

RM-GCCAVR
Reference Manual

750 Naples Street • San Francisco, CA 94112 • (415) 584-6360 • http://www.pumpkininc.com

© Copyright 2003 Pumpkin, Inc. last updated on Jun 5, 2008
All trademarks mentioned herein are properties of their respective companies.

Salvo Compiler Reference Manual
– AVR-GCC

 Reference Manual

2 RM-GCCAVR Salvo Compiler Reference Manual – AVR-GCC

Introduction
This manual is intended for Salvo users who are targeting Atmel
(http://www.atmel.com/) AVR® and MegaAVR™
microcontrollers1 with GNU's AVR-GCC C/C++ compiler for
AVR.

Note It is assumed that the IDE used is Atmel's AVR Studio1,
commonly installed as part of the WinAVR2 tool suite.

Related Documents
The following Salvo documents should be used in conjunction
with this manual when building Salvo applications with the AVR-
GCC C/C++ compiler:

• Salvo User Manual

Example Projects
Example Salvo projects for use with the AVR-GCC C/C++
compiler can be found in the:

\Pumpkin\Salvo\Example\AVR\

directories of every Salvo for Atmel AVR and MegaAVR
distribution.

Tip These example projects can be easily modified for any AVR
or MegaAVR device.

Features
Table 1 illustrates important features of Salvo's port to the AVR-
GCC C/C++ compiler.

1 Available directly from Atmel's website, http://www.atmel.com/.
2 "Windows for AVR", available at http://winavr.sourceforge.net/.

http://www.atmel.com/

 Reference Manual

RM-GCCAVR Salvo Compiler Reference Manual – AVR-GCC

3

General
Abbreviated as GCCAVR

Available distributions Salvo Lite, LE & Pro
for Atmel AVR and MegaAVR

Supported targets entire AVR and MegaAVR family
Header file(s) salvoportgccavr.h

Other target-specific file(s) salvoportgccavr.S,
salvoportgccavr256.S

salvocfg.h
Compiler auto-detected? yes2
Include target-specific header file

in salvocfg.h? yes
Libraries

Located in Lib\GCCAVR

Context Switching
Method function-based via

OSDispatch() & OSCtxSw()
Labels required? no
Size of auto variables and function

parameters in tasks
total size must not exceed 254 8-bit

bytes
Memory & Registers

Internal and external RAM
supported?

yes / yes (see section on external
memory)

Interrupts
Interrupt latency in context

switcher 2 cycles

Interrupts in critical sections
controlled via user hooks

Default behavior in critical sections see example user hooks
Debugging

Source-level debugging with Pro
library builds? yes

Compiler
Bitfield packing support? no
printf() / %p support? yes / yes
va_arg() support? yes

Table 1: Features of Salvo port to GNU's AVR-GCC
C/C++ compiler

Libraries

Nomenclature
The Salvo libraries for the AVR-GCC C/C++ compiler follow the
naming convention shown in Figure 1.

 Reference Manual

4 RM-GCCAVR Salvo Compiler Reference Manual – AVR-GCC

S alvo lib rary

lib s fg cc av r-a .a

typ e
f: freew are
l: s tandard

G C C -AV R
C C o m p ile r

co nfig ura tion
a : m u ltitask ing w ith de lays and ev en ts
d : m u ltitask ing w ith de lays
e : m u ltitask ing w ith ev en ts
m : m u ltitask ing on ly
t: m u ltitask ing w ith de lays and even ts ,

ta sks can w a it w ith tim eo

o ptio n
-: no o p tion
i: lib ra ry inc ludes debugg ing in fo rm a tion

ta rg et
av r: AV R and M egaAV R ,

128K B and sm a lle r
p rog ram m em ory

a tm 256 : M egaAV R w ith 256K B
and la rge r p rog ram
m em ory

Figure 1: Salvo library nomenclature – GNU's AVR-GCC
C/C++ C compiler

Type
Salvo Lite distributions contain freeware libraries. All other Salvo
distributions contain standard libraries. See the Libraries chapter of
the Salvo User Manual for more information on library types.

Target
Each library is intended for one or more specific processors with
internal SRAM. Table 1 lists the correct library for each AVR and
MegaAVR processor.

Target Code Processor(s)

avr:

AVR and megaAVR devices with up
to 128KB of program memory
(e.g. AT90S8515, ATmega16,

ATmega128). These libraries all use
the basic AVR instruction set.

atm256:

megaAVR devices with 256KB or
more of program memory

(e.g. ATmega2561). These libraries
use the extended AVR instruction

set.

Table 1: Processors for Salvo libraries GNU's AVR-GCC
C/C++ compiler

Option
Salvo Pro users can select between two sets of libraries – standard
libraries, and standard libraries incorporating source-level
debugging information.3 The latter have been built with the AVR-
GCC C/C++ compiler's -g command-line option. This adds
source-level debugging information to the libraries, making them

 Reference Manual

RM-GCCAVR Salvo Compiler Reference Manual – AVR-GCC

5

ideal for source-level debugging and stepping in the AVRStudio
IDE. To use these libraries, simply select one that includes the
debugging information (e.g. libsalvolgccavrit.a) instead of
one without (e.g. libsalvolgccavr-t.a) in your project.

