSTASKS or
OSEVENTS from their default values, you must ensure that you do
not perform any Salvo services on tasks or events that are now "out
of range." E.g. for libraries that support three tasks, if you reduce
OSTASKS to 2 as outlined above, you must not call OSCre-
at eTask(TaskNane, OSTCBP(3), prio). If any of your own
variables are located in RAM immediately after the tcbs, they will
be overwritten with the call to OSCr eat eTask() .

Setting the number of objects in an application above the library
defaults is only possible with the standard libraries — the preset
limits in the freeware libraries cannot be overridden.

Note Illegal or incorrect values for the number of objects in an
application that uses a library will usually be flagged by the com-
piler as an error.

Library Functionality

398

By linking your application to the appropriate library, you can use
as few or as many of Salvo's user services as you like. Each library
supports up to some number of tasks and events.

Note Because of the enormous number of possible configura-
tions, the standard and freeware libraries support most, but not all,
of Salvo's functionality. Each library is compiled with a particular
set of configuration options. See the library-specific details (be-
low) or Punpki n\ Sal vo\ I nc\ sal vol i b. h for more information.

Chapter 8 « Libraries Salvo User Manual

Types

Memory Models

Options

Global Variables

Salvo User Manual

Warning Do not edit Punpki n\ Sal vo\ I nc\ sal vol i b. h. Doing
so may cause problems when compiling and/or linking your
application to the freeware libraries.

The library type is specified using the OSLI BRARY_TYPE configura-
tion option in sal vocf g. h.

The library types, shown in Table 11, are self-explanatory.

type code description

Freeware library. Number of tasks, events,

f | OSF: . .
etc. is restricted.%

Standard library. Number of tasks, events,

[/ OsL:
etc. is limited only by available RAM.

Table 11: Type Codes for Salvo Libraries

Note The standard libraries are slightly smaller than the corre-
sponding freeware libraries.

Where applicable, Salvo libraries are compiled for different mem-
ory models. There is no configuration option for specifying the
memory model.

Where applicable, Salvo libraries are compiled with different op-
tions. There is generally no configuration option for specifying the
option.

Salvo uses a variety of objects for internal housekeeping. Where
applicable, the OSLI BRARY_GLOBALS configuration option in sal -
vocf g. h is used to specify the storage type for these global vari-
ables. The configuration codes vary by compiler.

95 Most freeware libraries are compiled with OSSET_LI M TS set to TRUE.

Chapter 8 « Libraries 399

Configurations

The library configuration is specified using the
OSLI BRARY_CONFI G configuration option in sal vocf g. h.

The library configurations, shown in Table 12, indicate which ser-
vices are included in the library specified. Use the library that in-
cludes the minimum functionality that your application requires.
For example, don't use an a-series library unless your application
requires both delay (e.g. OS_Del ay()) and event (e.g. OSSi gnal -
Sent()) services.

configuration code description
Library supports multitasking with delay
a/ OBA and event services — all default functional-

ity is included.

Library supports multitasking with delay

d / OSD: services only — event services are not sup-
ported.
Library supports multitasking with event
e /| OSE services only — delay services are not sup-
ported.

Library supports multitasking only — delay

m/ OSM .
and event services are not supported.

s | OsS: Library supports only Salvo SE features.

Library supports multitasking with delay
t / OST: and event services. Tasks can wait on
events with a timeout.

y | O8Y: Library supports only Salvo tiny features.

Table 12: Configuration Codes for Salvo Libraries

Note Using a library that's been created with support for services
you don't use will have an impact on your application's ROM and
RAM requirements.

Table 13 shows the essential differences among the library con-
figurations.

400 Chapter 8 « Libraries Salvo User Manual

Variants

Salvo User Manual

configuration a d e m s t y

Del.ay ser- N N)] N N N
vices:

Event. + - + - 496 + +97
services:

Idl}ng func- N N N] N N .
tion:

Taslf ... + + + - + + -
priorities:

Timeouts: - - - - - + -

Table 13: Features Common to all Salvo Library
Configurations

+: enabled
-: disabled

The library variant is specified using the OSLI BRARY_VARI ANT
configuration option in sal vocf g. h.

A variety of different compilers are certified for use with Salvo.
Some compilers use the target processor's stack or registers to pass
parameters and store auto variables — this is true for all compilers
for x86 targets. There are no library variants for these conven-
tional compilers.

Other compilers certified for use with Salvo maintain parameters
and auto variables as static objects in dedicated RAM — this is the
case for targets that do not have or use general-purpose stacks for
parameter and auto variable storage. The libraries for these com-
pilers have variants. The remainder of this section applies to the
libraries for these compilers.

Some of Salvo's services can be called from within interrupts.
Those services include:

96
97

Binary semaphores, semaphores and messages.
Binary semaphores and semaphores.

Chapter 8 « Libraries 401

402

* OSCGet Pri oTask()
* OSCet St at eTask()
¢ ¢ (OSReadBi nSem()

¢ ¢ OSReadEFI ag()

* OSReadMsg()

* OSReadMsgQ()

* OSReadSem()

* OSMsgQENpt y()

¢ *(sSSignal Bi nSem()
e *(sSignal Msg()

e *(SSignal MsgQ()

* OSSi gnal Sem()

e e(OSStart Task()

Listing 43: Partial Listing of Services than can be called
from Interrupts

If the target processor does not have a general-purpose stack, the
Salvo source code must be properly configured via the appropriate
configuration parameters. The library variants, shown in Table 14,
are provided for those applications that call these services from
within interrupts.

If your application does not call any of the services above from
within interrupts, use the b variant. If you wish to these services
exclusively from within interrupts, use the f variant. If you wish to
do this from both inside and outside of interrupts, use the a variant.
In each case, you must call the services that you use from the cor-
rect place in your application, or either the linker will generate an
error or your application will fail during runtime.

Chapter 8 « Libraries Salvo User Manual

Library Reference

variant code description

Applicable services can be called from
a/ OBA anywhere, i.e. from the foreground and
the background, simultaneously.

Applicable services may only be called

b / OSB:
from the background (default).
Applicable services may only be called
e / OSE from either the foreground or the back-
ground, but not both.
t 1 osE: Applicable services may only be called
' from the foreground.
- | OSNONE: Library has no variants.?8

Table 14: Variant Codes for Salvo Libraries

See the OSCALL_OSXYZ configuration parameters for more informa-
tion on calling Salvo services from interrupts.

Refer to your compiler's Salvo Compiler Reference Manual for
details on the associated Salvo libraries.

Rebuilding the Libraries

Salvo User Manual

One common reason to rebuild the Salvo libraries occurs when the
compiler you are using has been upgraded (new versions, en-
hancements, bug fixes, etc.) and pre-compiled Salvo libraries built
with the new compiler have not yet been released. In a situation
like this, you must rebuild the Salvo libraries in order to build your
library-build Salvo projects.

Doing source-code builds is generally an easier way to set configu-
ration options for a Salvo project. In multi-user environments,
however, it may be wiser to force all Salvo users working on a sin-
gle application to link to a single, custom library so as to ensure
that they are all configured identically.

Note Libraries can only be rebuilt by Salvo Pro users, as the
Salvo source code is required.

98 A library may have no variants if the target processor does not support

interrupts, or if the target processor has a conventional stack and the ability to
save and restore the state of interrupts.

Chapter 8 « Libraries 403

GNU Make and the bash Shell

The Salvo libraries are generated with GNU nake in the bash
shell.? If you have Salvo Pro you can rebuild the libraries using
the makefiles in the Punpki n\ Sal vo\ Sr ¢ directory.

Note The Salvo library makefiles are designed to run from the
Punpki n\ Sal vo\ Sr ¢ directory.

In addition to the make utility, other utilities commonly used in the
bash shell are also required for a successful make, including
expr (. exe) . Refer to your bash shell documentation for informa-
tion on installing the various utilities.

Salvo's makefile system is relatively complex and uses make re-
cursively. Normally, users need not edit the makefiles. However, if
you have installed your compiler(s) in places that differ from those
specified in the Salvo makefiles, you may need to edit the appro-
priate makefile for a successful compile.

Rebuilding Salvo Libraries

Linux/Unix Environment

404

To rebuild a particular library in the bash shell, simply specify it
as nake's target, e.g.

e $: cd /Pumpkin/Salvo/Src
e $: make —f Makefile libsalvolmcc30it.a

Listing 44: Making a Single Salvo Library

The Salvo makefiles also allow for groups of libraries to be made,
e.g.

e $: cd /Pumpkin/Salvo/Src
+ $: make —f Makefile ra430

Listing 45: Making all Salvo Libraries for a Particular
Compiler

to generate all of the Salvo libraries for the Rowley Associates
CorssWorks for MSP430 toolset (Salvo code RA430), and

99 Bourne-again shell, a Unix command language interpreter.

Chapter 8 « Libraries Salvo User Manual

http://www.gnu.org/
http://www.gnu.org/

e $: cd /Pumpkin/Salvo/Src

« $: make —f Makefile msp430

Listing 46: Making all Salvo Libraries for a Particular
Target

to generate all of the Salvo libraries for MSP430 targets. Naturally,
you will need all of the compiler(s) associated with the Salvo li-
braries you're rebuilding.

A list of target groups can be obtained by issuing the commands:

e $: cd /Pumpkin/Salvo/Src
« $: make —f Makefile

Listing 47: Obtaining a List of Library Targets in the
Makefile

Multiple Compiler Versions

Win32 Environment

Salvo User Manual

Some of Salvo's supported compilers are in use at different version
levels. For these compilers, the make command-line argument
CVER must also be specified, e.g.

e $: cd /Pumpkin/Salvo/Src
« $: make —f Makefile iar430 CVER=2

Listing 48: Making Salvo Libraries for IAR's MSP430 C
Compiler v2.x

will result in Salvo libraries being built and placed in
\ Punpki n\ Sal vo\ Li b\ | AR430-v2. CVER details are compiler-
dependent — see the Salvo makefiles for more information.

Note CVER can be combined with CLC when building custom li-
braries (see below).

To rebuild Salvo libraries in a Win32 environment, you will need a
bash shell along with GNU nake. One free source for both is the
Cygwin bash shell. Another is the MinGW project, along with as-
sociated utilities.!00

100 A MinGW installation is reported to require only MinGW (e.g. M ngw
2.0.0-3.exe) and Msys (e.g. Msys-1.0.8.exe), available on
http://www.SourceForge.net. MinGW should be installed before Msys.

Chapter 8 « Libraries 405

http://sources.redhat.com/cygwin/
http://www.mingw.org/

Currently, all libraries included in Salvo distributions are built in
the Cygwin bash shell using nmake recursively, as outlined
above.!01 Therefore you are strongly encouraged to set up a work-
ing Cygwin bash shell from the latest Cygwin releases for generat-
ing Salvo libraries.

Customizing the Libraries

You can rebuild the Salvo libraries to a configuration that differs
from the standard build.!92 This is useful in situations where you
prefer to do library builds, and the standard libraries differ some-
what from the configuration that you require.

Using custom libraries is a three-step process, involving:
* e creating a custom library configuration file,

* « building the custom library and
* e« using the custom library in a library build

Creating a Custom Library Configuration File

406

Salvo provides for 20 different user-definable custom library con-
figuration files, sal vocl c1. h through sal vocl c20. h.193 When a
custom library is in use, one of these files will be included in the
salvo configuration file Punpki n\ Sal vo\ I nc\ sal vol i b. h via the
C preprocessor's #i ncl ude "fil ename” directive.

Note Because of the use of "" in the #i ncl ude directive, the cus-
tom library configuration file must be located in the preprocessor's
user search path. It is up to the user to ensure that the preprocessor
can find the selected custom library configuration file. A safe loca-
tion for such files is the Punpki n\ Sal vo\ I nc directory, or the pro-
ject directory.

Each custom library configuration file includes overrides of Salvo
configuration option settings used to generate the library. For each
configuration option to be overridden, the Salvo symbol should

101 pCs with large (e.g. 1GB) amounts of RAM are used to avoid the recursive

make problems that have plagued Cygwin.
Note that Pumpkin cannot provide support for libraries that differ from those
provided in the Salvo distributions.

102

103 Salvo installers do not install any sal vocl cN. h files. The installers will not

replace, overwrite or delete any such user files.

Chapter 8 « Libraries Salvo User Manual

first be #undef 'd, then #defi ne'd, so as to avoid any preprocessor
warnings.

Building the Custom Library

Once your custom library configuration file is ready, you rebuild
the Salvo library or libraries using the Salvo makefiles and an
additional make command-line option, CLC=N, where N is the
number of the custom library configuration file you are using.

Note Most users of custom Salvo libraries will only need to over-
ride a few of the configuration options for the standard libraries.
The library or libraries you choose to rebuild should have a default
configuration that is as close as possible to what you are trying to
achieve with your custom library.

Using the Custom Library in a Library Build

After you have built your custom library, you must set the
OSCUSTOM LI BRARY_CONFI G configuration option in your project's
sal vocf g. h configuration file to the number of your custom li-
brary configuration file. And of course you must link to the custom
library instead of a standard library.

Example — Custom Library with 16-bit Delays and Non-Zero

Prescalar

Salvo User Manual

To build a Salvo library for the Archelon / Quadravox AQ430 De-
velopment Tools that has all of the features of an "i a" library, but
also has 16-bit delays and a timer prescalar of 5, one would start
with sl agq430i a. | i b. Assuming this will be custom library con-
figuration 4, create a Punpki n\ Sal vo\ I nc\ sal vocl c4. h with the
following entries:

#undef OSBYTES_OF DELAYS
#def i ne OSBYTES_OF_DELAYS 2

#undef OSTI MER_PRESCALAR
#defi ne OSTI MER_PRESCALAR 5

Listing 49: Example Custom Library Configuration File
salvoclc4.h

and then build the new library:

Chapter 8 « Libraries 407

e $: cd /Pumpkin/Salvo/Src
e $: make —f Makefile libsalvolmcc32I-t.a
CLC=4

Listing 50: Making a Custom Salvo Library with Custom
Library Configuration 4

Note The CLC= command-line argument to nake is case-sensitive.

Making the custom library as above will result in a new library,
\ Punpki n\ Sal vo\ Li b\ MCC32\ | i bsal vol ncc32| -t - cl c4. a.

To use the new library, add GSCUSTOM LI BRARY_CONFI G to your
project's sal vocfg. h, e.g.:

#defi ne OSUSE_LI BRARY TRUE
#defi ne OSLI BRARY_TYPE csL
#def i ne OSLI BRARY_CONFI G OSA

#def i ne OSCUSTOM LI BRARY_CONFI G 4

Listing 51: Example salvocfg.h for Library Build Using
Custom Library Configuration 4 and Archelon /
Quadravox AQ430 Development Tools

and link your project to your new custom library
\ Punpki n\ Sal vo\ Li b\ MCC32\ | i bsal vol ntc32l -t-cl c4. a.

Note In this example, we've only altered the standard library
slightly. In general, you should pick a standard library that is as
close as possible to the configuration you want in your custom li-
brary. Deviating substantially from the standard library's configu-
ration may cause problems when building the library because of
conflicts between configuration options. Also, it may result in an
unnecessarily large library. Advanced users may want to review
Punpki n\ Sal vo\ I nc\ sal vol i b. h to solve such problems using
the defined symbols contained therein.

To build a custom library for a particular library and a particular
version of the associated compiler, combine the CLC and CVER
arguments to the makefile:

e $: cd /Pumpkin/Salvo/Src
e $: make —f Makefile libsalvolra430-t.hza
CLC=2 CVER=1

Listing 52: Making a Custom Salvo Library with Custom
Library Configuration 4

408 Chapter 8 « Libraries Salvo User Manual

Making the custom library as above will result in a new library,
\ Punpki n\ Sal vo\ Li b\ RA430-v1\1li bsal vol ra430-t-cl c2. hza.

Note To avoid problems associated with different compilers
and/or targets, each custom library configuration file sal vocl cN. h
should only be used with a single compiler and target combination.

Preserving a User's salvoclcN.h Files

The Salvo installers will not touch or delete any existing sal -
vocl cN. h files. Therefore custom library configuration files can be
left in place when Salvo is upgraded.

Restoring the Standard Libraries

The standard Salvo libraries can be restored by either re-installing
them from the Salvo installer, or by rebuilding the libraries without
any CLC= command-line options to make. Since the Salvo library
makefile system automatically assigns unique, descriptive names
to custom libraries, there is no good reason to alter or move the
standard libraries.

Custom Libraries for non-Salvo Pro Users

Occasionally, potential Salvo users will request a custom library
for evaluation. This will invariably be a custom Salvo Lite (free-
ware) library. Using a custom Salvo freeware library is no different
from using a custom Salvo standard library — just follow the steps
outlined above.

Makefile Descriptions

Pumpkin\Salvo\Src\Makefile

Salvo User Manual

This makefile uses a regular expression to parse the name of the
desired library or libraries. It then calls make recursively using
Makef i | e2 to generate one or more libraries.

Chapter 8 « Libraries 409

Pumpkin\Salvo\Src\Makefile2

This makefile references the compiler- and target-specific Make-
file in the CODE subdirectory.

Pumpkin\Salvo\Src\CODE\Makefile

This makefile file contains drives the compiler(s) and assembler(s)
required to generate the libraries. Compiler-specific paths are lo-
cated in this file.

Pumpkin\Salvo\Src\CODE\targets.mk

This include file contains the names of all valid Salvo libraries for
the selected compiler and target.

410 Chapter 8 « Libraries Salvo User Manual

Chapter 9 « Performance

Introduction

Interrupts

Context Switcher

Salvo User Manual

In this chapter we'll address the runtime aspects of Salvo which
affect performance. A good understanding is essential if you wish
to extract the maximum possible performance from your target
processor.

Salvo controls interrupts in two distinct regions of its code — in the
context switcher, and in critical sections. These two regions of the
Salvo code are target- and sometimes compiler-specific, unlike the
main body of Salvo code, which is target-independent. These code
regions and their impact on your application are discussed below.

The Salvo context switcher for each compiler and target family is
unique. In general terms, the context switcher handles:

* Vectoring from the scheduler to the task

* Generating a local stack frame for the task

» Storing the task's updated resume address in the
task's task control block (tcb)

* Any required register save and restores

* Returning from the task to the scheduler

Note All Salvo tasks execute with interrupts enabled. Therefore
interrupts are enabled when entering and exiting the Salvo context
switcher.

For most Salvo context switchers, the operations listed above in-
volve changes to the stack and stack pointer (SP). Wherever possi-
ble, interrupts are not disabled during the operation of the context

411

Summary

Critical Sections

412

switcher. This is possible!? in most Salvo context switchers, and
depends on the target architecture.

Note Most Salvo context switchers are implemented in assembly
language and are unaffected by any project optimizations.

Tip Each Salvo Compiler Reference Manual clearly states the
interrupt-disabling behavior of the particular context switcher.

In the rare cases where it is not possible to context switch without
disabling interrupts, every effort has been made to minimize the
number of cycles during which interrupts are disabled. Therefore,
for Salvo distributions whose context switcher have non-zero inter-
rupt latencies, the latency represents the maximum interrupt la-
tency due to the Salvo context switcher. Even in these cases, the
latency is usually less than 20 instruction cycles.

Note The latency of the Salvo context switcher is constant and is
independent of all other aspects of a Salvo application.

Most Salvo context switcher do not disable interrupts and therefore
introduce no interrupt latency into a Salvo application.

