

RM-GCCAVR
Reference Manual

750 Naples Street • San Francisco, CA 94112 • (415) 584-6360 • http://www.pumpkininc.com

© Copyright 2003 Pumpkin, Inc. last updated on Oct 20, 2003
All trademarks mentioned herein are properties of their respective companies.

Salvo Compiler Reference Manual
– GNU avr-gcc

 Reference Manual

2 RM-GCCAVR Salvo Compiler Reference Manual – GNU avr-gcc

Introduction
This manual is intended for Salvo users who are targeting Atmel
(http://www.atmel.com/) AVR® and MegaAVR™
microcontrollers1 with GNU's avr-gcc compiler.

Related Documents
The following Salvo documents should be used in conjunction
with this manual when building Salvo applications with the GNU
avr-gcc compiler:

Salvo User Manual
Application Note AN-28

Application Note AN-28 explains how to use makefiles to
successfully build a Salvo application using GNU's avr-gcc
compiler and related tools.

Example Projects
Example Salvo projects for use with GNU's avr-gcc C compiler
can be found in the:

salvo/ex/ex1/sysy
salvo/tut/tu1/sysy
salvo/tut/tu2/sysy
salvo/tut/tu3/sysy
salvo/tut/tu4/sysy
salvo/tut/tu5/sysy
salvo/tut/tu6/sysy

directories of every Salvo for Atmel AVR and MegaAVR
distribution.

Features
Table 1 illustrates important features of Salvo's port to GNU's avr-
gcc C compiler.

http://www.atmel.com/

 Reference Manual

RM-GCCAVR Salvo Compiler Reference Manual – GNU avr-gcc

3

general
available distributions Salvo Lite, LE & Pro for Atmel AVR

and MegaAVR
supported targets AVR and MegaAVR family
header file(s) portgccavr.h
other target-specific file(s) portgccavr.S
project subdirectory name(s) SYSY

salvocfg.h
target-specific header file

required? yes
compiler auto-detected? yes2

context switching

method
function-based via
OSDispatch() &
OSCtxSw(label)

_OSLabel() required? yes
size of auto variables and function

parameters in tasks
total size must not exceed 254 8-bit

bytes
memory & registers

internal and external RAM
supported?

yes / yes (see section on external
memory)

register usage
R0, R16, R17 used for temporary

storage in OSCtxSw() routine. R0,
R18 used for temporary storage in

OSDispatch() routine
interrupts

controlled via I bit
interrupt status preserved in

critical sections? yes

method used saved to local variable at start of
routine, restored at end

nesting limit unlimited
alternate methods possible? not recommended

debugging
source-level debugging with Pro

library builds? yes
compiler

bitfield packing support? no
printf() / %p support? yes / yes
va_arg() support? yes

Table 1: Features of Salvo Port to GNU's avr-gcc C
Compiler

Libraries

Nomenclature
The Salvo libraries for GNU's avr-gcc C compiler follow the
naming convention shown in Figure 1.

 Reference Manual

4 RM-GCCAVR Salvo Compiler Reference Manual – GNU avr-gcc

Salvo library

libsfgccavr-a.a

type
f: freeware
l: standard

GCC-AVR
C Compiler

configuration
a: multitasking with delays and events
d: multitasking with delays
e: multitasking with events
m: multitasking only
t: multitasking with delays and events,

tasks can wait with timeo

option
-: no option
i: library includes debugging information

target
avr: AVR and MegaAVR

Figure 1: Salvo Library Nomenclature – GNU's avr-gcc C

Compiler

Type
Salvo Lite distributions contain freeware libraries. All other Salvo
distributions contain standard libraries. See the Libraries chapter of
the Salvo User Manual for more information on library types.

Target
One set of libraries will work with all of the AVR
microcontrollers, provided they have the following features:

• Internal SRAM
• ICALL instruction

Option
Salvo Pro users can select between two sets of libraries – standard
libraries, and standard libraries incorporating source-level
debugging information.3 The latter have been built with GNU's
avr-gcc C compiler's -g command-line option. This adds source-
level debugging information to the libraries, making them ideal for
source-level debugging and stepping in the AVRStudio IDE. To
use these libraries, simply select one that includes the debugging
information (e.g. libslgccavrit.a) instead of one without (e.g.
libslgccavr-t.a) in your project.