Configuration
Different library configurations are provided for different Salvo
distributions and to enable the user to minimize the Salvo kernel's
footprint. See the Libraries chapter of the Salvo User Manual for
more information on library configurations.

Build Settings
Salvo's libraries for the AVR-GCC C/C++ compiler are built using
the default settings outlined in the Libraries chapter of the Salvo
User Manual. Target-specific settings and overrides are listed in
Table 2.

Target-specific Settings
Delay sizes 8 bits

Idling hook dummy,
can be overridden

Interrupt hook disables then restores GIE bit,
can be overridden

Watchdog hook clears WDT without other changes,
can be overridden

System tick counter available, 32 bits
Task priorities enabled

Table 2: Build settings and overrides for Salvo libraries
for GNU's AVR-GCC C/C++ compiler

Note Salvo Lite libraries have precompiled limits for the number
of supported tasks, events, etc. Salvo LE and Pro libraries have no
such limits. See the Libraries chapter of the Salvo User Manual for
more information.

Available Libraries
There are a total of 22 Salvo libraries for the AVR-GCC C/C++
compiler. Each Salvo for Atmel AVR and MegaAVR distribution
contains the Salvo libraries of the lesser distributions beneath it.

 Reference Manual

6 RM-GCCAVR Salvo Compiler Reference Manual – AVR-GCC

Target-Specific Salvo Source Files
The source file salvoportgccavr.S is needed for Salvo Pro
source-code builds for targets with up to 128KB program memory
space.

The source file salvoportgccavr256.S is needed for Salvo Pro
source-code builds for targets with 256KB and greater program
memory space.

Note Never re-name portgccavrXXX.S to portgccavrXXX.s, as
the makefile treats these as two different files. The .S file is a user
ASM code, whereas the .s file is an intermediate file generated by
AVR-GCC that can be deleted.

salvocfg.h Examples
Below are examples of salvocfg.h project configuration files for
different Salvo for Atmel AVR and MegaAVR distributions.

Salvo Lite Library Build
#include <avr/io.h>
#define OSUSE_LIBRARY TRUE
#define OSLIBRARY_TYPE OSF
#define OSLIBRARY_CONFIG OST
#define OSTASKS 2
#define OSEVENTS 4
#define OSEVENT_FLAGS 0
#define OSMESSAGE_QUEUES 1

Listing 1: Example salvocfg.h for library build using
libsalvofgccavr-t.a

Salvo LE & Pro Library Build
#include <avr/io.h>
#define OSUSE_LIBRARY TRUE
#define OSLIBRARY_TYPE OSL
#define OSLIBRARY_CONFIG OST
#define OSTASKS 7
#define OSEVENTS 13
#define OSEVENT_FLAGS 3
#define OSMESSAGE_QUEUES 2

Listing 2: Example salvocfg.h for library build using
libsalvolgccavr-t.a

 Reference Manual

RM-GCCAVR Salvo Compiler Reference Manual – AVR-GCC

7

Salvo Pro Source-Code Build
#include <avr/io.h>
#define OSENABLE_IDLING_HOOK TRUE
#define OSENABLE_SEMAPHORES TRUE
#define OSTASKS 9
#define OSEVENTS 17
#define OSEVENT_FLAGS 2
#define OSMESSAGE_QUEUES 4

Listing 3: Example salvocfg.h for source-code build

Performance

Memory Usage
tutorial memory usage4 total ROM5 total RAM6

\AVR\AT90S8515\…\tut5lite 2472 58
\AVR\AT90S8515\…\tut5le 2448 58
\AVR\AT90S8515\…\tut5pro 3610 57

Table 3: ROM and RAM requirements for Salvo
applications built with GNU's AVR-GCC C/C++ compiler

User Hooks

Overriding Default Hooks
In library builds, users can define new hook functions in their
projects and the linker will choose the user function(s) over the
default function(s) contained in the Salvo library.

In source-code builds, users can remove the default hook file(s)
from the project and substitute their own hook functions.

Idling
The default idling hook in salvohook_idle.c is a dummy
function, as shown below.

void OSIdlingHook (void)
{
 ;
}

Listing 4: Default Salvo idling hook for GNU's AVR-GCC
C/C++ compiler

 Reference Manual

8 RM-GCCAVR Salvo Compiler Reference Manual – AVR-GCC

Users can replace it (e.g. with a directive to put the AVR to sleep)
by building their own version with their application.

Interrupt
The default interrupt hooks in salvohook_interrupt.c are
shown below.7

static uint8_t sreg;

void OSDisableHook(void)
{
 uint8_t sreg_local;

 sreg_local = SREG;
 cli();
 sreg = sreg_local;
}

void OSEnableHook(void)
{
 SREG = sreg;
}

Listing 5: Default Salvo interrupt hooks GNU's AVR-GCC
C/C++ compiler

These functions clear the GIE bit (i.e. disable global interrupts)
across Salvo's critical section, and restore the bit to its previous
value thereafter. These hooks are suitable for all applications.
These hooks work very well within Salvo services called from
interrupts, as the GIE bit is automatically cleared upon entry to an
interrupt. Therefore interrupts are not re-enabled at the end of a
Salvo service that is called in an ISR. This avoids unnecessary
interrupt nesting. The use of the auto variable sreg_local avoids
issues that would affect the shared global sreg when a Salvo
service is called from within an ISR.