Those Salvo context switchers that do disable interrupts do so for
the minimum time possible.

Critical sections of code are sections of code that must not be pre-
empted. In a single-threaded application, preemption occurs
through interrupts. If a critical section of code is preempted, then
there is a real possibility of corruption of global variables. Since
the vast majority of microcontrollers do not have protected mem-
ory features, it is imperative that Salvo take steps to prevent pre-
emption during critical sections.

Note Most callable Salvo services include critical sections.

104 If the Stack Pointer on the target architecture can be changed atomically, then

this usually means that interrupts need not be disabled during a Salvo context
switch.

Chapter 9 » Performance Salvo User Manual

Salvo has two user-definable hooks (i.e. functions) that are used to
prevent preemption (and therefore corruption of Salvo's own
global variables).!95 They are OSDi sabl eHook() and OSEnabl e-
Hook() . OSDi sabl eHook() is called inside a Salvo service at the
beginning of a critical section, and OSEnabl eHook() 1is called in-
side a Salvo service at the end of a critical section.

Note Interrupt hooks are contained in every Salvo library. Refer
to the appropriate Salvo Compiler Reference Manual for the func-
tionality of the hooks. All Salvo hooks can be overridden by the
user, in both source-code builds and library builds.

Inside the Salvo source code, the interrupt hooks are used like this:

.../l Non-critical section of Salvo code
OSDi sabl eHook() ;

.../l Critical section of Salvo code
OSEnabl eHook() ;

.../l Non-critical section of Salvo code
OSDi sabl eHook() ;

.../l Critical section of Salvo code
OSEnabl eHook() ;

.1l etc.

Listing 53: Use of interrupt hooks in Salvo source code.

Note Non-dummy (i.e. non-empty) interrupt hooks are target-
and sometimes even compiler-specific.106

Warning Salvo users cannot change how or when these hooks
are called. Their positions in the Salvo code have been chosen to
disable interrupts only while required for critical sections. Salvo's
critical sections have been coded to be as short as possible.

Effect on Runtime Performance

Salvo User Manual

The runtime length of a Salvo service — and hence the runtime
length of a critical section!%7 in Salvo's code — can only be obtained

105 An example of one of Salvo's global variables is the pointer to the head of the
queue of delayed tasks. If a mainline Salvo service is in the process of making
changes to the head of this queue and an interrupt occurs which calls a Salvo
service that changes the head of this queue, the result will be unpredictable
and will lead to a malfunction of the application. Therefore all interrupt-level
calls to Salvo services must be suppressed while any Salvo service is making
any changes to a Salvo global variable.

106 A compiler-specific hook might include the weak keyword when the compiler
supports this feature.

Chapter 9 « Performance 413

through measurement in an actual application.!?® Some Salvo ser-
vices have very short critical sections. Some even have no critical
sections. Yet others can potentially have very long critical sections
(e.g. when a low-priority task must be enqueued into the eligible
queue where several higher-priority tasks are already eligible). To
the Salvo user, the main area of concern here is "How long does
Salvo disable my interrupts?”, as this can adversely affect on-
board peripherals that are used in an interrupt-driven manner.1% As
you will see below, Salvo can be configured for zero interrupt la-
tency for any desired interrupt source.

We will now examine various scenarios for the coding of the inter-
rupt-disabling hooks

Controlling Interrupts Globally

414

The most general and safest configuration for the user interrupt
hooks is for the hooks to disable interrupts globally during a criti-
cal section. This is the default for the hooks contained in all Salvo
library builds where the target architecture has a single, consistent
method of disabling and enabling global interrupts.

voi d OSDi sabl eHook (void)

__disable_interrupt();

}
voi d OSEnabl eHook (void)
{
__enable_interrupt();
}

Listing 54: Most general configuration for Salvo's
interrupt hooks.

The advantage of this approach is that it is safe for all application.
With the hooks defined as shown in Listing 54, any Salvo service
can be called from any interrupt without fear of corrupting Salvo's
global variables. That's why this is the default for all Salvo librar-
ies.

107 Fora given Salvo service, the runtime length of the critical section contained

therein cannot exceed the runtime length of the service itself.

This is due in no small part to the wide range of Salvo configuration options
and their effect on the runtime performance of the Salvo code. Its is also due
to the priority-queue-based priority-resolution algorithms used in Salvo.

For example, an interrupt-driven single-byte-buffer asynchronous serial
receiver operating at 115200,N,8,1 cannot tolerate its interrupts being disabled
for longer than 87ps or it risks losing incoming characters.

108

109

Chapter 9 » Performance Salvo User Manual

The disadvantage of this approach is that all interrupt sources are
disabled while Salvo is in a critical section, even if said interrupts
do not call Salvo services. Clearly, this non-targeted approach to
controlling interrupts is not well-suited to high-performance, inter-
rupt-driven Salvo applications, due to the substantially non-zero
interrupt latencies imposed on the application.

Controlling Interrupts Individually

Salvo User Manual

For better performance from interrupt-driven peripherals, individ-
ual control of interrupts during Salvo's critical sections is recom-
mended. With this approach, only those interrupt sources which
themselves call Salvo services need to be disabled during critical
sections. Since this approach is target-specific, it is best illustrated
by example.

voi d OSDi sabl eHook (void)

{ | E2 &= ~URXI E1;
TBCCTL6 &= ~CCl E;

}

voi d OSEnabl eHook (void)

{ | E2 | = URXIEL;

} TBCCTL6 | = CCl E;

Chapter 9 « Performance 415

416

#pragma vect or =USART1RX_VECTOR
__interrupt void I SRRx1 (void)

USART_UART1 i nchar();
GSSi gnal Sem(SEM CvD_CHAR _P) ;
__low power _node_of f_on_exit();

}

#pragma vect or =TI MERB1_VECTOR
__interrupt void | SRTi nerBl (void)

{
switch(__even_in_range(TBIV, 14))
{
case 0x0C:
TBCCR6 += Tl MER _TI CKS_RELCQAD;
CSTiner () ;
__low _power _node_of f_on_exit();
br eak;
def aul t:
fat al (FATAL_ERROR_UNUSED | SR) ;
br eak;
}
}

Listing 55: Application-specific configuration for Salvo's
interrupt hooks. Relevant ISRs also shown. Target is
TI's MSP430FG4619.

In the Salvo application associated with the interrupt hooks of
Listing 55, two ISRs call Salvo services: | SRRx1() calls OsSi g-
nal Sem() when a valid incoming character has been received via
USARTI1 and put into a buffer, and I SRTi merB1()110 calls
OSTi ner () at a period rate. Since these are the only interrupts that
calls Salvo services, these are the only interrupt sources that must
be disabled during Salvo's critical sections. Therefore we see that
OSDi sabl eHook() disables USART1 Rx interrupt generation and
TimerB6 interrupt generation, and OSEnabl eHook() re-enables the
same.

Note In this example it's assumed that interrupts are globally en-
abled at all times, and are not controlled by Salvo.

The net effect of the hooks in this example is that other interrupt
sources operate with zero interrupt latency because Salvo does not
disable global interrupts or the individual interrupt sources, as
there is no need to. Thus, performance is maximized with these
other interrupt-driven peripherals.

110 Op the MSP430FG4619, the TimerB1 ISR handles interrupts for Timers B1
through B6, based on the Timer B Interrupt Vector (TBIV).

Chapter 9 » Performance Salvo User Manual

Warning Failure in the interrupt hooks to disable an interrupt
source that calls a Salvo service will inevitably lead to runtime
problems in a Salvo application due to the unavoidable corruption
of global variables. Therefore it's important to keep track of which
Salvo services are called from ISRs, and configure the interrupt
hooks accordingly.

Tip There is no limit to how many different interrupt sources can
be controlled by the interrupt hooks. Just write OSDi sabl eHook()
and OSEnabl eHook() accordingly.

Avoiding Interrupt Control Altogether

Salvo User Manual

Strange as it may seem, there are Salvo applications that do not
require any control of interrupts. They include:

* Salvo applications built on microcontrollers that
do not have interrupts (e.g. Microchip
PIC12F509).

» Salvo applications that do not use services that
are traditionally called from an ISR (like Salvo's
timer).

* Salvo applications that cannot tolerate any
interrupt latency yet, wish to call one or more
Salvo services from an ISR.

In the first two cases above the interrupt hooks need only be rede-
fined as shown in Listing 56.

voi d OSDi sabl eHook (void)
{

}

voi d OSEnabl eHook (void)
{

}

Listing 56: Interrupt hooks for applications that do not
call Salvo services from any interrupts.

Here, Salvo's critical sections do not involve any change to the in-
terrupt status of the target microcontroller. If the target's Salvo
context switcher (see Context Switcher, above) has zero interrupt

Chapter 9 « Performance 417

418

latency as well, then Salvo's total contribution to overall interrupt
latency is zero for all interrupt sources.

In the case where a user wishes to call a Salvo service from an in-
terrupt, yet cannot tolerate any interrupt latency on that interrupt
source due to Salvo, then a slightly indirect approach is required.

Tip This situation can arise for example in targets that do not have
vectored interrupts, or in targets where a single interrupt vector
services several interrupt sources.

In this situation, Salvo's interrupt hooks do not disable the source
of interrupt that would normally call the Salvo service. Instead, the
user must create a semaphore that is used to pass information up
from the ISR to the main loop of the Salvo application:

int min (void)

{

while (1) {
i f (Hi ghPriol SRDat aReady == 1) {
G EH = 0;
Hi ghPri ol SRDat aReady = O;
G EH = 1;
GsSSi gnal Bi nSen{ Hl GH_PRI O_| SR_DATA READY_P);

}
GSSched() ;
}
}

Listing 57: Passing interrupt activity up from an ISR to
call a Salvo service without a corresponding interrupt
hook. Target is Microchip PIC18F452.

In Listing 57, a Salvo application built for the Microchip
PIC18F452 passes information up from a high-priority ISR!!! to
ultimately cause a Salvo binary semaphore to be signaled. It does
this simply by setting a semaphore (H ghPri ol SRDat aReady in
this example) inside the high-priority ISR when event signaling is
required. In the application's mai n() loop, this semaphore is tested
prior to calling the scheduler and if set, is reset with high-priority
interrupts disabled,!!2 and finally OSSi gnal Bi nSen() is called.

1 The PICIS8 architecture has just two interrupt vectors — the low-priority

interrupt vector and the high-priority interrupt vector. Each vector has its own
individual interrupt enable bit (3 EL and G EH, respectively).

Note that if the semaphore can be set and reset atomically, the control of the
G EH bit in this example is unnecessary. It is shown, however, to remind the
reader for the general requirement of protecting global variables.

112

Chapter 9 » Performance Salvo User Manual

Salvo User Manual

This approach has a very substantial advantage in that the applica-
tion can run without Salvo's critical sections affecting interrupts.
Yet the runtime performance of signaling a Salvo event is virtually
indistinguishable from that of an application built with the inter-
rupt disabled (and its attendant non-zero interrupt latency). This is
because Salvo's scheduler processes events all at once, and so it
makes little difference as to whether an event is signaled at an arbi-
trary time!!3 or immediately before the scheduler is called.

The disadvantages of this approach are:

* Depending on target architecture, the interrupt
source may still need to be disabled, albeit for a
very short time (just two instruction cycles in
the example of Listing 57 above).

* Event processing no longer occurs in the order
that the interrupt occurred, but rather in the
order that the event is signaled in the user code
when the semaphore is found to have been set.
This mainly affects multiple tasks waiting on a
single event.

* This involves polling the semaphore prior to
every invocation of Salvo scheduler. This is
contrary to the purely event-driven (i.e. no
polling) operation of Salvo.

For most applications, these disadvantages are outweighed by the
advantage of near-zero interrupt latency while still effectively call-
ing a Salvo service from an interrupt.

Note Depending on the target architecture, the (albeit short) dis-
abling and re-enabling of interrupts to protect the semaphore (a
global variable) as shown in Listing 57 above can be avoided if the
semaphore is set (in the ISR) and reset (after the semaphore test in
mai n()) atomically. In this case, the total interrupt latency remains
0 cycles — highly desirable. Inspection of the assembly code gener-
ated by the compiler will prove whether the desired operations are
atomic.

Tip Multiple semaphores from multiple interrupt sources can be
combined in this approach. Ideally, each semaphore should be im-
plemented as a single-bit-wide bitfield in C, inside of a structure

113 When signaling an event from an ISR, the signaling can happen at any time

except during a critical section (because said interrupt is disabled during that
critical section).

Chapter 9 « Performance 419

consisting of a union of all the bits (e.g. in an i nt) and of the indi-
vidual bits. Therefore all the bits can be tested once (is the i nt
non-zero?), and if non-zero, the individual bits can be tested and
cleared individually. This minimizes the number of instruction cy-
cles spent polling for a change in the semaphores' status, thereby
improving runtime performance and minimizing the use of polling
(which is undesirable).

Side Effects of Interrupt Hooks

420

Salvo's interrupt hooks are called from all Salvo services that con-
tain critical sections. This means that many Salvo services that can
be called from ISRs will call the interrupt hooks while in the 1SR,
with attendant changes to the interrupt enable bit(s) of the target.

For the default hook for most targets (see Listing 56 above), this
means that interrupts will be enabled at the end of the Salvo ser-
vice that is called in the ISR. Therefore the interrupts controlled by
the interrupt hooks will be enabled prior to the end of the ISR. This
could lead to nested interrupts where none are desired, etc.

While this is not usually a problem, it can be solved by explicitly

flagging being in an ISR and basing the interrupt hook actions on
the flag, as shown in Listing 58:

Chapter 9 » Performance Salvo User Manual

static unsigned int InlSR = 0;

void entering_isr (void)

{
InISR = 1;

}
void |l eaving_isr (void)

Inl SR = 0;
}

voi d OSDi sabl eHook (void)

if (InISR == 0) {
__disable_interrupt();
}
}

voi d OSEnabl eHook (void)

if (InlSR == 0) {
__enable_interrupt();

}
}

Listing 58: Interrupt hooks to avoid interrupt nesting.

With this method, any ISR that calls Salvo services begins with
entering_isr() and ends with | eavi ng_i sr (). This completely
avoids nested interrupts. This user flexibility — no need to change
any Salvo code here — is the reason for the introduction of hook
functions in Salvo 4.

Tip If the compiler or target provides an automatic means of de-
tecting that code is executing at the ISR / foreground level, this can
be used to your advantage in the interrupt hooks.

The Fallacy of Avoiding Critical Sections at the Interrupt Level

Salvo User Manual

Some inexperienced programmers might fall for the notion that
preempting a critical section can be avoided by testing for a condi-
tion inside an ISR's (i.e. in the foreground) code instead of by dis-
abling the ISR in the critical section in mainline (i.e. in the
background) code. The idea is to forego all interrupt control in
Salvo's critical sections, in favor of setting a flag, which can then
be tested in the ISR to avoid call a Salvo service during the critical
section. While the test will in fact work, the rest will not, as there
IS no way in the ISR to know when the critical section will com-
plete. And since the critical section does not progress while in the

Chapter 9 « Performance 421

User Hooks

ISR, there is in fact no way to know when the ISR can call the
Salvo service. In effect, the critical section is being blocked by the
ISR, which is the opposite of what is desired.

Therefore the prescribed methods above for configuring Salvo's
interrupt hooks for critical sections must be followed.

Salvo has four hook services that can be redefined by the user to
suit the chosen target and application. They are:

e Interrupt hooks: OSDi sabl eHook(),
CSEnabl eHook()

* Watchdog hook: GSCI r WDTHook ()
* Idling hook: OSI dI i ngHook()

Tip Since each user hook is defined in its own source code mod-
ule, state information can be combined with a hook function by
declaring a local static variable in the module, and referencing the
variable from the hook function(s).

OSDisableHook(), OSEnableHook()

OSCIrWDTHook()

422

The use of the interrupt hooks is covered above in Interrupts.

The watchdog hook provides a simple and integrated way to clear
an application's watchdog timer from within the Salvo portion of
your application. OSCl r WDTHook() 1is called each time Salvo's
scheduler is called.

Warning osd r WTHook() is not a failsafe means of properly
maintaining a software or hardware watchdog. It is provided as a
simple scheme that is useful and applicable to many applications,
especially in the early stages of their software development. If a
more sophisticated approach to watchdog management is required,
the user can either override the hook (by defining it as a dummy
function), expand the hook (by replacing the default hook with a
more sophisticated version), or augmenting the hook with other
watchdog-related application code.

Chapter 9 » Performance Salvo User Manual

void OSC rWDTHook (void)

WDTCTL = (WDTCTL & OxOOFF) | WDTPW | WDTCNTCL;
}

Listing 59: Example watchdog hook. Target is Tl's
MSP430F1612.

In Listing 59 the watchdog hook clears the target's watchdog timer
without any other changes.

Salvo User Manual Chapter 9 « Performance 423

424 Chapter 9 » Performance Salvo User Manual

Chapter 10 « Porting

Salvo User Manual

With its minimal RAM requirements, small code size and high per-
formance, Salvo is an appealing RTOS for use on just about any
processor. Even if it hasn't been ported to your processor and/or
compiler, you can probably do the port in a day or two.

If you are interested in porting Salvo to a new target processor

and/or compiler, please contact Pumpkin for more details. A com-
prehensive Salvo Porting Manual is available.

425

426 Chapter 10 « Porting Salvo User Manual

Chapter 11 « Tips, Tricks and
Troubleshooting

Introduction

If you're having trouble getting your code to work properly with
Salvo, here are some suggestions on how to solve your problem.

* +Read and re-read all the relevant portions of
this manual.

» e« Review the example programs in this manual
and in the Salvo distribution. You may find
something that is very similar to what you are
trying to do.

* « Examine the postprocessed output of your
compiler, both in C and in assembly language.
Output listings contain a wealth of useful
information.

* + Examine any map files generated by your
compiler. These files have information
containing the location of Salvo routines and
variables and their sizes, the calling trees, etc.

» < Use the error codes returned by the user
services to verify that the desired Salvo actions
are really happening.

» < [fyour application has the RAM and ROM to
support it, use OSRpt () to examine the status of
the system.

* < If you have access to run-time debugging
tools, step through the code in question while
monitoring important variables.

» « Examine the Salvo source code — it may
contain information not presented elsewhere.

Most importantly, examine your assumptions! Don't assume, for

example, that a call to OSStart Task() is working until you've
confirmed that it is in fact returning an error code of OSNCERR.

Salvo User Manual 427

Compile-Time Troubleshooting

I'm just starting, and I'm getting lots of errors.

Be sure to place

#i ncl ude <sal vo. h>

at the start of each source file that uses Salvo.

My compiler can't find salvo.h.

Make sure that your compiler's include search paths contain the
Punpki n\ Sal vo\ I nc directory.

My compiler can't find salvocfg.h.

Each project needs a project-specific sal vocf g. h. Create one from
scratch or copy one from another project. sal vocfg. h normally
resides in your current working directory — you may need to in-
struct your compiler to explicitly search this directory.

If you are using a Salvo freeware library, copy its sal vocfg. h to
your working directory and edit it as needed.

My compiler can't find certain target-specific header files.

This problem may arise if your compiler has no generic target
processor header file that uses defined symbols to include the ap-
propriate target-specific header file. The solution is to include the
target-specific header file in your sal vocf g. h.

My compiler can't locate a particular Salvo service.