Configuration
Different library configurations are provided for different Salvo
distributions and to enable the user to minimize the Salvo kernel's

 Reference Manual

RM-GCCAVR Salvo Compiler Reference Manual – GNU avr-gcc

5

footprint. See the Libraries chapter of the Salvo User Manual for
more information on library configurations.

Build Settings
Salvo's libraries for GNU's avr-gcc C compiler are built using the
default settings outlined in the Libraries chapter of the Salvo User
Manual. Target-specific settings and overrides are listed in Table 2.

compiled limits
max. number of tasks 3
max. number of events 5
max. number of event flags 1
max. number of message queues 1

target-specific settings
delay sizes 8 bits
watchdog timer cleared in OSSched().
system tick counter available, 32 bits

Table 2: Build Settings and Overrides for Salvo Libraries
for GNU's avr-gcc C Compiler

Note The compiled limits for tasks, events, etc. in Salvo libraries
can be overridden to be less (all Salvo distributions) or more (all
Salvo distributions except Salvo Lite) than the library default. See
the Libraries chapter of the Salvo User Manual for more
information.

Available Libraries
There are a total of 15 Salvo libraries for GNU's avr-gcc C
compiler. Each Salvo for Atmel AVR and MegaAVR distribution
contains the Salvo libraries of the lesser distributions beneath it.

Target-Specific Salvo Source Files
The source file portgccavr.S is needed for Salvo Pro source-code
builds.

Note Never re-name portgccavr.S to portgccavr.s, as the
makefile treats these as two different files. The .S file is a user
ASM code, whereas the .s file is an intermediate file generated by
avr-gcc that can be deleted.

 Reference Manual

6 RM-GCCAVR Salvo Compiler Reference Manual – GNU avr-gcc

salvocfg.h Examples
Below are examples of salvocfg.h project configuration files for
different Salvo for Atmel AVR and MegaAVR distributions.

Note When overriding the default number of tasks, events, etc. in
a Salvo library build, OSTASKS and OSEVENTS (respectively) must
also be defined in the project's salvocfg.h. If left undefined, the
default values (see Table 2) will be used.

Salvo Lite Library Build
#include <avr/io.h>
#define OSUSE_LIBRARY TRUE
#define OSLIBRARY_TYPE OSF
#define OSLIBRARY_CONFIG OSA

Listing 1: Example salvocfg.h for Library Build Using
libsfgccavr-a.a

Salvo LE & Pro Library Build
#include <avr/io.h>
#define OSUSE_LIBRARY TRUE
#define OSLIBRARY_TYPE OSL
#define OSLIBRARY_CONFIG OSA

Listing 4: Example salvocfg.h for Library Build Using
libslgccavr-a.a

Salvo Pro Library Build with Source-Code Debugging
#include <avr/io.h>
#define OSUSE_LIBRARY TRUE
#define OSLIBRARY_TYPE OSL
#define OSLIBRARY_OPTION OSI
#define OSLIBRARY_CONFIG OSA

Listing 4: Example salvocfg.h for Library Build Using
libslgccavria.a

Salvo Pro Source-Code Build
#include <avr/io.h>
#define OSENABLE_IDLING_HOOK TRUE
#define OSENABLE_SEMAPHORES TRUE
#define OSEVENTS 1
#define OSTASKS 3

Listing 5: Example salvocfg.h for Source-Code Build

 Reference Manual

RM-GCCAVR Salvo Compiler Reference Manual – GNU avr-gcc

7

Performance

Memory Usage
tutorial memory usage4 total ROM5 total RAM6

tu1lite 197 24
tu2lite 253 24
tu3lite 280 26
tu4lite 562 35
tu5lite 770 47
tu6lite 848 48
tu6pro7 760 44

Table 3: ROM and RAM requirements for Salvo
Applications built with GNU's avr-gcc C Compiler

Special Considerations

Stack Issues
GNU's avr-gcc C compiler uses two separate stacks – one for
return addresses (the hardware stack, which uses SP) and one for
local storage (the software stack, which uses Y).

Compared to a non-Salvo, non-multitasking application with
similar call trees, the corresponding Salvo application will require
an additional 4 bytes (i.e. two return addresses) in the hardware
stack8.