You must either include the Salvo files in your project or link to a
Salvo library. See your compiler's Salvo Compiler Reference
Manual for more information.

428 Chapter 11 « Tips, Tricks and Troubleshooting Salvo User Manual

My compiler has issued an "undefined symbol" error for a
context-switching label that I've defined properly.
This may be happening if you have the context-switching label in
unreachable code and your compiler has removed the unreachable

code through optimization. For example, OS_Del ay() below is un-
reachable because of an innocuous error:

if (speed = 0) { // Error — should be "=="

out PYWM = O;
}
el se
{
out PWM = 1;
OS_Del ay(speed);
}

and your compiler may be unable to find label as a result. Change
your code to make the context switch reachable!!4 and the error
should disappear.

My compiler is saying something about OSldlingHook.

The configuration options in your sal vocfg. h may be set to en-
able the user hook function, OSI dl i ngHook(). In a source-code
build, you must define a function with this name. For example,

voi d OSl dl i ngHook(voi d)
{

}

is a null (i.e. "do-nothing") function that satisfies this requirement.

My compiler has no command-line tools. Can I still build a
library?
You can build a library without access to a command-line librar-
ian'!> by creating a project with all of the Salvo source files, and

setting the output type of your compiler to be a library file. You
will also need a special sal vocf g. h file that looks something like

this:

114 Useif (speed = = 0) instead ofi f (speed = 0).

115 CodeWarrior v3.1 has no command-line tools, but can build a library from a
project.

Salvo User Manual Chapter 11 « Tips, Tricks and Troubleshooting 429

This works as follows: when you set OSUSE_LI BRARY to TRUE in
your project's header file sal vocf g. h, the library header file sal -
vol i b. h will be included in your project. By defining the library
type, configuration and variant symbols T, C and V, respectively,
and by setting OSMAKE_LI BRARY to TRUE, the Salvo source code is

#def i ne OSUSE_LI| BRARY TRUE

#defi ne OSLI BRARY_TYPE cSL
#defi ne OSLI BRARY_CONFIG OST
#def i ne OSLI BRARY_VARI ANT OSNONE

OSMVAKE_LI BRARY

#defi ne OSMAKE_LI BRARY TRUE

configured for library building.

This method is inefficient for building multiple libraries. For that,

refer to Salvo's makefiles.

Run-Time Troubleshooting

Nothing's happening.

Did you remember to:

If you've done all these things and your application still doesn't ap-
pear to work, you may have a configuration problem (e.g. parts of
your sal vocf g. h do not match those used to create the freeware

«Callosinit()?

» Set OSCOWPI LER, OSTARGET and OSTASKS
correctly in your sal vocf g. h?

* Create at least one task with

OSCr eat eTask() ?

* Choose valid task pointers and task priorities
that are within the allowed range?

* Call the Salvo scheduler 0SSched() from
inside an infinite loop?

* Task-switch inside each task body with a call
to OS_Vi el d(), OS_Del ay(), OS5 Wi t Xyz() or
another context-switcher?

* Structure each task with its body in an infinite
loop?

library you're using) or an altogether different problem.

430 Chapter 11 « Tips, Tricks and Troubleshooting

Salvo User Manual

Also, make sure that you've done a full recompile ("re-make"),
and, if you're using some sort of integrated development environ-
ment, be sure that you've downloaded your latest compiled code
and reset the processor before running the new code.

It only works if | single-step through my program.

This is usually indicative of a problem with interrupts or the
watchdog timer. Since both are usually disabled when single-
stepping with an in-circuit emulator (ICE) or in-circuit debugger
(ICD), your application may work in this mode but not in run
mode.

If your application uses interrupts, be sure that any interrupt flags
are cleared before leaving the ISR. When interrupt sources share
the same interrupt vector, failing to clear the interrupt flag will re-
sult in an endless loop of interrupt services. In general, vectored
interrupts do not have interrupt flags associated with them.

Many target processors enable the watchdog timer by default. If
you fail to reset it regularly, your application will appear to be con-
stantly resetting itself. Depending on the watchdog timer's timeout
period, this may be a very short (e.g. < 1s) period. Either disable
the watchdog timer or use Salvo's OSCLEAR_WATCHDOG_TI MER()

configuration option.

Note All Salvo projects in the distributions are compiled with
OSCLEAR_WATCHDOG TI MER() defined to reset the watchdog timer.
This way, even if you forget to disable the watchdog timer!!¢ in
your development environment, the application should still work.

It still doesn't work. How should | begin debugging?

If you have the ability to set breakpoints, a quick way to verify that
your application is multitasking is to re-load your executable (e.g.
hex) code, place breakpoints at the entry of each task, reset the
processor, and Run. If you have successfully initialized Salvo and
created tasks (check the error return codes for OSInit() and
OSCr eat eTask()), the first call to OSSched() should eventually
result in the processor halting at one of those breakpoints.

116 In the Microchip development tools family, the PICMASTER and the
MPLAB-ICE disable the watchdog timer by default, but the MPLAB-ICD
enables it by default.

Salvo User Manual Chapter 11 « Tips, Tricks and Troubleshooting 431

If your application makes it this far, Salvo's internals are probably
working correctly, and your problem may have to do with im-
proper task structure and/or use of Salvo's context-switching ser-
vices. Improper control of interrupts and incorrectly-written
interrupt service routines (ISRs) are also a common problem.

If you do not have hardware debugging support, use simple meth-
ods (like turning an LED on or off from within a task) to trace a
path through your program's execution. On small, embedded sys-
tems, "printf-style debugging" may not be a viable option, or
may introduce other errors (like stack overflow) that will only frus-
trate your attempts to get at the root of the problem.

My program's behavior still doesn't make any sense.

Compiler Issues

You may be experiencing unintended interaction with your proces-
sor's watchdog timer. This can occur if you've compiled your ap-
plication with the target processor's default (programmable)
configuration, which may enable the watchdog timer. You can
avoid this problem by using the OSCLEAR_WATCHDOG_TI MER() con-
figuration option in your sal vocf g. h configuration file. By defin-
ing this configuration option to be your target processor's
watchdog-clearing instruction, the Salvo scheduler will clear the
watchdog each time it's called, and prevent watchdog timeouts.

Where can | get a free C compiler?

Borland's C++ compilers can be had for free at:

e http://www.borland.com/beppbuilder/freecompil
er/

They can be used to create 16- and 32-bit PC (x86) applications.
HI-TECH software also offers free C compilers:

* http://www.htsoft.com/
Pacific C can be used to create PC (x86) applications, and PICC
Lite can be used on the Microchip PIC16C84 family.

432 Chapter 11 « Tips, Tricks and Troubleshooting Salvo User Manual

http://www.borland.com/bcppbuilder/freecompiler/
http://www.borland.com/bcppbuilder/freecompiler/
http://www.htsoft.com/

Where can | get a free make utility?

You can download the GNU make utility's source code from

e http://www.gnu.org/order/ftp.html

A precompiled DOS/Win32 version is available at

e fip://ftp.simtel.net/pub/simtelnet/gnu/djgpp/v2e
nuw/

Look for the mak*. zi p files. This is a full-featured, UNIX-like
make that works well in the Win32 environment.

Where can | get a Linux/Unix-like shell for my Windows
PC?

You can download the Cygwin bash shell from RedHat at

e http://sources.redhat.com/cyegwin/

A full installation will contain GNU make and many other utilities.
It works best on Windows NT /2000 / XP systems. If you have the
Salvo Pro, this shell can be used to generate all of Salvo's libraries
on a Windows PC.

My compiler behaves strangely when I'm compiling from
the DOS command line, e.g. "This program has
performed an illegal operation and will be terminated.”

The DOS command line is limited to a maximum of 126 charac-
ters. If you invoke your compiler with a longer command line, you
may experience very unpredictable results. The solution is to reor-
ganize your project. Consult your compiler's user's manual for
more information.

Another possibility is that the environment size on your Win-
dows/DOS PC is inadequate for the DOS program(s) you are run-
ning. If you run more than one DOS window under Windows and
the environment size is marginal, you may also encounter this
problem. You can fix this by adding the shell command to your
config.sys file, e.g.:

shell = c:\\windows\command.com /p /e:nnnnn

Salvo User Manual Chapter 11 « Tips, Tricks and Troubleshooting 433

http://www.gnu.org/order/ftp.html
ftp://ftp.simtel.net/pub/simtelnet/gnu/djgpp/v2gnu/
ftp://ftp.simtel.net/pub/simtelnet/gnu/djgpp/v2gnu/
http://sources.redhat.com/cygwin/

where nnnnn is the size of the environment, in bytes, from 160 to
32768. The default is 256. See your DOS manual for more infor-
mation on the DOS command interpreter and the shell command.

My compiler is issuing redeclaration errors when |
compile my program with Salvo's source files.

If you create your application by compiling and then linking your
files and Salvo's source files all at once, be sure that none of your
source files have the same name as any Salvo source file.

HI-TECH PICC Compiler

Salvo has been thoroughly tested with PICC and it is unlikely that
you will encounter any problems that are due directly to compiling
and linking the Salvo code to your application. However, since it is
often difficult to pinpoint the exact cause of a compile-and-link
error, you should follow the tips below if you encounter difficul-
ties.

Running HPDPIC under Windows 2000 Pro

Some people like to run HPDPIC!!7 in an 80x50 "DOS window"
under Windows. Do the following:

e e gtart HPDPIC

* e right-click on the menu bar and select
Properties

* e select Layout

e+ choose a Window Size of Width:80 and
Height:50

e e select OK, choose "Save properties for
future windows with same title", select OK

« «exit HPDPIC (alt-Q)

e e restart HPDPIC

You may want to choose a different font or font size (under Prop-
erties — Font) that is better suited to a larger DOS window. If
you are having problems with your mouse, instead of changing the
window size settings in the procedure above, deselect the Quick-
Edit mode under Properties — Options.

117 The HI-TECH Integrated Development Environment (IDE) for PICC.

434 Chapter 11 « Tips, Tricks and Troubleshooting Salvo User Manual

Setting PICC Error/Warning Format under Windows 2000 Pro
In Windows 2000 Pro, do either:

* My Computer — Properties — Advanced —
Environment Variables ...

or

e Start — Settings — Control Panel —
System — Advanced — Environment
Variables ...

then in User Variables for Userid do:

 New — Variable, enter HTC_ERR_FORMAT
b OK’
Variable Value, enter Error[] %f %l : %s , OK

and

« New — Variable, enter
HTC_WARN_FORMAT , OK, Variable
Value, enter Warning[] %f %l : %s , OK

Then log off and log back on for these changes to take effect. You
can see that they are in force by running the MS-DOS Prompt
(C:\ W NNT\ syst enB2\ command. com) and entering the SET com-
mand. Type EXI T to leave the MS-DOS command prompt.

Note that you must log off and log back on for these changes to
take effect. If you change the environment variables without log-
ging off and back on, MPLAB may behave strangely, like do noth-
ing when you click on the error/warning message.

Linker reports fixup errors

If the PICC linker is unable to place variables in RAM, it will re-
port fixup errors. Interpreting these errors can be very difficult.
You must successfully place all variables in RAM before attempt-
ing to interpret any other PICC link errors. If you're having diffi-
culty, the simplest thing is to place all of Salvo's variables in an
unused bank (e.g. Bank 3 on a PIC16C77). Then, by using PICC's
bank directives you can move your own variables around until they
all fit. A thorough understanding of the bank directives is required,
especially when banked (or unbanked) pointers to banked (or un-

Salvo User Manual Chapter 11 « Tips, Tricks and Troubleshooting 435

banked) objects are involved. Consult the PICC manual for more
information, or the Salvo source code for examples of using the
bank directives.

See also "Placing Variables in RAM", below.

Placing variables in RAM

Because PICs have generally very little RAM, as your application
grows it's likely that you will need to explicitly manage where
variables are located in RAM. If your Salvo application has more
than a few tasks and events, it's likely that you will want to place
the Salvo data structures (e.g. tcbs and ecbs) and other variables in
a RAM memory bank other than Bank 0, the default bank for auto
variables and parameters. To do this, use the OSLOC_Xyz configura-
tion options and recompile your code. The OSLOC_Xyz configura-
tion words options not all be the same — for example you can place
ecbs in Bank 2, and tcbs in Bank 3.

If you need to use more than one bank to place Salvo's variables in
RAM, for best performance place them in bank pairs — e.g. in
Banks 2 and 3 only.

Note Your Salvo code will be smallest if you place all of your
Salvo variables in Bank 1 and/or Bank 0. PICC places all auto
variables in Bank 0. Bank switching is minimized by placing
Salvo's variables in the same bank as the auto variables.

Link errors when working with libraries

If you get the following error:

HLI NK. EXE: : Can't open (error): : No such file or
directory

while working with multiple projects and libraries, it may go away
be simply re-making the project.

Avoiding absolute file pathnames

Use HPDPIC's Abs/Rel path feature when adding source and in-
clude files to your project. You'll be able to enter path names much
more quickly.

436 Chapter 11 « Tips, Tricks and Troubleshooting Salvo User Manual

Compiled code doesn't work

Make sure you're using the latest version of PICC, including any
patches that are available. Check http://www.htsoft.com for ver-
sion updates.

PIC17CXXX pointer passing bugs

On the 17C756, in certain cases PICC failed to correctly derefer-
ence pointers passed as parameters. This affected Salvo's queueing
routines.

Note This was fixed in PICC v7.84.

While() statements and context switches

You may encounter a subtle problem if you use a whi | e() state-
ment immediately following a Salvo context switch, e.g.

C5_Del ay(5);
while (rxCount) {

if rxCount is a banked variable, after optimization the compiler
may fail to set the register page bits properly when accessing the
variable. This will probably lead to incorrect results. A simple
workaround is to add the line

rxCount = rxCount;

between the context switch and the whi | e() statement. This will
"force" the proper RP bits.

Note This was fixed in PICC v7.85.

Library generation in HPDPIC

If you are using HPDPIC projects to compile libraries for use with
PIC processors with different numbers of ROM and RAM banks
(e.g. PIC16C61 and PIC16C77), you may encounter an error when
linking your application(s) to one of those libraries. This is because
the PICC preprocessor CPP. EXE may be fed the wrong processor-
selection argument if you're switching between projects with dif-
ferent processors.

Salvo User Manual Chapter 11 « Tips, Tricks and Troubleshooting 437

http://www.htsoft.com/

The solution is to first load a project whose output is a . COD file,
and then load a second project destined for the same type of proc-
essor and whose output is a library. Make the library (i.e. make the
second project), then re-load the first project, and make it, linking
to the previously generated library. By loading the first project you
correctly set the processor type for the second project.

Note This was fixed in PICC v7.86.

Problems banking Salvo variables on 12-bit devices

On the 12-bit devices (e.g. PIC16C57), Salvo applications don't
work when Salvo variables are placed in a RAM bank other than
Bank 0. The solution is to upgrade to the latest version of the com-
piler.

Note This was fixed in PICC v7.86PLA4.

Working with Salvo messages

Salvo messages are passed via void pointers. Use the predefined
type definition (t ypedef) OSt ypeMsgP when declaring pointers to
messages. This type is defined by default as void *. In PICC a
pointer to a void object points only to RAM. That's fine if your
Salvo application has only messages in RAM. But what if you
want to send messages which point to objects in ROM (e.g. a string
like "STOP' or "GO") as well as RAM? By changing
OSMESSAGE_TYPE to const messages can now point to objects in
RAM or ROM. This may add 1 extra byte to the size of each event
control block (ecb).

Note OSMESSAGE TYPE must be set to const in your sal -
vocf g. h if you are using messages and/or message queues and you
are accessing message data that's in ROM.

See also Working with Message Pointers in this chapter.

Adding OSTimer() to an Interrupt Service Routine

If you are linking to a freeware or custom Salvo library, or if
timer.c is one of the nodes in your project, and you call
OSTi mer () from within an interrupt routine, PICC automatically

438 Chapter 11 « Tips, Tricks and Troubleshooting Salvo User Manual

assumes the worst case with regard to register usage within
OSTi mer () and the functions it may call, and automatically adds a
large number of register save and restores to your interrupt routine.
This makes it large and slow, which is undesirable.

The solution is to change the organization of your source files. In-
stead of compiling ti mer . ¢ into a linkable object module, include
it in your source file which contains the call to OSTi mer (). For
example, your mai n. ¢ might now look like this:

#i nclude "timer.c"
void interrupt intVector(void)

/* handl e various interrupts */

/* this happens every 10ns. */
if (TMRLIF) {
/* must clear TMR2 interrupt flag. */
TMRLIF = O;

/* reload TMRL while it's stopped. */
TMRION = O;

TMRL -= TMR1_RELOAD;

TMRION = 1;

OSTiner () ;
}
}

By including ti mer . ¢ in the same source code file as the interrupt
routine, PICC is able to deduce exactly which temporary registers
must be saved when the interrupt occurs and restored thereafter,
instead of assuming the worst case and saving and restoring all of
them. The resultant savings in code space and improvement in in-
terrupt execution speed are substantial. If your application uses the
Salvo timer, this reorganization is highly recommended.

After including timer.c in your interrupt source code file, you
may want to recompile your custom Salvo library if you are using
one. The Salvo functions will still be able to reference the required
queueing functions — they've simply moved from the library to
your object modules.

Note You may need to add the switch —I Punpki n\ Sal vo\ Src to
PICC's command line in order for the compiler and linker to find
the ti mer. c source file.

Salvo User Manual Chapter 11 « Tips, Tricks and Troubleshooting 439

Using the interrupt_level pragma

Whenever you call any Salvo services from both inside an interrupt
and from background code (e.g. from within a task), you must in-
sert the following PICC directive prior to your interrupt routine:

#pragma interrupt _level O

This alerts the PICC compiler to look for multiple call graphs of
functions called from both mainline and interrupt code. This is
necessary in order to preserve parameters and auto variables.

Note Placing this PICC pragma before an interrupt routine has no
deleterious effects even when multiple call graphs are not gener-
ated. Therefore it's recommended that you always do this if you
call any functions from within your interrupt routine.

HI-TECH V8C Compiler

Simulators

440

Note Support for the V8C compiler has been discontinued as of
2005.

The initial Salvo port to the VAutomation V8-uRISC™ requires an
updated V8 assembler, ht - v8\ bi n\ asv8. exe, dated 6-21-2001 or
later, along with v7.84 of the compiler. Many of the test programs
(e.g. \'sal vo\test\t41\sysl) use printf() for run-time output
for use with the simulators.

Note Since the HI-TECH V8C compiler and its HPDVS8 IDE are
substantially similar in operation to HI-TECH's PICC compilers
and HPDPIC IDE, refer to HI-TECH PICC Compiler, above, for
related information.

Two simulators for the V8-uRISC™ are available — one from HI-
TECH (sinv8.exe) and one from VAutomation (v8si m exe).
Salvo applications run on both.

Chapter 11 « Tips, Tricks and Troubleshooting Salvo User Manual

HI-TECH 8051C Compiler

Problems with static initialization and small and medium memory

models.

IAR PICC Compiler

When using the small or medium memory models, the compiler
issues the error Can't generate code for this expression
when faced with the declaration

unsi gned int counter = O;

This occurs because initialized objects are in ROM for these mod-
els, and therefore cannot be changed. The solution is to either de-
clare the variable as near, or explicitly initialize it elsewhere in
your code.

Target-specific header files

Interrupts

The IAR PICC compiler requires a target-specific header file that
contains symbols and addresses for the PICmicro special function
registers (SFRs). These files are located in the i nc subdirectory of
the compiler's distribution, and are target-specific.

For example, \iar\ew23\picnicrolinc\iol7c756.h 1is the
header file for the 17C756 PICmicro. By placing

#i ncl ude "i 017C756. h"

in your source files, the compiler will be able to correctly resolve
certain symbols used throughout the Salvo source code.

The vector for each interrupt must be properly defined. Use the
compiler's vector pragma like this:

#pragma vect or =0x10
__interrupt void intVector(void)

TOIF = 0;
TMRO -= TMRO_RELOQAD;
CSTiner () ;

Salvo User Manual Chapter 11 » Tips, Tricks and Troubleshooting 441

}

This will place the TMRO interrupt vector at 0x10 on a
PIC17C756.

Mix Power C Compiler

In contrast to usual IBM C call stack programming, which has
positive offsets from BP for function arguments and negative off-
sets from BP for local variables, the Power C compiler uses posi-
tive offsets from BP to access both local variables and function
arguments. This affects the Salvo context switcher for Power C to
the degree that it will only function correctly as long as the call
stack for the task is in its simplest form. The key to compiling
Salvo applications to run on the PC is to guarantee that each task
has the simplest possible Power C entry call stack.

Strict adherence to the Salvo requirement that only static local
variables be used in a task is required to avoid run-time errors. Ad-
ditionally, there are a few other innocuous things ("gotchas") that
the Power C programmer might do which violate Salvo's require-
ment that the call stack remain in its simplest form. Those that are
known are outlined below.

Required compile options

When compiling Salvo source code, using the following compile
options for PC. EXE:

[r-

12
/mm

Failure to use these options or to use other incompatible options
may prevent your Salvo executable from running properly.

Below is an example line from a makefile:

PCopts =/c /o /w /r- /2 /mm /id:Pumpkin\Salvo\lnc

Application crashes after adding long C source lines to a Salvo

task

442

If you have source code (e.g. a function with multiple parameters)
within a task that is too long to fit on a single line, you must use

Chapter 11 « Tips, Tricks and Troubleshooting Salvo User Manual

the '\' character to continue on the next line, even if it's not neces-
sary for a successful compile. This is because Mix Power C
changes the task's entry call stack to one that is incompatible with
Salvo's context switcher if the line is not continued with the '\
character. For example, the call to Di spLCD() below

void TaskMsg (void)
while (1) {

Di spLCD((char *) ((t_dispMsg *)nsgP)->str Top,
(char *) ((t_di spMsg *)nsgP)->strBot);
OS_Del ay((Cst ypeDel ay)
((t_dispMsg *)nmsgP) - >del ay);

}
}

will compile successfully, but it will cause the PC application to
crash when it runs TaskMsg() . By adding the "\' character to the
DispLCD() line. e.g.

Di spLCD((char *) ((t_dispMsg *)nsgP)->strTop, \
(char *) ((t_di spMsg *)nsgP)->strBot);

the problem is resolved.

Application crashes after adding complex expressions to a Salvo

task

Salvo User Manual

Mix Power C changes the task's entry call stack if the expressions
in a task exceed a certain level of complexity. For example, plac-
ing either

char = RxQ rxHead++];
or

(dummy = dunmmy);
inside a task will cause problems, whereas replacing them with

char = Rx{ rxHead];
r xHead++;

and

dunmy = dummy;

Chapter 11 » Tips, Tricks and Troubleshooting 443

will not.

Application crashes when compiling with /t option

Mix Power C changes the task's call entry stack when trace infor-
mation for the debugger is enabled via the compiler's /t option.
This change is incompatible with Salvo's context switcher for
Power C. Source code modules which contain Salvo tasks must not
be compiled with the /t option.

One way around this problem is to move functionality that does
not involve context switching out of the module the task is in and
into a separate source code module, and call it as an external func-
tion from within the task. A module that does not contain any
Salvo tasks can be compiled with the /t option, and hence de-
bugged using Mix Power Ctrace debugger.

Compiler crashes when using a make system

Make absolutely sure that your DOS command line does not ex-
ceed 127 characters in length. If it does, the results can be very un-
predictable. Simplify your directory structure to minimize
pathname lengths when invoking any of the Mix Power C executa-
bles (e.g. PCL. EXE).

Metrowerks CodeWarrior Compiler

Compiler has a fatal internal error when compiling your source

code

444

Ensure that you do no use duplicate labels in any single source
code file. This may occur unintentionally if you duplicate labels
for Salvo context-switching macros inside a single function. For
example,

void Taskl(void)
{

05_Del ay(1);
-

voi d TaskB(void)
{

Chapter 11 « Tips, Tricks and Troubleshooting Salvo User Manual

Microchip MPLAB

0S Del ay(1);
0s_Yiel d();
.

may cause a CodeWarrior exception because of the duplicate label
a in Task2(), whereas

void Taskl(void)
{

05_Del ay(1);
-

void Task2(void)
{

CS_Del ay(1);
0s_Yiel d();
.-

may not.

The Stack window shows nested interrupts

The MPLAB Stack window cannot differentiate between an inter-
rupt and an indirect function call. Because Salvo makes extensive
use of indirect function calls, you may be seeing a combination of
return addresses associated with interrupts and indirect function
call return addresses.

Controlling the Size of your Application

Salvo User Manual

The Salvo source code is contained in several files and is com-
prised of a large body of functions. Your application is unlikely to
use them all. If you compile and link the Salvo source files along
with your application's source files to form an executable program,
you may inadvertently end up with many unneeded Salvo func-
tions in your application. This may prevent you from fitting your
application into the ROM of your target processor.

Chapter 11 » Tips, Tricks and Troubleshooting 445

The solution is to compile the Salvo source files separately, and
combine them into a single library. You can then link your applica-
tion to this library in order to resolve all the external Salvo refer-
ences. Your compiler should extract only those functions that your
application actually uses in creating your executable application,
thus minimizing its size.

You must always recreate the Salvo library in its entirety whenever
you change any of its configuration options.

Refer to your compiler's documentation on how to create libraries
from source files, and how to link to those libraries when creating
an executable.

See Chapter 4 « Tutorial for more information on compiling your
Salvo application.

Working with Message Pointers

If you want to use messages as a means of intertask communica-
tions, you'll have to be comfortable using Salvo message pointers.
Salvo provides predefined type definitions (C t ypedef s) for work-
ing with message pointers. The following message pointer declara-
tions are equivalent:

CSt ypeMsg * nessagePoi nter;

and

CSt ypeMsgP nessagePoi nter;

but you should always use the latter to declare local or global mes-
sage pointer variables, both static and auto.

In general, Salvo message pointers are of type voi d *. However,
you should use the predefined types to avoid problems when a void
pointer is not correct for a message pointer. This occurs mainly
with processors that have banked RAM.

When passing an object that is not already a message pointer,
you'll need to typecast the object to a message pointer in order to
avoid a compiler error. The following two calls to OSSi gnal Msg()
are equivalent:

OsSi gnal Msg(MSGL_P, (OStypeMsg *) 1);

446 Chapter 11 « Tips, Tricks and Troubleshooting Salvo User Manual

and
GsSsi gnal Msg(MSGL_P, (CstypeMsgP) 1);

The typecast above is required because 1 is a constant, not a mes-
sage pointer. Here are some more examples of passing objects that
are not message pointers:

char letter = ‘c';
GsSi gnal Msg(MSG_CHAR VAR P, (CStypeMsgP) &l etter);

const char CARET = ‘/2';
GSSi gnal Msg(MSG_CHAR _CONST_P, (OstypeMsgP)
&CARET) ;

unsigned int * ptr;
OSSi gnal Msg(MSG_UI NT_P, (CstypeMsgP) ptr);

voi d Function(void);
GsSi gnal Msg(MSG_FN P, (OstypeMsgP) Function);

Once an object has been successfully passed via a message, you
will probably want to extract the object from the message via
OS_Wai t Msg().'"® When a task successfully waits a message,
Salvo copies the message pointer to a local message pointer (nsgP
below) of type OSt ypeMsgP. To use the contents of the message,
you'll need to properly typecast and dereference it. For the exam-
ples above, we have:

char: * (char *) nsgP

const char: * (const char *) nsgP
unsi gned int *: (unsigned int *) msgP
void * (void): (void * (void)) nsgP

Failing to properly typecast an object (e.g. using (char *) instead
of (const char *) when dereferencing a constant) will have un-
predictable results. Please see Salvo Application Note Error! Ref-
erence source not found. for more information on dereferencing
pointers.

NOTE When working with message pointers, it's very important
to ensure that Salvo's message pointer type OSt ypeMsgP is prop-
erly configured for the kinds of messages you wish to use. On most

118 An exception occurs when you are not interested in the contents of the

message, but only that it has arrived.

Salvo User Manual Chapter 11 » Tips, Tricks and Troubleshooting 447

targets, the default configuration of void * will suffice ... but
there are some exceptions.

For example, the HI-TECH PICC compiler requires 16 bits for
const char pointers, but only 8 bits for char pointers. Therefore
the Salvo code (whether in a library or in a source-code build)
must be configured to handle these larger pointers or else you will
encounter runtime errors.

448 Chapter 11 « Tips, Tricks and Troubleshooting Salvo User Manual

Appendix A « Recommended
Reading

Salvo Publications

A variety of additional Salvo publications are available to aid you
in using Salvo. They include Application Notes, Where applicable,
some are included in certain Salvo distributions. Application
Notes, Assembly Guides, Compiler Reference Manuals, Confer-
ence proceedings & presentations, and others. They are all avail-
able online at http://www.pumpkininc.com.

Learning C

K&R

Kernighan, Brian W., and Ritchie, Dennis M., The C Programming
Language, Prentice-Hall, New Jersey, 1978, ISBN 0-13-110163-3.

Of Interest This book is the definitive, original reference for
the C programming language.

C, A Reference Manual

Harbison, Samuel P. and Steele, Guy L., Jr., C, A Reference Man-
ual, Prentice-Hall, NJ, 1995, ISBN 0-13-326224-3.

Of Interest A modern C language reference.

Power C

Mix Software, Power C, The High-Performance C Compiler,
1993.

Salvo User Manual 449

http://www.pumpkininc.com/

Real-time Kernels

Of Interest Mix Power C is a very inexpensive, full-featured
ANSI-compatible C compiler for use on the PC. Its excellent
600+-page manual contains comprehensive tutorial and reference
sections. Library source code is available.

HC/OS & MicroC/OS-lI

CTask

Labrosse, Jean J., HC/OS, The Real-Time Kernel, R&D Publica-
tions, Lawrence, Kansas, 1992, ISBN 0-87930-444-8.

Labrosse, Jean J., MicroC/OS I, The Real-Time Kernel, R&D
Books, Lawrence, Kansas, 1999, ISBN 0-87930-543-6.

Of Interest This book and its greatly expanded and well-
illustrated successor provide an excellent guide to understanding
RTOS internals. It also demonstrates how even a relatively simple
conventional RTOS requires vastly more memory than Salvo. Its

task and event management is array-based. Source code is in-
cluded.

Wagner, Thomas, CTask, A Multitasking Kernel for C, public do-
main software, version 2.2, 1990, available for download on the
Internet.

Of Interest The author of this well-documented kernel takes a
very hands-on approach to describing its internal workings. CTask
is geared primarily towards use on the PC. As such, it is not a real-
time kernel. Its task and event management is primarily queue-
based. Source code is included.

Embedded Programming

450

Labrosse, Jean J., Embedded Systems Building Blocks, R&D Publi-
cations, Lawrence, Kansas, 1995, ISBN 0-13-359779-2.

Appendix A « Recommended Reading Salvo User Manual

RTOS Issues

Priority Inversions

Microcontrollers

PIC16

Salvo User Manual

Of Interest This book provides canned routines in C for a vari-
ety of operations (e.g. keypad scanning, serial communications and
LCD drivers) commonly encountered in embedded systems pro-
gramming. RTOS- and non-RTOS-based approaches are covered.
The author also provides an excellent bibliography. Source code is
included.

LaVerne, David, C in Embedded Systems and the Microcontroller
World, National Semiconductor Application Note 587, March
1989, http://www.national.com.

Of Interest The author's comments on the virtues of C pro-
gramming in embedded systems are no less valid today than they
were in 1989.

Kalinsky, David, "Mutexes Prevent Priority Inversions," Embed-
ded Systems Programming, Vol. 11 No. 8, August 1998, pp.76-81.

Of Interest An interesting way of solving the priority inversion
problem.

Microchip, Microchip PIC16C6X Data Sheet, Section 13.5, Inter-
rupts, 1996.

Of Interest A special method for disabling the global interrupt
bit GIE is required on the PIC16C61/62/64/65. Set
OSPI C16_G E_BUG to TRUE when using these and certain other
processors. The later versions (e.g. PICI6C65A) do not require this

Appendix A « Recommended Reading 451

http://www.national.com/

452

fix. Below is a response from Microchip to a customer query on
this issue:

The GIE issue is not a 'bug' in the part it relates more to an operational consid-
eration when the GIE bit is handled in software to disable the interrupt system
and the fact that during execution of that operation it is possible for an interrupt
to occur. The nature of the MCU core operation means that whilst the current
instruction is flowing through the device an asynchronous interrupt can occur.
The result of this is that the processor will vector to the ISR disable GIE, handle
the Interrupt and then enable GIE again. The result of this is of course that the
instruction to disable GIE has been overridden by the processor vectoring to the
interrupt and disabling then enabling the interrupt. This is a very real possibility
and ANS576 is explaining a method to ensure that, in the specific instance where
you wish to disable GIE in software during normal execution that your operation
has not been negated by the very action you wish to stop.

The app note is related to the disabling of GIE in software. The disabling and re-
enabling of GIE when an interrupt occurs is performed in hardware by the proc-
essor and the execution of the RETFIE instruction. The GIE check is a safeguard
to ensure your expected/desired operation has occurred and your program can
then operate as expected/desired without the unexpected occurrence of an inter-
rupt. This issue remains on the current range of parts since it is related to the
operation of the core when the user wishes to take control of the interrupt system
again.

BestRegards,

UK Techhelp

Appendix A « Recommended Reading Salvo User Manual

Appendix B « Other Resources

Web Links to Other Resources

Here are some web sites for information and products related to
Salvo and its use:

Salvo User Manual

* http://www.atmel.com/ — Atmel Corporation,
supplier of 8051 architecture and AVR 8-bit
RISC microcontrollers

* http://www.circuitcellar.com/, "The magazine
for Computer Applications," — lots of
information on computer and embedded
computer programming

* http://www.cygnal.com/ — Cygnal Integrated
Products, supplier of advanced in-system
programmable, mixed-signal System-on-Chip
products

* http://www.embedded.com/ — Home of
Embedded Systems Programming magazine

* http://www.gnu.org/ — The Free Software
Foundations GNU!!? project web server

* http://www.htsoft.com/ — HI-TECH Software
LLC, home of the PICC, PICC Lite, PICC-18
and V8C compilers.

* http://www.iar.com/ — IAR Systems, makers of
embedded computing tools including C
compilers, Embedded Workbench IDE and C-
SPY debugger

119

GNU is a recursive acronym for “"GNU's Not Unix"; it is pronounced "guh-

NEW".

453

http://www.atmel.com/
http://www.circuitcellar.com/
http://www.cygnal.com/
http://www.embedded.com/
http://www.gnu.org/
http://www.htsoft.com/
http://www.iar.com/

* ¢ http://www.imagecraft.com/ — ImageCraft,
makers of ANSI C tools combined with a
modern GUI development environment

e o http://www.keil.com/ — Keil Software, makers
of C compilers, macro assemblers, real-time
kernels, debuggers, simulators, integrated
environments, and evaluation boards for the
8051

e ¢ http://www.metrowerks.com/ — Metrowerks
Corporation, home of the CodeWarrior compiler
and integrated development environment

e ¢ http://www.microchip.com/ — Microchip
Corporation, supplier of PIC microcontrollers

e ¢ http://www.mixsoftware.com/ — Mix Software,
Inc., home of the Power C compiler

e ¢ http://www.motorola.com/ — Motorola, Inc.,
makers of M68BHCxx single-chip
microcontrollers and providers of the
Metrowerks CodeWarrior IDE

e o http://www.mixsoftware.com/ — Mix Software,
Inc., home of the Power C compiler

e ¢ http://www.quadravox.com/ — Quadravox,
Inc., makers the AQ430 Development Tools for
TI's MSP430 line of ultra-low-power
microcontrollers

e o http://www.redhat.com/ — Provider of a well-
known Linux distribution, and also home of the
Cygwin!20 project.

* ¢ http://www.rowley.co.uk.com/ — Rowley
Associates, makers development tools for TI's
MSP430

e o http://www.ti.com/ — Texas Instruments,
makers of the TMS320C family of DSPs as well

120 Search site for "Cygwin".

454 Appendix B « Other Resources Salvo User Manual

http://www.imagecraft.com/
http://www.keil.com/
http://www.metrowerks.com/
http://www.microchip.com/
http://www.mixsoftware.com/
http://www.motorola.com/
http://www.mixsoftware.com/
http://www.quadravox.com/
http://www.redhat.com/
http://www.rowley.co.uk.com/
http://www.ti.com/

as the MSP430 line of ultra-low-power
microcontrollers

e ¢ http://www.vautomation.com/ — VAutomation,
Inc., home of the V8-uRISC™ synthesizeable
8-bit core

Salvo User Manual Appendix B « Other Resources 455

http://www.vautomation.com/

456 Appendix B « Other Resources Salvo User Manual

Appendix C

* File and Program

Descriptions

Overview

Each Salvo distribution contains a variety of files in different for-
mats. Most (e.g. Salvo libraries and project files) are intended for
use with a particular set of tools and on a particular target, al-
though some — e.g. the Salvo source code — are often universal.

Each distribution has an organized file hierarchy. Directories (i.e.
folders) include subdirectories (i.e. subfolders), etc. Files that are
higher up in a particular directory tree are more general, and those
towards the bottom are more specific for a particular target, com-
piler and / or Salvo distribution.

If you have installed only one Salvo distribution on your PC, it will
contain files for just your compiler and / or target processor. If you
have installed multiple Salvo distributions, all of their files will be
distributed in subdirectories below the root Salvo directory.

Online File Locations

Salvo Distributions

Salvo User Manual

Unless otherwise noted, each complete Salvo distribution is dis-
tributed as a Windows self-extracting executable,'?! and is avail-
able online exclusively at Pumpkin’s website
http://www.pumpkininc.com for download. Salvo Lite is freely
downloadable. Salvo LE and Salvo Pro are only available to those
Salvo customers who have purchased the corresponding Salvo li-
cense(s).

121 1y Salvo v3 and earlier, Salvo’s installer was built using MindVision’s

Installer VISE product. As of Salvo 4, Salvo installers are built using the
NSIS system.

457

http://www.pumpkininc.com/

Local/User File Locations

Salvo Uninstaller(s)

By default, Salvo is always installed in the \ Punpki n directory of
the user’s hard disk. Therefore Salvo’s various installation directo-
ries are \ Punpki n\ Sal vo, \ Punpki n\ Sal vo\ Doc,
\ Punpki n\ Sal vo\ I nc, etc.