The hardware stack and the software stack are set to the same
location. However the hardware stack grows downwards, and the
software stack grows upwards.

External SRAM
Salvo's global objects9 can be placed in internal or external RAM.
The placement of data objects is controlled by linker options, and
takes the format -Wl,-Tdata=0x800000+start for relocationg
the program data section (ie: variable storage) where the
0x800000+start means hex address with an 0x800000 offset. There
is no end location, it is your responsibility as a programmer to not
use more RAM than you have. For example:

avr-gcc … -Wl,-Tdata=0x800260 …

 Reference Manual

8 RM-GCCAVR Salvo Compiler Reference Manual – GNU avr-gcc

specifies that the data program area start at 0x260 (the end of
internal SRAM). This could be added to your makefile with the
rest of the linker flags (normally called LFLAGS), and in fact your
makefile may already be set up for working with external SRAM.
If you do this you also have to make sure the processor hardware is
set up to use external RAM. It is best to do this as early as
possible, in fact the absolute best way is to make a file called
xram.S, and fill it with something like this:

;; begin xram.S

#include <avr/io.h>

 .section .init1,"ax",@progbits

 ldi r16,(1<<SRE) | (1<<SRW)
 out _SFR_IO_ADDR(MCUCR),r16

;; end xram.S

This would work for the AT90S8515, enabling the external XRAM
with one wait state. The file should be added to your project. Note
that the code executed in that file takes place very early on, before
anything like the stack has been set up.

Data Segments
The RAMPD register is normally used to access the entire data space
on processors with more than 64K bytes data space. There are no
provisions for accessing Salvo's global objects outside of the
current data segment of 64K bytes.

Optimizer
Salvo is compatible with GNU's avr-gcc code optimizer at all
levels in both source and library builds.

Register R1
The avr-libc library which is an integral part of avr-gcc assumes
register R1 will always have a 0 value, and Salvo does not modify
this register.

 Reference Manual

RM-GCCAVR Salvo Compiler Reference Manual – GNU avr-gcc

9

Library Locations
The Salvo installer places its libraries for avr-gcc in the
/salvo/lib/gccavr folder. When linking to Salvo libraries, an
additional library path must be specified in the link phase, e.g. via:

avr-gcc … -L c:/salvo/lib/gccavr …

This is normally done automatically as part of the Salvo makefile
system for use with avr-gcc and WinAVR.

Credits & Acknowledgements
Colin O'Flynn wrote the Salvo context switcher in portgccavr.S,
created the Salvo project makefile system, and wrote much of the
documentation surrounding the Salvo port to GNU's avr-gcc
compiler. Colin is active in the AVR community and is the author
of various AVR-centric material to be found at the popular AVR
Freaks (http://www.avrfreaks.net/) website.

1 tinyAVR devices are not supported because of their lack of RAM.
2 This is done automatically through the __GNUC__ and __AVR __ symbols

defined by the compiler.
3 The Salvo libraries provided with Salvo Lite and LE do not contain avr-gcc-

debugger-compatible debugging information because this requires the
inclusion of source file listings.

4 Salvo v3.2.0 with WinAVR release 20030424
5 In words with optimization setting of –Os. Note that avr-size returns sizes in

bytes not words
6 In bytes, this is the .bss section of the .elf file.
7 Salvo Pro build differs slightly from Salvo Lite build due to configuration –

see tutorial's salvocfg.h.
8 Salvo Pro application can reduce this by 2 bytes (one return address) by

inlining OSSched().
9 E.g. task control blocks, queue pointers, counters, etc.

http://www.avrfreaks.net/

	Salvo Compiler Reference Manual – GNU avr-gcc
	Related Documents
	Example Projects
	Features
	Libraries
	Nomenclature
	Type
	Target
	Option
	Configuration
	Build Settings
	Available Libraries

	Target-Specific Salvo Source Files
	salvocfg.h Examples
	Salvo Lite Library Build
	Salvo LE & Pro Library Build
	Salvo Pro Library Build with Source-Code Debugging
	Salvo Pro Source-Code Build

	Performance
	Memory Usage

	Special Considerations
	Credits & Acknowledgements