Note Due to a variety of problems that may be encountered!2? if
installing Salvo to the Windows Program Fi | es directory (due to
the space character in said directory’s name), installation to a root
directory other than \ Punpki n\ Sal vo is hot recommended.

The Salvo uninstaller(s) are located in the Sal vo directory. There
is an uninstaller for each unique Salvo distribution installed on the
user PC.

Salvo Documentation

Salvo Header Files

Salvo Source Files

Salvo documents — when included in a Salvo distribution — are lo-
cated in Sal vo\ Doc.

Note Not all Salvo documents are included in every Salvo distri-
bution. For example, the Salvo User Manual is not included, due to
its size. An alias file with a link to the on-line (and therefore most
up-to-date) version of the Salvo User Manual is included in each
Salvo distribution.

Salvo's header files are located in the Sal vo\l nc directory. All
Salvo header files (*. h) are in written in C.

Salvo's source files located in the Sal vo\ Src directory. Most of
Salvo's source files (*.c) are in written in C. The remaining
source files (*.asm *.s, etc.) are written in target- and com-

122 E.g. problems for Salvo Pro users with Salvo makefiles. Also, certain

compilers cannot properly handle spaces in e.g. the names of include paths.

458 Appendix C « File and Program Descriptions Salvo User Manual

Salvo Libraries

Salvo Applications

piler-specific assembly language, and are located in designated
subdirectories.

Salvo's target- and compiler-specific libraries (*. 1i b, *. a, etc.) are
located in the Sal vo\ Li b directory. Where compiler versions im-
pact the format of libraries, there may be multiple directories of
libraries for a particular series of compilers.

Depending on the particular distribution, a Salvo installation may
include applications related to Salvo’s tutorials, examples, test
code or other applications. They are located in the Sal vo\ Exanpl e
directory, and are normally in the form of projects (see Projects,
below) for the associated software toolset.

Salvo Graphics Files

The Salvo installers require some graphics files. These are located
in Sal vo\ Gf x.

Other Pumpkin Products

Salvo is just one of Pumpkin's software products involving. Other
Pumpkin products will usually be installed alongside Salvo under
the \ Punpki n directory.

Target and Compiler Abbreviations

Salvo User Manual

Salvo employs a shorthand notation when referring to files that are
specific to a particular target and compiler combination. These ab-
breviations are usually a combination of an abbreviation of the
toolset vendor name and of the target’s name. The implied com-
piler and target are usually self-explanatory.

Appendix C » File and Program Descriptions 459

Projects

Nomenclature

460

Nearly all Salvo applications are built using projects.!23 Usually
the project type is the one native to the tool being used, e.g. Micro-
chip MPLAB projects (*. ncp) or Keil pVision2 (*. uv2) projects.

Programs can be built using Salvo libraries or Salvo source code.
Projects follow the naming convention shown below:

* projectname ite. *: uses Salvo Lite
(freeware)
. libraries
* projectname e. *: uses Salvo LE or Pro
. (standard) libraries
* projectnamepro. *: uses source code from
a
. Salvo Pro
distribution

e projectnamepro-1ib.*: uses Salvo LE or Pro

. (standard) libraries
with
. embedded
debugging
. information

Each project has a single, unique sal vocf g. h configuration file
associated with it.

Wherever possible, relative pathnames have been used for maxi-
mum installation flexibility.

In general, projects designed for a particular target and compiler
system can be easily modified to work with other, similar target
processors. For example, a project for the NXP LPC2129
ARM7TDMI-based MCU could be rebuilt for the NXP LPC2106
with minor changes.

123 Some applications may be built via simple makefiles and via the command

line.

Appendix C « File and Program Descriptions Salvo User Manual

Project Files

The source files for a project are generally unique to a project,
though they may be substantially similar to those of similar pro-
jects. The only target-specific code contained in a project’s source
code is unique to the intended target.!24

Wherever possible, the projects used to generate the applications
have organized the project’s files into abstracts, help files, source
files and libraries that are unique to the project; Salvo help files,
configuration file, source files and libraries; and other files (e.g.
map files, hex files, etc.).

Additionally, where several projects are grouped together (e.g. the
Salvo Lite, LE and Pro versions of the tutorial project t ut 5), files
that are common to all of the projects are located in the parent di-
rectory of the project files.

124 This methodology differs substantially from that used in Salvo v3 and earlier.

In the earlier projects, target-specific code for the intended target was enabled
via the preprocessor, and all other target-specific code was ignored. This
created substantial confusion among Salvo users, to the point where it was
deemed detrimental to overall comprehension of the Salvo applications.

Salvo User Manual Appendix C » File and Program Descriptions 461

462 Appendix C ¢ File and Program Descriptions Salvo User Manual

Index

K
LC/OS oot See MicroC/OS-11
A
additional documentation

application notes xxvi, 82, 86, 91, 93, 197, 447, 449, 451

compiler reference manuals... 51, 82, 93, 94, 103, 104, 105, 106,
107,111, 168, 196, 197, 369, 391, 395, 403, 428

pOrting Manualcocuieriiieiiienieeie e 425
assembly 1anguagecocvveriieeiiieee e XXV
POTEADTIILY ..ottt 25
B
build process
library build........cccoveiviniiniiinns 93,94, 96, 98, 111, 406, 430
source-code build.......... 93, 96, 98, 200, 206, 208, 403, 429, 448
C
C COMPILET ..ottt 432
C programming 1anguage...........ccccueeeveeerireeeriieeenieeeeeeeieee e 449
POTEADTIILY ..ot 26
compiler
recompile (1re-make)........ccccvevieeriienieeiiieieeieeee e 431
TeqUITEd fRALUTES.....ccivviieiiieeiiieee e 7
$€ArCh PathS......oooiiiiiiiie e 428
complex expressions in Power C..........ccccovvevviieeniiieiiieecieeeen 443
complexity
F210) 0] VU215 (o) o KON RS R 11, 88
MNANAZINZ ...evievieeiiieriieeieeeteeieeeteesteesteeseessaeeseesseeseessseensees 192
SChEAUIET ... 19
SIZ€ VS. SPEEA...eeiuiiiiieiiiieiieeieeieeete et tesre et e st e et e e ebeesaee e 166
configuration options
OS MESSAGE TYPE. ..ot 164
OSBIG_SEMAPHORES..........c.ccone.e. 113, 185, 187, 281, 341
OSBYTES OF COUNTS.............. 114, 152, 185, 187, 319, 385

Salvo User Manual 463

464

OSBYTES OF DELAYS...87, 89,90, 115, 117, 124, 125, 176,
185, 187, 208, 210, 211, 253, 301, 319, 353, 385, 386, 407
OSBYTES OF EVENT FLAGS. 102, 116, 135, 185, 187, 257,
275

OSBYTES OF TICKS. 117, 125, 160, 176, 185, 187, 208, 211,
212, 245,297, 299, 331, 333, 353

OSCALL OSCREATEEVENT ... 118, 119, 120, 121, 122, 186,
188,271, 275, 277, 279, 281

OSCALL OSGETPRIOTASK.....c.cccviiiiiiiiiniiiiiicicice 121
OSCALL OSGETSTATETASK ...ccciiiiiiiiiieciieeeees 121
OSCALL OSMSGQCOUNTccccvvviennne 121, 186, 188, 303
OSCALL OSMSGQEMPTYcccccecvviienen. 121, 186, 188, 305

OSCALL OSRETURNEVENT.... 118, 122, 136, 137, 186, 188,
307,309, 311, 313, 315, 355, 357, 359, 361

OSCALL OSSIGNALEVENT 118, 122, 186, 188, 269, 326,
335,337,339, 341

OSCALL OSSTARTTASK.......cooeviiiiiiiiiiinen. 122, 186, 188
OSCLEAR _GLOBALS.......ccociiiieeee. 123, 185, 187, 301
OSCLEAR_UNUSED POINTERS............... 124, 185, 187, 321
OSCLEAR_WATCHDOG TIMER()....ccccccuenuenee. 208, 431, 432
OSCOLLECT_LOST _TICKS......cccocvviiiiiniinnen. 125, 185, 187

OSCOMBINE _EVENT SERVICES.... 126, 186, 187, 241, 269,
271, 275,277,279, 281, 325, 335, 337, 339, 341
OSCOMPILER 100, 109, 123, 164, 185, 189, 376, 397, 430

OSCTXSW_METHODccccuneee 127,172, 186, 188, 189
OSDISABLE ERROR_CHECKING 129, 133, 185, 353
OSDISABLE FAST SCHEDULING................... 130, 186, 188

OSDISABLE TASK PRIORITIES...... 131, 251, 283, 289, 291,
327,329

OSENABLE BINARY SEMAPHORES..... 101, 132, 135, 141,
142, 146, 185, 187, 255, 271, 307, 335, 355

OSENABLE BOUNDS CHECKING.........c.ccecveeunenee. 133,174

OSENABLE CYCLIC TIMERS . 134, 186, 188, 273, 285, 317,
323,343,347, 367

OSENABLE EVENT FLAGS..xxviii, 101, 102, 116, 132, 135,
141, 142, 146, 187, 257, 269, 275, 309, 325

OSENABLE EVENT READING 136, 137, 185, 187, 307, 309,
311,313, 315, 355, 357, 359, 361

OSENABLE EVENT TRYING 136, 137, 185, 187
OSENABLE FAST SIGNALING.........ccccceuneenee. 138, 185, 187
OSENABLE IDLE COUNTER..........c.cccevennnee. 139, 185, 187

OSENABLE IDLING HOOK 139, 140, 185, 186, 187, 215,
380

OSENABLE INTERRUPT HOOKS........cccociiiiiiiins 378

OSENABLE MESSAGE QUEUES.... 101, 108, 132, 135, 141,
142, 146, 185, 187, 263, 279, 303, 305, 313, 339, 359

Index Salvo User Manual

Salvo User Manual

OSENABLE MESSAGES 89, 90, 101, 132, 135, 141, 142, 146,
185, 187, 261, 311, 337, 357
OSENABLE OSSCHED DISPATCH _HOOK 143, 186, 382

OSENABLE OSSCHED ENTRY HOOK........... 144, 186, 382
OSENABLE OSSCHED RETURN HOOK........ 145, 186, 382
OSENABLE SCHEDULER HOOK........ccccoceeiiiiiiiiiinnns 186

OSENABLE_SEMAPHORES 101, 132, 135, 141, 142, 146,
185, 187, 207, 265, 281, 315, 341, 361

OSENABLE_STACK_CHECKING..... 123, 147, 152, 157, 185,
187,201, 243, 245, 247, 251, 253, 255, 257, 261, 263, 265,
269, 271, 275, 277, 279, 281, 283, 287, 289, 291, 293, 295,
297,299, 301, 319, 321, 325, 327, 329, 331, 333, 335, 337,
339, 341, 345, 349, 353

OSENABLE_TCBEXTO|12/3}4/5 148, 177, 186, 188, 365

OSENABLE_TIMEOUTS 124, 125, 151, 158, 185, 211, 255,
257,261, 265,371, 372

OSEVENT FLAGS......oovverirerreenn. 101, 102, 135, 275, 376, 398

OSEVENTS. 88, 89, 90, 101, 110, 132, 135, 141, 142, 146, 157,
174, 185, 187, 227, 255, 257, 261, 263, 265, 269, 271, 275,
277,279, 280, 281, 301, 307, 309, 311, 313, 315, 325, 335,
337, 339, 341, 355, 357, 359, 361, 376, 398

OSGATHER_STATISTICS.. 114, 139, 147, 152, 158, 161, 185,
187, 207

OSINTERRUPT LEVEL......cccoiiiiiiiiiniiieeeeee 153, 186

OSLIBRARY_ CONFIG 103, 104, 105, 106, 107, 111, 186, 188,
397, 400, 408, 430

OSLIBRARY_ GLOBALS 103, 104, 105, 106, 107, 111, 186,
188, 399

OSLIBRARY OPTION.................. 103, 104, 105, 106, 107, 111

OSLIBRARY TYPE..... 103, 104, 105, 106, 107, 111, 186, 188,
397, 399, 408, 430

OSLIBRARY VARIANT..... 103, 104, 105, 106, 107, 111, 186,
188, 397, 401, 430

OSLOC ALL...ooroorvveeeeeeeeeeeeesreseeeeenee 154, 156, 186, 188, 203
OSLOC_COUNT.... 154, 156, 157, 158, 159, 160, 186, 188, 387
OSLOC _CTCB oo 154, 157, 186, 188, 387
OSLOC DEPTH......oocorooeeereeeereereeereeee 154, 157, 186, 188, 387
OSLOC ECB....ovrerrrvreenn. 89, 154, 157, 184, 186, 188, 386, 387
(01 Mo YOl 2):e) : JE 157
OSLOC _ERR...coommrrveeereeeeeeeeesrereeeeenee 154, 158, 186, 188, 387
OSLOC _GLSTAT w.oveeeoeeeeeeeeeeeeeeeeeeeseeeeesseeesseseeseeeee 158, 387
OSLOC_LOGMSG.....ocoeeereeeerrerererenen 154, 158, 186, 188, 387
OSLOC LOST TICK ..corerveeeeeeeeereeeesseeeereeeerie 158, 186, 188
OSLOC_MQCB......... 108, 154, 159, 186, 188, 280, 386, 387
OSLOC _MSGQ............ 108, 154, 159, 186, 188, 280, 386, 387
OSLOC PS ..ooovooeeeeeeeeeeeeeeeeeeeeeeseeeeenee 154, 159, 186, 188, 387

Index 465

466

OSLOC_SIGQ ...ccoviiiiiiiiiiiiciieice 154, 160, 186, 188, 387

OSLOC TCB.................. 148, 154, 160, 184, 186, 188, 386, 387

OSLOC _TICKc.ooeoiiiiiiiiiniiiicice 154, 160, 186, 188, 387

OSLOG_MESSAGES 158, 159, 161, 162, 163, 185, 187, 188

OSLOGGING 152, 161, 162, 163, 185, 187, 188, 201, 243, 245,
253, 255,257,261, 263, 265, 269, 271, 275, 277, 279, 281,
283,301, 321, 325, 335, 337, 339, 341, 345

OSMESSAGE_QUEUES...... 101, 108, 142, 159, 185, 227, 279,
280, 376, 398
OSMESSAGE _TYPE.......ocoomeoeeereeereecernee. 185, 187, 385, 438
OSMPLAB_C18 LOC ALL NEAR......... 155, 165, 186, 188
OSOPTIMIZE_FOR_SPEED......................... 166, 185, 187, 321
OSPIC16_GIE BUGoovvoeoeeeveeeeeeeeeeeeeseeeeeeeeeeeeeeeeeeeeeesee 451
OSPIC18 INTERRUPT MASK.......overooerreeerrerreeeree 167, 168
OSRPT HIDE INVALID POINTERS. 169, 170, 171, 185, 187
OSRPT_SHOW_ONLY_ACTIVE......... 169, 170, 171, 185, 187
OSRPT SHOW TOTAL DELAY........ 169, 170, 171, 185, 187
OSRTNADDR_OFFSET.......oveccreerrerer. 127, 172, 186, 188
OSSCHED_RETURN_LABEL().....vvveoeeveeeeeeeeeeeeeeeeeese 173
OSSET_LIMITS ..o 133, 174, 399
OSSPEEDUP_QUEUEINGccoovvvvecreerrrrer. 175, 185, 187
OSTARGETcoooveereeeeeecereeerrenns 100, 109, 185, 189, 397, 430

OSTASKS 66, 87, 89, 90, 96, 101, 110, 185, 186, 214, 219, 220,
301, 376, 397, 398, 430

OSTIMER PRESCALARS9, 115,117, 176, 185, 186, 187, 209,
210, 211, 212, 353, 407

OSUSE_EVENT TYPES 179, 185, 187, 269, 271, 275, 277,
279, 281, 319, 325, 335, 337, 339, 341

OSUSE_INLINE OSSCHED......... 180, 181, 186, 188, 201, 321

OSUSE INLINE OSTIMER. 180, 182, 186, 188, 201, 232, 353

OSUSE_INSELIG MACRO.......ccccecevvviviiniannn. 180, 183, 240

OSUSE LIBRARY .94, 103, 104, 105, 106, 107, 111, 186, 188,
396, 397, 408, 430

OSUSE MEMSEToooiiiiiiiieeeeeeeeee e 184, 186, 188
OSUSTOM_LIBRARY CONFIG......... 128, 186, 188, 407, 408
conflicts
AEadIOCK oo 38
PIIOTIEY INVETSION...ccuviieeiieeirieereieeeriteeerireeeereeeeeeeeereeenns 39,451
CONEEXE SWILCH cooeiiiiiiiiiii i 12
CIIEICAL SECTION - ettt e e e e e e e eeeaees 18
CTaSK e 450
CUSTOIM LIDTATIES .. e See libraries
D
AEDUGZING....coviiiiiieiiecie ettt e 427
Index Salvo User Manual

Salvo User Manual

4[5 2 SRR See task
E
EVENt 1aZS ..eiiiiiiiiiie e 13,223
EVETIES ...ttt ettt et ettt et e et e et e et e et e et e st esbeee e 13
TESPONSE TINE ..eeeiiieniieeiieeiie ettt ettt seee e eebe e e e 20
examples
how to
allow access to a shared resource.........c...ccecueeveenierieeneene 271
ascertain which event flag bit(s) are set...........ccceeverveennen. 310
avoid overfilling a message queue...........cceeeveeennnnnns 304, 306
build a library without command-line tools............c...c....... 429
change a cyclic timer's period on-the-flycccoevueeenee. 324
change a task’s priority on-the-flyc.cccocevviniiiiniinnnne. 252
change a task's priority from another taskc.cccc......... 330
check a message before signaling...........c.cccceeeiieiiieniennnnn. 312
clear an event flag after successfully waiting it................... 270
context-switch outside a task's infinite 100pccceeneeen. 334
context-switch unconditionally..........ccccceeveeriiennieennneenne, 268
COUNE INEEITUPES .vvveeieeniieiieeiieeiieeteeereeteeseveenreesereeseeseeeens 379
Create @ task......oooiiiiiiiiiie e 284
create an 8-bit event flag..........ccceevviierieniiiiiieieeeee e 276
define a null functionccoooeiiiiiiiiiiie 429
destroy a task........coccueeviiiiiiiiieceeee e 288
detect @ tIMEOULceiiiiiiiiiiiiieieee e 371, 373
directly read the system timer............ccceeeveveiieniieriieenieninnns 298
directly write the system timer..........ccceevevveeriieecieeeieeene, 332
dispatch most eligible task..........cccceeviiriiiiiiniiiiieiee, 322
display Salvo Status.........ccceeeiieiriieeiie e 320
generate a Single Pulsecocvevveerieeiiienieeieeeeeeee 336
get current task's taskIDccooveeeiiiiiiiiiieceece 300
get current task's tiMeStampccceeeeveerieenciieniieeieenieeiens 300
E SYSEM tICKS ..eiiiviieiiieeciie et 298
initialize a ring buffer...........cccoooeeiiiiiiii e, 282
initialize an LCD controller without delay loops........ 244,246
nitialize Salvocoooiiviiiiiiiien 302
manage access to a shared resource.........c.cceeeveeecieennnenns 338
measure run-time context switching performance.............. 383
obtain a message from within an ISRccccooeee 358
obtain the current task's priority.................. 290, 292, 294, 296
pass a keypress in @ MeSSAZE ...ccvveeeeveeerveeereieeeiieeeveeeeneen 278
pass raw data USING MESSAZES ...ccveevrerrrerreenreeerenneeereenenes 230
phase-shift @ task.........ccccveeeiiieniiiiieeeeeee e 352
preserve a task's timestamp.........ccoeevvevieecieenieecieenieereenee. 334

Index 467

print the version NUMDbETccceeeeviiriierienenienieeeieene 375

process a buffer only when it is non-emptycccc........ 266
protect a service called from foreground and background.. 370
protect Salvo variables against power-on reset........... 203,213
read a binary semaphore's valuecccevvvieiiienienieeinen. 308
read a semaphore's value.........ccccceeeeevieeecieieniieeiee e, 316
repeatedly invoke a function with a cyclic timer................ 274
replace one task with another using only one taskID 250
reset a binary semaphore by reading itccecveveevennenne. 356
restart @ CYClic tIMeT.......ceeevuvieeciiieeiie e 318
reuse @ taskID ...c..ooiiiiiiiiiien 248
rotate a message qUEUE's CONENES.....uvveeeerereeeerrreeeeennneennn 360
run a task for a one-time event.........oeevvvvveeeeiviinnnneen. 256, 258
run a task only ONCecccvvevciiieiciieeeiieeee e 254
run an idling function alongside Salvoc..cccceeverieniennee. 364
run incompatible code alongside Salvoccceevveennnenn. 364
run OSTimer() from an interruptccceevveeciienieeniennnnn. 354
set a task's timestamp when it starts...........ccceeeeeeveeeenneennne. 334
Set SYSteM tICKS ..voeiiiiiiiiiiciieie e 332
share a tcb between a cyclic timer and a task 286
SEATt @ tASK ..ot 346
start and stop a CYCliC tIMETcevvvieeriiieeieeeiie e 344
StOp @ CYCliC tIMETeeevieiieiieiieeie e 348, 368
STOP @ TASK . ..viieiie e 350
test a message in @ MeSSAZE QUEUC........ccveeveerureereeneeennneans 313
toggle a port bit when idling..........cccoeeevveeviieeiiienieeeees 381
use the persistent type qualifier..........coccoeeeevieicieniennnenen. 156
vary a task's priority based on global variable.................... 328
wait for a keypress in @ message.......oocveeeveeriienieenieeniennnans 262
wake another task...........ocoooeiiiiiiiiii, 342
wake two tasks simultaneously..........c.cocceevieniiiiiininninnn. 326
of

different task StUCTUIES.......c.eevevuierieriirienieieeeeeeeee 21
multiple delays in a task.........cccoeeeviieeiiiieiieeeeeeeee e 4
non-reentrant function behavior............cocceveiierieniiieiienenne, 15
specifying register bank 0 in Hi-Tech PICC............... 154, 156
using #define to improve legibility 70, 74, 78, 88

F

foreground / background systemscccceevvieerieencinens 11, 14-15

freeware version of Salvo ... xxvi, xxvii, 60, 99, 191, 192, 197, 210,

395, 409

468 Index Salvo User Manual

Salvo User Manual

H

Harbison, Samuel P.........oooooviiiiiiiiiiiiiieeeeeeeeieeeeee e 449
I
1AL1E TASK ..o 187, 215
PLIOTIEY .ottt ettt ettt ettt saee e et eenbeeaeeenseeeeas 218
TAINE et e 14
installation
avoiding long pathnamesccccceeeviieeiiieecie e 54
directories
AEIMOS oo 207, 320
include files........... 85, 390, 398, 399, 406, 407, 408, 428, 442
IIDIariesccceevereeeieeieceeeee e 398, 399, 405, 408, 409
source files 85, 94, 96, 390, 391, 404, 409, 410, 439
tEST PTOZIAIMS ..eeeeeiiiiieeeiiiieeeeiiieeeeeitree e e e e e eeaaeeeenes 207, 440
tutorialscoceveeviiiiinieie 63, 78, 83, 86, 89, 90, 91, 207
l1CENSE AZIEEMENL......ccvvieeiiieciieeiiee et eee et e e 52
multiple diStributionscceecveerieiiienieeiieie e 60
non-Wintel platforms.........cccceeeevieeiiiieciiececeeee e 57
ON @ NEEWOTK ..ottt 56
UNINStaAlling.....ccoovveeeiiieeieeee e, See uninstaller
interrupt service routine (ISR)coccoevieiiiiiiiniiiies 12, 14
calling Salvo services from.........ccceeevviecciieecciie e 231
compiler-generated context SAVINGccceveevvierieeriienveeneans 209
OSTIMET() cveeveeneeeiieiieie et 76, 208, 212, 353
PIIOTIEIES .ttt ettt et et e et eeite et eeeaeeeae e seeenbeesseeenseenenas 221
L0 10T 1<) 10 1<) 01 U S 17
TESPONSE TIMES ..eeivieniieeiiieiieeiieeieeeiee et eeite et seeesreenseeenaeeseeeene 20
restrictions on calling Salvo Services........ccoovvervierrveeeineeennne. 216
SAIVOCTZ N oo 226
StACK depth ...ooeeiiiieee s 201
StAtiC VATIADIES....ceviieieiiiieiieieee e 217
use in
foreground / background Systemscccceevveeriieniienieenen. 15
intertask communICationsccocueevuieniieiieniiniieneeeeee, 13
interrupt_level pragma (HI-TECH PICC compiler) 120, 440
interrupts12, 14-15, 230-32. See interrupt service routine (ISR)
avoiding problems with reentrancy.........c..ccoceeveeveneeneniiennnn. 16
calling Salvo services from........cccceeevvieeiieenciie e, 227
debUGZING....ccviiiiieiieiieee e 431, 432
effect on performancecocvveeiieeciieeciicce e 199
in cooperative multitasking...........cccoeeeevieniiieiienieiiien, 20-21
in preemptive multitaskingccccoeevveeviieeiiiiecieeeeeeee, 18-20
interrupt level #pragma...........ccccoevieeiieiieniieiiee e 440
JAEIICY .ttt 18,210

470

PEIIOAIC .ttt 25,76, 209

POIING oo 197
TECOVETY TIINIE .eeeiiieniieeiieeiie ettt ettt ettt eeee e eseaeenbeesaeeenne 20
TESPONSE LITIE L.eeuvviieirieeeiieeeriieeeeteeeeteeeaeeeeaeeetaeeeaneeeseeesnneeas 20
Salvo configuration Optionsccceceeeveeeriienieerieenieeieeneeenn 186
using OSTimer() Without..........ccoeveiieeciiinie e 213
intertask commuNICatioNcceeevvieriieiiienieeiieee e 13
K
Kalinsky, Davidccoovieiiiieiieeeeeeeeeee e 451
KEIMEL .. ettt 13, 16
Kernighan, Brian W........cccooiiiiiiniieeeee e 449
L
Labrosse, Jean J.oooviiiiiiiiiiiiiee e 450
LaVerne, David........cccccoeiiiiiiiieiiiieeeeeeeeeeeee e 451
libraries
CONTIGUIAtIONS ...eiiiiiieiiieeiiee et ettt eree e e sveeeaeeeaaee e 400
custom............... 94, 128, 206, 231, 403, 405, 406, 407, 408, 409
salvoclcN.h configuration file............cccceeevveennnnn. 94, 406, 409
global variablesccceeiiiiieiiiiiiee e 399
MEMOTY MOAECIS....ccvviiiiiieiiiieiie et 399
OPLIOMIS ...t eetieiie ettt et et eete e et e ebeestaeenbeesseeenbeesseesnseanneeans 399
overriding default RAM settingsccccveeviveerieencieenieens 397
TEDUIAING ... 403
bash shell and GNU make..........ccceeevveeeiviieenciieiieeeeeeeen 404
specifying the compiler Version...........cecceeveveeeiienveenieennennns 405
17 01 PSSP 395, 399
USINZ 1.ttt et etteete et e eibeesteeeateeteeeseeenseessaeenseesasaenseensseenseas 396
VATTANES 1..evveeeiiieeeiieeeieeeeieeeeieeeeteeesreeesaaeeesaaeeesseeesseeesseeennns 401
Linux / UniX..ooooveeiiiieeiiieeeeeieeeeeeeeeee xxvl, 59, 404, 433, 453, 454
Cygwin Unix environment for Windows........ 405, 406, 433, 454
MinGW Unix environment for Windows.............ccceeveenenne. 405
M
MAKE ULHIIEY .oeveeiiieeiiicce et e 83
INESSAZE QUEUES ..eeenevreenerreeireenireenieeesueeesreessnseesssseessseeesnsees 13, 37
INIESSAZES +veeervrrreearurreeeernrreeesaesreeeansreeeesnsseeesessseeesssseeessnnssees 13, 35
TECCIVINE . ..evvieiieeiteeiteeeteeeeeeteeteeeeaeenbeesnaeenseesseesnseesseesnseeseesnns 36
SIZNALINE ..vvvieiiie et e 36
use in place of binary semaphoresccceecveveieerieecieeneennenns 37
MICTOC/OSIL et 450
Index Salvo User Manual

Salvo User Manual

MUIEASKING. ..ot 16,21

EVENE-ATTVEN ...ttt 28
TIIUEEXES ..veeuvreeentreenntreeniieeeniteeeniteeenateeenseeenneessteesnsteesnseeesnseeennnes 451
MULUAL €XCIUSION ..ottt 16
O
operating SyStem (OS)....cccueevieiiiiiieeieeieeee et 14
P
persistent type qUAlITICT........c.eeevcvieeriiieeiie e 203
POINLRT ..ottt ettt ettt et e et e et e e steeeebeesteenbeenseesnseeseesnsaens 35

declaring Multiplecoovieeiiiieieceeeee e 388

dereferenCING......cueevuiieiieiieeie e 35

UL Lo 36

runtime bounds checkingccoocvvveiieniiniiiniicieeeee, 133
predefined constants...........cccceeeeeveeerieeennneenns 66, 127,172, 189, 219

OSCALL OSCREATEEVENT

OSFROM_ANYWHERE.................... 118, 119, 120, 189, 369
OSFROM_BACKGROUND......cccceeiieirieiieeieeiene 118,119
OSFROM_FOREGROUND........cccevirirarannne. 118,119, 189
OSCALL OSXYZ
OSFROM_ANYWHEREcocooiiiiiieieee, 118, 189
OSFROM_BACKGROUND.......cocceviiiinienieienieneeieenen 118
OSFROM_FOREGROUND......ccecceiiiiieienieieeieeeeenee 118
OSCOMPILER
OSAQ 430ttt 189
OSHT _8O051C ittt 189
OSHT PICC ..ottt 189
OSHT _V8C ..ottt 189
OSIAR _ICC ..ottt 189
OSKEIL CS51 ittt 189
OSMIX PC.oeiieeeeee et 189
OSMPLAB Cl18...ccoeiiiiiiieienieenns 155, 165, 186, 188, 189
OSMW _CW ..ottt 189
OSCTXSW_METHOD
OSRTNADDR IS PARAMcccooiiiiiieeeieeeeenee. 127, 189
OSRTNADDR IS VARccoviiiiiieieee, 127,172, 189
OSLOGGING
OSLOG ALL .ottt 162, 188
OSLOG _ERRORS......coooiiiieeeeeeeee e 162, 188
OSLOG NONEcootiiiiiinieeeeeeeeeeee e 162, 188
OSLOG_WARNINGS......cooteieieieieeeeeeee e 162, 188

OSStartCycTmr()

OSDONT START CYCTMR....ccciiieieiiieeeeeeeee 274

Index 471

472

OSStartTask()

OSDONT _START CYCTMR....ccceeiieieieieieee, 274,343
OSDONT START TASK.....ccccveeueeee. 66, 219, 249, 283, 346
OSTARGET
OSMSPA30 ...t 189
OSPICT2 et 189
OSPICTO .t 189, 451
OSPICTT ettt 189
OSPICTS ..t 167, 168, 189
OSXBO...eeeeeeeeieee ettt 189
OSVERSION ..ottt 374
JOLST5100] 0110) s KPR 12
PINEE) e 15,162,319, 432
PrOZIAM COUNTET ..eeeuiviieeeiiiieeeesieeeeeeitieeeeeereeeeenenreeeesnneeeeeeanes 16, 17
R
RAM
reducing freeware library requirements.............cccoceeveeeeuveennee. 205
real-time operating system (RTOS)........cccoovviiiiiniiiiiinieiiees 14
TEENETANICY ..eeeeeetreeeeieieeeeairteeeeetteeeesateeesennsaeeesassreessnssseeesnsseeenanns 15
resources
managing via SEMAPNOTEScccuveervreerieeerreeerieeeereeeeeeeeseeenns 33
Ritchie, DENnis M.coooviiiiiiiiiiieei ettt 449
TOUNA-TODIN ..oooiiiiiiiiiiiiic e 22,218
rules
#2
where context switches may OCCUrc.ccccveevieriienieennnn. 236
#3
persistent local variables..........ccccceevieniieiieniieiieieeeeen 237
S
salvo.h.... 3, 63, 64, 65, 68, 70, 74, 76, 78, 84, 85, 94, 96, 100, 109,

207, 243, 245, 247, 249, 251, 253, 255, 257, 261, 263, 265, 267,
363, 365, 371, 372, 374, 376, 378, 390, 428
INCIUAING oo 84
JOCALING...eeeviieeiie ettt e e e e et e e e e e 85
salvocfg.h xxviii, 84, 85, 86, 87, 88, 89, 90, 91, 94, 96, 98, 99, 100,
103, 104, 105, 106, 107, 109, 111, 132, 134, 135, 136, 137, 141,
142, 146, 150, 154, 156, 189, 194, 196, 201, 205, 206, 207, 208,
212,220, 226, 275, 280, 396, 397, 398, 399, 400, 401, 407, 408,
428, 429, 430, 432, 438, 460

AETAULL .o 206
default ValUES «.ooooeeeieieeeeeeeeeeeeeeeeeeee 89
INCIUAING ...t 84

Index Salvo User Manual

Salvo User Manual

leaving a configuration option undefinedccccceceeveriennenn. 88

JOCALING...eeivieeiie ettt e et e e e e e eees 85
specifying the number of evVentsccccceeeveerieeciienieeciienne, 88
specifying the number of taskscccceeevieeriieeniieeieeceee, 87
SChedUlINGoveieiieiiicic e 13, 16, 24
SCMAPNOTES....euviieeiiieciieeiee et eteeetee e e et eeereeesaeeesaneeenes 13,29
Shared TESOUICESecuveiiiiiriieiieieeie e 16
STACK oo 12,19
overcoming HMmitationsecceeeeveeriieriieenieeeiienee e 233
TOlE 1N TEENLIANCY ..eeevvieeiiieeiiieeiieeeieeeeieeeeaeeeereeesereeeseaeeeeeeas 16
SAVING CONTEXT ..evvieniieeiiieiieeteeieesieeteesereeteesieeesbeesseesseeseesnnas 17
Steele, GUY L., JTuiiiieeeeeeeeee e 449
superloop.........ceu...... 11, 14. See foreground / background systems
synchronization
COMJUNCEIVE ..evvieeieeniieeiieeiee e eieeeaeeieesreenseesnneens Seeevent flags
AISJUNCHIVE ..ottt See event flags
SYSLEIN TESPOTISE ..vvvveneieeenireeeniieeeieeesiteeesiteeenareessreesnreesseeesnseesnns 15
SYSEEIM tIIMICT ...veeeeviieeiieeeieeeeiteeeteeeeeeeesreeesereeeseseeensneeenns See timer
T
BASK .t et 12
association With @VENLScceevuieiiiiiieiieiiieeeee e 29
behavior
due to context SWItChcocouiiiiiiiiiiiceeeeee, 17
dUTINg INEETTUPLS ...eovvieniiieiieiie ettt 17-18
in cooperative multitasking............ccoeevveevveeeiieenceeennen. 20-21
in preemptive multitaskingcccceeceevvenieneniencenennne. 18-20
CONMECX L. ciiiiiiiiiiiii e 12,17
LAY .o 13, 24-26
1100 B3 TS (0] o USSR 25
INAXTIUIN «oeteneeiteeitesie ettt ettt e et sieesbeenbeestesbeesaeeneesneens 25
USTINE TIMNET ...vvieeeiiieeiieeeiteeeeiieeeereeeereeetreeeseeesseeesseeesnaeenns 26
PIEEIMPLION ...eveiieiiieiieeiiieeite et eite et e st e et esieeebeesseeenbeenseeensaens 12
[0 0] 4 L 2SS 12
AYNAMIC ...ttt ettt 22
importance thereofcccceeviieeiiienie e, 198
SEALIC Lttt 22
priority-based eXECUtION.......cueevevieerciieeiiie e 22
relationship t0 EVENLScceeviieriieriieieee e 13
TOUNA-TODIN EXECULIONeeviiieiiieiieeieesite ettt 22
TUNIINE c.veeiteenieeeite et eeereeteeseaeebeeseeeenseenseeesseesseessseenseesnseenseennns 13
SEATC Lo 13,23-24
ELANSTEION ..evviintieiieeiieieete ettt ettt 23
SETUCTUTE. ..ttt 21-22
suspending and reSUMINGc.eeveeriierieeiiieniieeieeseeeeeee e 12

Index 473

474

SWITCH cooeeeie e See context switch

SYNCRIONIZATIONveeiiiieeiie e 31
EIMNEOULS ..ottt ettt ettt st sb e s 13
breaking a deadlock Withccccoeeviiiiiiiiniii e, 38
19100 1C) OSSO P SR PRUP 13
ACCUTACY eeeuuvrreeeenrreeeennreeeeannnreeesanseeesanssseeessnnseeessssseesssnsseeesanns 26
TESOIULION. ...t 26
SYSEEIM tICK ..eiiveiiiiiiieeiiee et 25
SYSEEM tICK TALE ...veeiiiiiieiie e 25
using OSTimer() without INteTTuPtS......c.eeevevveeecrieeriieereeenee, 213
tools

HI-TECH Software
HPDPIC integrated development environment . 434, 436, 437,

440

MOUSE PrODICMSc.viiiiiiiiiiiieiieeie e 434

running in DOS WiNAOWooovveeiiiieniiieeieceeeeeiees 434

running under Windows 2000...........cccceevievieeriienieennnne 434
HPDVS integrated development environment.................... 440
PICC compiler 89, 118, 119, 120, 153, 154, 155, 156, 164,

173,178, 189, 200, 203, 233, 319, 396, 432, 434, 435, 436,
437,438, 439, 440, 441, 448, 453

PICC-18 compiler.......ccccccvvevieeiieiieeniennen. 119, 153, 155, 453
IAR Systems

C-SPY DEbUZEETocecvvieeiiieeiiieetie ettt 453
in-circuit debugger (ICD)cocovieviiiiiiiiieeieeeee e 431
in-circuit emulator (ICE)........cccccoovviiiiiiiiiiieieee e 431
Keil

Cx51 Compiler.......coevieeiieniieeieeieeie e 154,155,178
Make UHILY ..ooveeiieiieciiceeece e, 83, 404, 433
MaKefile......oooeiiiiiiiieeee e 404, 409, 410, 442
Makefileooovveiieeiieeeeeee e, 98, 404, 405, 408, 409
Metrowerks

CodeWarrior C compiler............. 100, 429, 444, 445, 453, 454
Microchip

MPLAB integrated development environment...... 86, 91, 155,

165,167, 388,431, 435, 445, 460

MPLAB-C18 C compiler.........cccceeveeviienirannnnne. 155, 165, 167

MPLAB-ICD in-circuit debugger........c.cceevveeerveeerieerennens 431

MPLAB-ICE in-circuit emulator............cccccoeevvveeeeeineeeens 431

PICMASTER in-circuit emulatorccccceeevevieveveennnnnn. 431
Microchip, Inc.

MPLAB-C18 compiler.......c.ccoevvieeeiieiiiieeieeeiee e 155,165

Mix Software
Power C compiler 100, 217, 442, 443, 444, 449, 450, 454, 455
Power C debugger........coooeeviieiiieniieiieiecieee e 444
Quadravox

Index Salvo User Manual

Salvo User Manual

AQ430 Development Toolsccceeeveeniieennnne 407, 408, 454

tutorial........ccceeeennee. 63, 78, 83, 86, 89, 90, 91, 196, 206, 450, 461
LYPECASTING ...eoveieeiiieeiieeiieeiie et 80, 226, 446, 447
types

predefinedccooevieninennnnnn. See variables:Salvo defined types
U
UNINSTALICT ...t 58

user macros
OSECBP()...... 70, 74, 78, 88, 174, 202, 256, 258, 270, 271, 276,
278,280, 282, 304, 306, 313, 326, 336, 338, 376, 377
OSEFCBP()...vicvieiieieeieeeeeeeeeee e 275,276,376
OSMOQOCBP() .veeeeveetieeeeeeeeeee e 279, 280, 376
OSTCBP().. 4, 65, 66, 68, 70, 74, 78, 87, 88, 149, 202, 215, 218,
219, 220, 246, 250, 252, 274, 284, 286, 292, 296, 318, 322,
324, 344, 346, 348, 366, 368, 376, 377, 398
user services
events
OS_WaitBinSem() 71, 72, 73, 74, 75, 132, 223, 239, 255, 256,
271, 307, 318, 335, 336, 350, 352, 355, 356, 372, 373
OS_WaitEFlag() 135, 189, 257, 258, 259, 260, 269, 270, 276,
309, 310, 325, 326
OS_ WaitMsg()78, 80, 141, 179, 212, 222, 223, 226, 228, 244,
261,262,264,277,278, 311, 338, 357, 372, 373, 447
OS_WaitMsgQ() 108, 142, 263, 264, 280, 303, 305, 306, 313,
339, 359, 372, 373
OS_ WaitSem()... 101, 146, 202, 211, 225, 265, 266, 281, 315,
341, 361, 372, 373
OSCIrEFlag()..... 122, 135, 258, 259, 260, 269, 270, 309, 326,
392
OSCreateBinSem() 71, 75, 119, 120, 126, 132, 256, 271, 272,
307, 308, 335, 336, 355, 392
OSCreateEFlag() 102, 135, 258, 259, 269, 275, 276, 309, 326,
392
OSCreateMsg() 79, 80, 141, 226, 262, 271, 277,278, 311,
338, 357, 373, 392
OSCreateMsgQ() 108, 126, 142, 264, 279, 280, 303, 306, 313,
339, 359, 392
OSCreateSem() .. 146, 202, 225, 229, 265, 281, 282, 315, 316,
341, 342, 350, 361, 362, 377, 392
OSMSZQCOUNT() ..vvevrrevreerieieeieeeeeie e eeesie e saeeenes 121, 303
OSMSEQEMPLY() c.veevveveeniieiiecieeieene, 121, 305, 306, 392, 402
OSReadBinSem() 136, 256, 271, 307, 308, 335, 355, 392, 402
OSReadEFlag().. 122, 136, 258, 269, 276, 309, 310, 326, 392,
402

Index 475

OSReadMsg() 136, 262, 277, 311, 312, 338, 357, 392, 402
OSReadMsgQ().. 136, 264, 280, 303, 306, 313, 314, 339, 359,

392, 402
OSReadSem() 136, 265, 281, 315, 316, 341, 361, 392, 402
OSSetEFlag()ccccovevvenuenene 122,135, 258, 259, 260, 325, 326

OSSignalBinSem()...... xxvi, 71, 72, 73, 74, 75, 132, 138, 232,
255, 256,271, 307, 335, 336, 349, 355, 369, 370, 393, 402

OSSignalMsg() . xxvi, 78, 79, 80, 81, 122, 126, 141, 179, 201,
222,226,227,228, 231, 262,277,278, 311, 337, 338, 339,
357, 385, 393, 402, 446, 447

OSSignalMsgQ()....... xxvi, 142, 264, 280, 303, 305, 306, 313,
339, 340, 359, 360, 393, 402

OSSignalSem() . xxvi, 146, 179, 203, 225, 231, 265, 281, 315,
341, 342, 361, 393, 400, 402

OSTryBinSem()c..ccuee... 137,256,271, 307, 335, 355, 356

OSTryMsg()..cevvvevereeevenen. 137,262,277,311, 338, 357, 358

OSTryMsgQ()..... 137, 264, 280, 303, 306, 313, 339, 359, 360

OSTrySem()........ 122,137, 265, 281, 315, 341, 361, 362, 371

general

OSInit() 4, 63, 64, 65, 68, 71, 75,79, 123, 149, 180, 181, 203,
220, 225, 245, 246, 250, 284, 297, 301, 302, 321, 322, 331,
345, 392, 430, 431

OSSched().... 4, 64, 65, 68, 69, 71, 75, 79, 125, 139, 140, 143,
144, 145, 147, 149, 157, 173, 180, 215, 218, 220, 226, 232,
246, 250, 284, 302, 321, 322, 346, 360, 363, 364, 366, 380,
382, 392, 430, 431

hooks
OSDisableIntSHOOK()......ccovveevuieeniieeniie e 378, 379
OSEnableIntSHOOK()......ccovvveevurieirieeciee e 378, 379
OSIdIingHOOK() ...ocvveevieiieciieeiieees 140, 215, 380, 381, 429
monitor
OSRpt()147, 161, 169, 170, 171, 215, 220, 319, 320, 392, 427
other
OSCreateCycTmr().... 273, 274, 285, 286, 317, 323, 343, 347,
367

OSCycTmrRunning().. 274, 285, 317, 323, 343, 347, 367, 368
OSDestroyCycTmr()... 274, 285, 286, 317, 323, 343, 347, 367

OSPIOteCt() «evveemvererereeienieenieeieneeeeeeeeenne 119, 120, 369, 370
OSResetCycTmr()....... 274,285,317, 318, 323, 343, 347, 367
OSSetCycTmrPeriod()................ 274, 285, 323, 324, 343, 347

OSStartCycTmr()........ 274,285,317, 323, 343, 344, 347, 367
OSStopCycTmr() 274, 285, 317, 323, 343, 344, 347, 348, 367

OSTimedOut() 151, 211, 224, 225,363, 371, 372, 373

OSUNPTOLECT() cvvveeenrreeerreeerieeeieeesieeeereeenes 119, 120, 369, 370

OSVEISION() ..cvveeeiiieeciiee ettt e 374, 375
tasks

476 Index Salvo User Manual

OS_Delay() 4,26,75,77,79,90, 115, 210, 216, 218, 222,
235, 237, 239, 240, 241, 243, 244, 245, 246, 247, 248, 250,
253,260, 278, 286, 288, 300, 308, 312, 314, 328, 330, 333,
334, 338, 342, 344, 400, 429, 430, 437, 443, 444, 445

OS_DelayTS()..... 243, 245, 246, 299, 300, 333, 334, 351, 352

(O B I3 (0} () SRS 247,248, 287
OS_Prio() coeeeeeeeeereenieeieneeeeeseeeee e 219, 220, 327, 329
OS Replace()..cvveeeerieeiiieiiie et 249, 250
OS_SetPrio()ccccveuvnnee. 79, 80, 251, 252, 289, 290, 291, 327
OS_Stop() «veveeeeeneeieeieseerieene 243, 246, 253, 254, 256, 349

OS_Yield(). 4, 65, 66, 67, 68, 69, 71, 72, 75,77, 78, 127, 149,
172,213, 214, 216, 217, 237, 251, 252, 267, 268, 284, 334,
346, 356, 366, 430, 445

OSCreateTask().... 4, 65, 66, 67, 68, 71, 75, 79, 110, 149, 199,
216, 218, 219, 220, 226, 246, 247, 248, 249, 250, 251, 252,
254, 268, 283, 284, 286, 287, 288, 321, 322, 330, 342, 345,
346, 350, 366, 377, 392, 398, 430, 431

OSDESEOYTASK() «.orveeereeeeereeereeseeseereeeen 249, 287, 288, 392

OSGELPLIO() oo 121, 251, 289, 290, 291, 327, 392

OSGetPrioTask()........ 121, 289, 291, 292, 327, 329, 392, 402

OSGELSALE() .rrvveeerrreerereeerrerreerenseeens 121, 293, 294, 295, 392

OSGetStateTask() oovveemrveerrreens 121, 293, 295, 296, 392, 402

OSGELTS() ceverreereereereeereens 246, 299, 300, 333, 334, 351, 392

OSSetEFlag() ... 122, 135, 258, 259, 260, 269, 309, 325, 326,
392

0SSetPrio().... 79, 80, 219, 220, 251, 289, 291, 327, 328, 329,
392

OSSetPrOTaSK()veerrrreererreens 289, 291, 327, 329, 330, 393

OSStartTask() 66, 110, 122, 199, 219, 253, 283, 284, 321,
345, 346, 349, 393, 402, 427

OSStopTask()....cceerveereeerierieeiieniieans 253, 284, 349, 350, 393

OSSyNCTS() ccvveeveeeieeiieeieeiee 246, 299, 333, 351, 352, 393
timer

OSGetTicks()...... 117,125,211, 212,297, 298, 331, 334, 392

OSSetTicks()............... 117,125,211, 212,297,331, 332, 393

OSSetTS() eeeereerreeieeieeeieeieene, 246, 299, 333, 334, 351, 393

OSTimer()...... 76,77, 115,117, 125, 159, 176, 182, 199, 208,
209, 210, 212, 213, 219, 228, 231, 232, 243, 246, 353, 354,

393, 438, 439, 441
\%
VA ATZ() eeevrreeirieeeirieeeitieeeieeesteeesreeestreeessaeeessaeeesaeeeaaeessaeesnraeenns 126
variables
ECIATING ... vt 385
errors when dereferencing...........cooceeevvevieeiienieniiieienieeiens 227

Salvo User Manual Index 477

478

initializing globals to ZEero..........cocvvveviieeciieeeeeee e, 123
LOCAL. .o 16, 19
locating iN MEMOTYeeeevvreeeiieeriieerieeerveeeeeeeereeenes 89, 154-60
Salvo defined types......cooveeiieiieriieieeeeee e 384
R 7218 (<R 164,217
W
Wagner, ThOMAScceeiiiiiiiiieiiee e 450
WatChdO@ tIMET.......ccviiiiiieeiieeee e 431
Y
Y2K COMPHANCE ..ottt 195
Index Salvo User Manual

Notes

Salvo User Manual 479

480 Notes Salvo User Manual

Salvo User Manual Notes 481

482 Notes Salvo User Manual

Salvo User Manual Notes 483

	Quick Start Guide
	Running on Your Hardware
	Trying the Tutorial
	Salvo Lite
	Salvo LE
	Salvo Pro
	Getting Help
	C

	Contact Information & Technical Support
	Contacting Pumpkin
	Connecting to Pumpkin's Web Site
	Salvo User Forums

	How to Contact Pumpkin for Support
	Internet (WWW)
	Email
	Mail, Phone & Fax
	What To Provide when Requesting Support

	Contents
	Figures
	Listings
	Tables
	Release Notes
	Introduction
	What's New
	Release Notes
	Third-Party Tool Versions

	Supported Targets and Compilers
	Preface
	Historical Information
	Typographic Conventions
	Standardized Numbering Scheme
	The Salvo Coding Mindset
	Configurability Is King
	Conserve Precious Resources
	Learn to Love the Preprocessor
	Document, But Don't Duplicate
	We're Not Perfect

	Chapter 1 • Introduction
	Welcome
	What Is Salvo?
	Why Should I Use Salvo?
	What Kind of RTOS Is Salvo?
	What Does a Salvo Program Look Like?
	What Resources Does Salvo Require?
	How Is Salvo Different?
	What Do I Need to Use Salvo?
	Which Processors and Compilers does Salvo Support?
	How Is Salvo Distributed?
	What Is in this Manual?

	Chapter 2 • RTOS Fundamentals
	Introduction
	Basic Terms
	Foreground / Background Systems
	Reentrancy
	Resources
	Multitasking and Context Switching
	Tasks and Interrupts
	Preemptive vs. Cooperative Scheduling
	Preemptive Scheduling
	Cooperative Scheduling

	More on Multitasking
	Task Structure
	Simple Multitasking
	Priority-based Multitasking
	Task States
	Delays and the Timer
	Event-driven Multitasking

	Events and Intertask Communications
	Semaphores
	Event Flags
	Task Synchronization
	Resources

	Messages
	Message Queues

	Summary of Task and Event Interaction
	Conflicts
	Deadlock
	Priority Inversions

	RTOS Performance
	A Real-World Example
	The Conventional Superloop Approach
	The Event-Driven RTOS Approach
	Step By Step
	Initializing the Operating System
	Structuring the Tasks
	Prioritizing the Tasks
	Interfacing with Events
	Adding the System Timer
	Starting the Tasks
	Enabling Multitasking
	Putting It All Together

	The RTOS Difference

	Chapter 3 • Installation
	Introduction
	Running the Installer
	Network Installation
	Installing Salvo on non-Wintel Platforms

	A Completed Installation
	Uninstalling Salvo
	Uninstalling Salvo on non-Wintel Machines

	Installations with Multiple Salvo Distributions
	Installer Behavior
	Installing Multiple Salvo Distributions
	Uninstalling with Multiple Salvo Distributions

	Copying Salvo Files
	Modifying Salvo Files

	Chapter 4 • Tutorial
	Introduction
	Part 1: Writing a Salvo Application
	Tut1: Initializing Salvo and Starting to Multitask
	Tut2: Creating, Starting and Switching tasks
	Tut3: Adding Functionality to Tasks
	Tut4: Using Events for Better Performance
	Tut5: Delaying a Task
	Signaling from Multiple Tasks
	Wrapping Up
	Food For Thought

	Part 2: Building a Salvo Application
	Working Environment
	Creating a Project Directory
	Including salvo.h
	Configuring your Compiler
	Setting Search Paths

	Using Libraries vs. Using Source Files
	Using Libraries
	Using Source Files
	Setting Configuration Options
	Identifying the Compiler and Target Processor
	Specifying the Number of Tasks
	Specifying the Number of Events
	Specifying other Configuration Options
	salvocfg.h Example – Salvo's Tut5 Application

	Linking to Salvo Object Files

	Chapter 5 • Configuration
	Introduction
	The Salvo Build Process
	Library Builds
	Source-Code Builds
	Benefits of Different Build Types

	Configuration Option Overview
	Configuration Options for all Distributions
	OSCOMPILER: Identify Compiler in Use
	OSEVENTS: Set Maximum Number of Events
	OSEVENT_FLAGS: Set Maximum Number of Event Flags
	OSLIBRARY_CONFIG: Specify Precompiled Library Configuration
	OSLIBRARY_GLOBALS: Specify Memory Type for Global Salvo Objects in Precompiled Library
	OSLIBRARY_OPTION: Specify Precompiled Library Option
	OSLIBRARY_TYPE: Specify Precompiled Library Type
	OSLIBRARY_VARIANT: Specify Precompiled Library Variant
	OSMESSAGE_QUEUES: Set Maximum Number of Message Queues
	OSTARGET: Identify Target Processor
	OSTASKS: Set Maximum Number of Tasks and Cyclic Timers
	OSUSE_LIBRARY: Use Precompiled Library

	Configuration Options for Source Code Distributions
	OSBIG_SEMAPHORES: Use 16-bit Semaphores
	OSBYTES_OF_COUNTS: Set Size of Counters
	OSBYTES_OF_DELAYS: Set Length of Delays
	OSBYTES_OF_EVENT_FLAGS: Set Size of Event Flags
	OSBYTES_OF_TICKS: Set Maximum System Tick Count
	OSCALL_OSCREATEEVENT: Manage Interrupts when Creating Events
	OSCALL_OSGETPRIOTASK: Manage Interrupts when Returning a Task's Priority
	OSCALL_OSGETSTATETASK: Manage Interrupts when Returning a Task's State
	OSCALL_OSMSGQCOUNT: Manage Interrupts when Returning Number of Messages in Message Queue
	OSCALL_OSMSGQEMPTY: Manage Interrupts when Checking if Message Queue is Empty
	OSCALL_OSRETURNEVENT: Manage Interrupts when Reading and/or Trying Events
	OSCALL_OSSIGNALEVENT: Manage Interrupts when Signaling Events and Manipulating Event Flags
	OSCALL_OSSTARTTASK: Manage Interrupts when Starting Tasks
	OSCLEAR_GLOBALS: Explicitly Clear all Global Parameters
	OSCLEAR_UNUSED_POINTERS: Reset Unused Tcb and Ecb Pointers
	OSCOLLECT_LOST_TICKS: Configure Timer System For Maximum Versatility
	OSCOMBINE_EVENT_SERVICES: Combine Common Event Service Code
	OSCTXSW_METHOD: Identify Context-Switching Methodology in Use
	OSCUSTOM_LIBRARY_CONFIG: Select Custom Library Configuration File
	OSDISABLE_ERROR_CHECKING: Disable Runtime Error Checking
	OSDISABLE_FAST_SCHEDULING: Configure Round-Robin Scheduling
	OSDISABLE_TASK_PRIORITIES: Force All Tasks to Same Priority
	OSENABLE_BINARY_SEMAPHORES: Enable Support for Binary Semaphores
	OSENABLE_BOUNDS_CHECKING: Enable Runtime Pointer Bounds Checking
	OSENABLE_CYCLIC_TIMERS: Enable Cyclic Timers
	OSENABLE_EVENT_FLAGS: Enable Support for Event Flags
	OSENABLE_EVENT_READING: Enable Support for Event Reading
	OSENABLE_EVENT_TRYING: Enable Support for Event Trying
	OSENABLE_FAST_SIGNALING: Enable Fast Event Signaling
	OSENABLE_IDLE_COUNTER: Track Scheduler Idling
	OSENABLE_IDLING_HOOK: Call a User Function when Idling
	OSENABLE_MESSAGES: Enable Support for Messages
	OSENABLE_MESSAGE_QUEUES: Enable Support for Message Queues
	OSENABLE_OSSCHED_DISPATCH_HOOK: Call User Function Inside Scheduler
	OSENABLE_OSSCHED_ENTRY_HOOK: Call User Function Inside Scheduler
	OSENABLE_OSSCHED_RETURN_HOOK: Call User Function Inside Scheduler
	OSENABLE_SEMAPHORES: Enable Support for Semaphores
	OSENABLE_STACK_CHECKING: Monitor Call ... Return Stack Depth
	OSENABLE_TCBEXT0|1|2|3|4|5: Enable Tcb Extensions
	OSENABLE_TIMEOUTS: Enable Support for Timeouts
	OSGATHER_STATISTICS: Collect Run-time Statistics
	OSINTERRUPT_LEVEL: Specify Interrupt Level for Interrupt-callable Services
	OSLOC_ALL: Storage Type for All Salvo Objects
	OSLOC_COUNT: Storage Type for Counters
	OSLOC_CTCB: Storage Type for Current Task Control Block Pointer
	OSLOC_DEPTH: Storage Type for Stack Depth Counters
	OSLOC_ECB: Storage Type for Event Control Blocks and Queue Pointers
	OSLOC_EFCB: Storage Type for Event Flag Control Blocks
	OSLOC_ERR: Storage Type for Error Counters
	OSLOC_GLSTAT: Storage Type for Global Status Bits
	OSLOC_LOGMSG: Storage Type for Log Message String
	OSLOC_LOST_TICK: Storage Type for Lost Ticks
	OSLOC_MQCB: Storage Type for Message Queue Control Blocks
	OSLOC_MSGQ: Storage Type for Message Queues
	OSLOC_PS: Storage Type for Timer Prescalar
	OSLOC_TCB: Storage Type for Task Control Blocks
	OSLOC_SIGQ: Storage Type for Signaled Events Queue Pointers
	OSLOC_TICK: Storage Type for System Tick Counter
	OSLOGGING: Log Runtime Errors and Warnings
	OSLOG_MESSAGES: Configure Runtime Logging Messages
	OS_MESSAGE_TYPE: Configure Message Pointers
	OSMPLAB_C18_LOC_ALL_NEAR: Locate all Salvo Objects in Access Bank (MPLAB-C18 Only)
	OSOPTIMIZE_FOR_SPEED: Optimize for Code Size or Speed
	OSPIC18_INTERRUPT_MASK: Configure PIC18 Interrupt Mode
	OSRPT_HIDE_INVALID_POINTERS: OSRpt() Won't Display Invalid Pointers
	OSRPT_SHOW_ONLY_ACTIVE: OSRpt() Displays Only Active Task and Event Data
	OSRPT_SHOW_TOTAL_DELAY: OSRpt() Shows the Total Delay in the Delay Queue
	OSRTNADDR_OFFSET: Offset (in bytes) for Context-Switching Saved Return Address
	OSSCHED_RETURN_LABEL(): Define Label within OSSched()
	OSSET_LIMITS: Limit Number of Runtime Salvo Objects
	OSSPEEDUP_QUEUEING: Speed Up Queue Operations
	OSTIMER_PRESCALAR: Configure Prescalar for OSTimer()
	OSTYPE_TCBEXT0|1|2|3|4|5: Set Tcb Extension Type
	OSUSE_CHAR_SIZED_BITFIELDS: Pack Bitfields into Chars
	OSUSE_EVENT_TYPES: Check for Event Types at Runtime
	OSUSE_INLINE_OSSCHED: Reduce Task Call…Return Stack Depth
	OSUSE_INLINE_OSTIMER: Eliminate OSTimer() Call…Return Stack Usage
	OSUSE_INSELIG_MACRO: Reduce Salvo's Call Depth
	OSUSE_MEMSET: Use memset() (if available)

	Organization
	Choosing the Right Options for your Application
	Predefined Configuration Constants
	Obsolete Configuration Parameters

	Chapter 6 • Frequently Asked Questions (FAQ)
	General
	What is Salvo?
	Is there a shareware / freeware / open source version of Salvo?
	Just how small is Salvo?
	Why should I use Salvo?
	What should I consider Salvo Pro over Salvo LE?
	What can I do with Salvo?
	What kind of RTOS is Salvo?
	What are Salvo's minimum requirements?
	What kind of processors can Salvo applications run on?
	My compiler doesn't implement a stack. It allocates variables using a static overlay model. Can it be used with Salvo?
	How many tasks and events does Salvo support?
	How many priority levels does Salvo support?
	What kind of events does Salvo support?
	Is Salvo Y2K compliant?
	Where did Salvo come from?

	Getting Started
	Where can I find examples of projects that use Salvo?
	Which compiler(s) do you recommend for use with Salvo?
	Is there a tutorial?
	Apart from the Salvo User Manual, what other sources of documentation are available?
	I'm on a tight budget. Can I use Salvo?
	I only have an assembler. Can I use Salvo?

	Performance
	How can using Salvo improve the performance of my application?
	How do delays work under Salvo?
	What's so great about having task priorities?
	When does the Salvo code in my application actually run?
	How can I perform fast, timing-critical operations under Salvo?

	Memory
	How much will Salvo add to my application's ROM and RAM usage?
	How much RAM will an application built with the libraries use?
	Do I need to worry about running out of memory?
	If I define a task or event but never use it, is it costing me RAM?
	How much call ... return stack depth does Salvo use?
	Why must I use pointers when working with tasks? Why can't I use explicit task IDs?
	How can I avoid re-initializing Salvo's variables when I wake up from sleep on a PIC12C509 PICmicro MCU?

	Libraries
	What kinds of libraries does Salvo include?
	What's in each Salvo library?
	Why are there so many libraries?
	Should I use the libraries or the source code when building my application?
	What's the difference between the freeware and standard Salvo libraries?
	My library-based application is using more RAM than I can account for. Why?
	I'm using a library. Why does my application use more RAM than one compiled directly from source files?
	I'm using a freeware library and I get the message "#error: OSXYZ exceeds library limit – aborting." Why?
	Why can't I alter the functionality of a library by adding configuration options to my salvocfg.h?
	The libraries are very large – much larger than the ROM size of my target processor. Won't that affect my application?
	I'm using a library. Can I change the bank where Salvo variables are located?

	Configuration
	I'm overwhelmed by all the configuration options. Where should I start?
	Do I have to use all of Salvo's functionality?
	What file(s) do I include in my main.c?
	What is the purpose of OSENABLE_˜SEMAPHORES and similar configuration options?
	Can I collect run-time statistics with Salvo?
	How can I clear my processor's watchdog timer with Salvo?
	I enabled timeouts and my RAM and ROM grew substantially– why?

	Timer and Timing
	Do I have to install the timer?
	How do I install the timer?
	I added the timer to my ISR and now my ISR is huge and slow. What should I do?
	How do I pick a tick rate for Salvo?
	How do I use the timer prescalar?
	I enabled the prescalar and set it to 1 but it didn't make any difference. Why?
	What is the accuracy of the system timer?
	What is Salvo's interrupt latency?
	What if I need to specify delays larger than 8 bits of ticks?
	How can I achieve very long delays via Salvo? Can I do that and still keep task memory to a minimum?
	Can I specify a timeout when waiting for an event?
	Does Salvo provide functions to obtain elapsed time?
	How do I choose the right value for OSBYTES_OF_TICKS?
	My processor has no interrupts. Can I still use Salvo's timer services?

	Context Switching
	How do I know when I'm context switching in Salvo?
	Why can't I context switch from something other than the task level?
	Why does Salvo use macros to do context switching?
	Can I context switch in more than one place per task?
	When must I use context-switching labels?

	Tasks & Events
	What are taskIDs?
	Does it matter which taskID I assign to a particular task?
	Is there an idle task in Salvo?
	How can I monitor the tasks in my application?
	What exactly happens in the scheduler?
	What about reentrant code and Salvo?
	What are "implicit" and "explicit" OS task functions?
	How do I setup an infinite loop in a task?
	Why must tasks use static local variables?
	Doesn't using static local variables take more memory than with other RTOSes?
	Can tasks share the same priority?
	Can I have multiple instances of the same task?
	Does the order in which I start tasks matter?
	How can I reduce code size when starting tasks?
	What is the difference between a delayed task and a waiting task?
	Can I create a task to immediately wait an event?
	I started a task but it never ran. Why?
	What happens if I forget to loop in my task?
	Why did my low-priority run-time tasks start running before my high-priority startup task completed?
	When I signaled a waiting task, it took much longer than the context switching time to run. Why?
	Can I destroy a task and (re-) create a new one in its place?
	Can more than one task wait on an event?
	Does Salvo preserve the order in which events occur?
	Can a task wait on more than one event at a time?
	How can I implement event flags?
	What happens when a task times out waiting for an event?
	Why is my high-priority task stuck waiting, while other low-priority tasks are running?
	When an event occurs and there are tasks waiting for it, which task(s) become eligible?
	How can I tell if a task timed out waiting for an event?
	Can I create an event from inside a task?
	What kind of information can I pass to a task via a message?
	My application uses messages and binary sema˜phores. Is there any way to make the Salvo code smaller?
	Why did RAM requirements increase substantially when I enabled message queues?
	Can I signal an event from outside a task?
	When I signal a message that has more than one task waiting for it, why does only one task become eligible?
	I'm using a message event to pass a character variable to a waiting task, but I don't get the right data when I dereference the pointer. What's going on?
	What happens when there are no tasks in the eligible queue?
	In what order do messages leave a message queue?
	What happens if an event is signaled before any task starts to wait it? Will the event get lost or it will be processed after task starts to wait it?
	What happens if an event is signaled several times before waiting task gets a chance to run and process that event? Will the last one signal be processed and previous lost? Or the first will be processed and the following signals lost?
	What is more important to create first, an event or the task that waits it? Does the order of creation matter?
	What if I don't need one event anymore and want to use its slot for another event? Can I destroy event?
	Can I use messages or message queues to pass raw data between tasks?
	How can I test if there's room for additional messages in a message queue without signaling the message queue?

	Interrupts
	Why does Salvo disable all interrupts during a critical section of code?
	I'm concerned about interrupt latency. Can I modify Salvo to disable only certain interrupts during critical sections of code?
	How big are the Salvo functions I might call from within an interrupt?
	Why did my interrupt service routine grow and become slower when I added a call to OSTimer()?
	My application can't afford the overhead of signaling from an ISR. How can I get around this problem?

	Building Projects
	What warning level should I use when building Salvo projects?
	What optimization level should I use when building Salvo projects?

	Miscellaneous
	Can Salvo run on a 12-bit PICmicro with only a 2-level call…return stack?
	Will Salvo change my approach to embedded programming?

	Chapter 7 • Reference
	Run-Time Architecture
	Rule #1: Every Task Needs a Context Switch
	Rule #2: Context Switches May Only Occur in Tasks
	Rule #3: Persistent Local Variables Must be Declared as Static

	User Services
	OS_Delay(): Delay the Current Task and Context-switch
	OS_DelayTS(): Delay the Current Task Relative to its Timestamp and Context-switch
	OS_Destroy(): Destroy the Current Task and Context-switch
	OS_Replace(): Replace the Current Task and Context-switch
	OS_SetPrio(): Change the Current Task's Priority and Context-switch
	OS_Stop(): Stop the Current Task and Context-switch
	OS_WaitBinSem(): Context-switch and Wait the Current Task on a Binary Semaphore
	OS_WaitEFlag(): Context-switch and Wait the Current Task on an Event Flag
	OS_WaitMsg(): Context-switch and Wait the Current Task on a Message
	OS_WaitMsgQ(): Context-switch and Wait the Current Task on a Message Queue
	OS_WaitSem(): Context-switch and Wait the Current Task on a Semaphore
	OS_Yield(): Context-switch
	OSClrEFlag(): Clear Event Flag Bit(s)
	OSCreateBinSem(): Create a Binary Semaphore
	OSCreateCycTmr(): Create a Cyclic Timer
	OSCreateEFlag(): Create an Event Flag
	OSCreateMsg(): Create a Message
	OSCreateMsgQ(): Create a Message Queue
	OSCreateSem(): Create a Semaphore
	OSCreateTask(): Create and Start a Task
	OSDestroyCycTmr(): Destroy a Cyclic Timer
	OSDestroyTask(): Destroy a Task
	OSGetPrio(): Return the Current Task's Priority
	OSGetPrioTask(): Return the Specified Task's Priority
	OSGetState(): Return the Current Task's State
	OSGetStateTask(): Return the Specified Task's State
	OSGetTicks(): Return the System Timer
	OSGetTS(): Return the Current Task's Timestamp
	OSInit(): Prepare for Multitasking
	OSMsgQCount(): Return Number of Messages in Message Queue
	OSMsgQEmpty(): Check for Available Space in Message Queue
	OSReadBinSem(): Obtain a Binary Semaphore Unconditionally
	OSReadEFlag(): Obtain an Event Flag Unconditionally
	OSReadMsg():Obtain a Message's Message Pointer Unconditionally
	OSReadMsgQ(): Obtain a Message Queue's Message Pointer Unconditionally
	OSReadSem(): Obtain a Semaphore Unconditionally
	OSResetCycTmr(): Reset a Cyclic Timer
	OSRpt(): Display the Status of all Tasks, Events, Queues and Counters
	OSSched(): Run the Highest-Priority Eligible Task
	OSSetCycTmrPeriod(): Set a Cyclic Timer's Period
	OSSetEFlag(): Set Event Flag Bit(s)
	OSSetPrio(): Change the Current Task's Priority
	OSSetPrioTask(): Change a Task's Priority
	OSSetTicks(): Initialize the System Timer
	OSSetTS(): Initialize the Current Task's Timestamp
	OSSignalBinSem(): Signal a Binary Semaphore
	OSSignalMsg(): Send a Message
	OSSignalMsgQ(): Send a Message via a Message Queue
	OSSignalSem(): Signal a Semaphore
	OSStartCycTmr(): Start a Cyclic Timer
	OSStartTask(): Make a Task Eligible To Run
	OSStopCycTmr(): Stop a Cyclic Timer
	OSStopTask(): Stop a Task
	OSSyncTS(): Synchronize the Current Task's Timestamp
	OSTimer(): Run the Timer
	OSTryBinSem(): Obtain a Binary Semaphore if Available
	OSTryMsg(): Obtain a Message if Available
	OSTryMsgQ(): Obtain a Message from a Message Queue if Available
	OSTrySem(): Obtain a Semaphore if Available

	Additional User Services
	OSAnyEligibleTasks (): Check for Eligible Tasks
	OScTcbExt0|1|2|3|4|5, OStcbExt0|1|2|3|4|5(): Return a Tcb Extension
	OSCycTmrRunning(): Check Cyclic Timer for Running
	OSProtect(), OSUnprotect(): Protect Services Against Corruption by ISR
	OSTaskStopped(): Check whether Task has Stopped
	OSTimedOut(): Check for Timeout
	OSVersion(), OSVERSION: Return Version as Integer

	User Macros
	OSECBP(), OSEFCBP(),OSMQCBP(), OSTCBP(): Return a Control Block Pointer

	User-Defined Services
	OSDisableIntsHook(), OSEnableIntsHook(): Interrupt-control Hooks
	OSIdlingHook(): Idle Function Hook
	OSSchedDispatchHook(), OSSchedEntryHook(), OSSchedReturnHook(): Scheduler Hooks

	Return Codes
	Salvo Defined Types
	Salvo Variables
	Salvo Source Code
	Locations of Salvo Functions
	Abbreviations Used by Salvo

	Chapter 8 • Libraries
	Library Types
	Libraries for Different Environments
	Native Compilers
	Non-native Compilers

	Using the Libraries
	Overriding Default RAM Settings

	Library Functionality
	Types
	Memory Models
	Options
	Global Variables
	Configurations
	Variants

	Library Reference
	Rebuilding the Libraries
	GNU Make and the bash Shell
	Rebuilding Salvo Libraries
	Linux/Unix Environment

	Multiple Compiler Versions
	Win32 Environment
	Customizing the Libraries
	Creating a Custom Library Configuration File
	Building the Custom Library
	Using the Custom Library in a Library Build
	Example – Custom Library with 16-bit Delays and Non-Zero Prescalar
	Preserving a User's salvoclcN.h Files
	Restoring the Standard Libraries
	Custom Libraries for non-Salvo Pro Users

	Makefile Descriptions
	Pumpkin\Salvo\Src\Makefile
	Pumpkin\Salvo\Src\Makefile2
	Pumpkin\Salvo\Src\CODE\Makefile
	Pumpkin\Salvo\Src\CODE\targets.mk

	Chapter 9 • Performance
	Introduction
	Interrupts
	Context Switcher
	Summary

	Critical Sections
	Effect on Runtime Performance
	Controlling Interrupts Globally
	Controlling Interrupts Individually
	Avoiding Interrupt Control Altogether
	Side Effects of Interrupt Hooks
	The Fallacy of Avoiding Critical Sections at the Interrupt Level

	User Hooks
	OSDisableHook(), OSEnableHook()
	OSClrWDTHook()

	Chapter 10 • Porting
	Chapter 11 • Tips, Tricks and Troubleshooting
	Introduction
	Compile-Time Troubleshooting
	I'm just starting, and I'm getting lots of errors.
	My compiler can't find salvo.h.
	My compiler can't find salvocfg.h.
	My compiler can't find certain target-specific header files.
	My compiler can't locate a particular Salvo service.
	My compiler has issued an "undefined symbol" error for a context-switching label that I've defined properly.
	My compiler is saying something about OSIdlingHook.
	My compiler has no command-line tools. Can I still build a library?

	Run-Time Troubleshooting
	Nothing's happening.
	It only works if I single-step through my program.
	It still doesn't work. How should I begin debugging?
	My program's behavior still doesn't make any sense.

	Compiler Issues
	Where can I get a free C compiler?
	Where can I get a free make utility?
	Where can I get a Linux/Unix-like shell for my Windows PC?
	My compiler behaves strangely when I'm compiling from the DOS command line, e.g. "This program has performed an illegal operation and will be terminated."
	My compiler is issuing redeclaration errors when I compile my program with Salvo's source files.
	HI-TECH PICC Compiler
	Running HPDPIC under Windows 2000 Pro
	Setting PICC Error/Warning Format under Windows 2000 Pro
	Linker reports fixup errors
	Placing variables in RAM
	Link errors when working with libraries
	Avoiding absolute file pathnames
	Compiled code doesn't work
	PIC17CXXX pointer passing bugs
	While() statements and context switches
	Library generation in HPDPIC
	Problems banking Salvo variables on 12-bit devices
	Working with Salvo messages
	Adding OSTimer() to an Interrupt Service Routine
	Using the interrupt_level pragma

	HI-TECH V8C Compiler
	Simulators

	HI-TECH 8051C Compiler
	Problems with static initialization and small and medium memory models.

	IAR PICC Compiler
	Target-specific header files
	Interrupts

	Mix Power C Compiler
	Required compile options
	Application crashes after adding long C source lines to a Salvo task
	Application crashes after adding complex expressions to a Salvo task
	Application crashes when compiling with /t option
	Compiler crashes when using a make system

	Metrowerks CodeWarrior Compiler
	Compiler has a fatal internal error when compiling your source code

	Microchip MPLAB
	The Stack window shows nested interrupts

	Controlling the Size of your Application
	Working with Message Pointers

	Appendix A • Recommended Reading
	Salvo Publications
	Learning C
	K&R
	C, A Reference Manual
	Power C

	Real-time Kernels
	µC/OS & MicroC/OS-II
	CTask

	Embedded Programming
	RTOS Issues
	Priority Inversions

	Microcontrollers
	PIC16

	Appendix B • Other Resources
	Web Links to Other Resources

	Appendix C • File and Program Descriptions
	Overview
	Online File Locations
	Salvo Distributions

	Local/User File Locations
	Salvo Uninstaller(s)
	Salvo Documentation
	Salvo Header Files
	Salvo Source Files
	Salvo Libraries
	Salvo Applications
	Salvo Graphics Files
	Other Pumpkin Products

	Target and Compiler Abbreviations
	Projects
	Nomenclature
	Project Files

	Index
	Notes