Note Not disabling all source of interrupts that call Salvo services
during critical sections will cause the Salvo application to fail.

Watchdog
The default watchdog hook in salvohook_wdt.c is shown below.8

void OSClrWDTHook (void)
{

 Reference Manual

RM-GCCAVR Salvo Compiler Reference Manual – AVR-GCC

9

 wdt_reset();
}

Listing 6: Default Salvo watchdog hook for GNU's AVR-
GCC C/C++ compiler

Users can replace it (e.g. with a dummy function – this would stop
Salvo from clearing the watchdog timer and allow the user to clear
it elsewhere) by building their own version with their application.

Compiler Issues

Incompatible Optimizations
All compiler optimizations (-O1, -O2 & -O3) are currently
incompatible with Salvo code and Salvo tasks. Users should build
their projects with optimizations off (-O0).

Other code (e.g. user functions, non-Salvo libraries, etc.) can be
used with compiler optimizations without issues.

A solution to allow compiler optimizations to be used with Salvo
code and Salvo tasks is currently under development.

Register R1
The avr-libc library which is an integral part of AVR-GCC
assumes register R1 will always have a 0 value, and Salvo does not
modify this register.

Special Considerations

ATmega2560/2561 (256KB and greater program memory)
GNU's AVR-GCC C/C++ compiler does not yet fully support
function pointers that span the 256KB or greater program memory
space. Salvo supports these parts by considering only the low-order
16 bits of each task function pointer (tFP). Therefore Salvo tasks
can only be located in the lower 128KB of program memory space.

When building a Salvo application for 256KB or greater program
memory space from Salvo libraries or Salvo source code, be sure

 Reference Manual

10 RM-GCCAVR Salvo Compiler Reference Manual – AVR-GCC

to use the library or source code modules appropriate for the larger
program memory model.

Stack Issues
The AVR-GCC compiler uses the same stack for return addresses
and for local storage. The Y pointer (R29:R28) is used as a frame
pointer.

Compared to a non-Salvo, non-multitasking application with
similar call trees, the corresponding Salvo application will require
an additional 4 bytes (i.e. one return addresses) in the hardware
stack9.

External SRAM
Salvo's global objects10 can be placed in internal or external RAM.
The placement of data objects is controlled by linker options, and
takes the format -Wl,-Tdata=0x800000+start for relocationg
the program data section (ie: variable storage) where the
0x800000+start means hex address with an 0x800000 offset. There
is no end location, it is your responsibility as a programmer to not
use more RAM than you have. For example:

AVR-GCC … -Wl,-Tdata=0x800260 …

specifies that the data program area start at 0x260 (the end of
internal SRAM). This could be added to your makefile with the
rest of the linker flags (normally called LFLAGS), and in fact your
makefile may already be set up for working with external SRAM.
If you do this you also have to make sure the processor hardware is
set up to use external RAM. It is best to do this as early as
possible, in fact the absolute best way is to make a file called
xram.S, and fill it with something like this:

;; begin xram.S

#include <avr/io.h>

 .section .init1,"ax",@progbits

 ldi r16,(1<<SRE) | (1<<SRW)
 out _SFR_IO_ADDR(MCUCR),r16

;; end xram.S

This would work for the AT90S8515, enabling the external XRAM
with one wait state. The file should be added to your project. Note

 Reference Manual

RM-GCCAVR Salvo Compiler Reference Manual – AVR-GCC

11

that the code executed in that file takes place very early on, before
anything like the stack has been set up.

Data Segments
The RAMPD register is normally used to access the entire data space
on processors with more than 64K bytes data space. There are no
provisions for accessing Salvo's global objects outside of the
current data segment of 64K bytes.

Credits & Acknowledgements
Colin O'Flynn originally wrote the Salvo context switcher in
salvoportgccavr.S, created the Salvo project makefile system
for the Salvo v3 port to AVR-GCC, and wrote much of the
documentation surrounding the Salvo v3 port to GNU's AVR-GCC
compiler. Colin is active in the AVR community and is the author
of various AVR-centric material to be found at the popular AVR
Freaks (http://www.avrfreaks.net/) website.

1 tinyAVR devices are not supported because of their lack of RAM.
2 This is done automatically through the __GNUC__ and __AVR __ symbols

defined by the compiler.
3 The Salvo libraries provided with Salvo Lite and LE do not contain AVR-

GCC-debugger-compatible debugging information because this requires the
inclusion of source file listings.

4 Salvo 4.1.2 with WinAVR release 20071221rc1.
5 .text + .data + .bootloader sections, in bytes, with optimization setting

of -O0.
6 .data + .bss + .noinit sections, in bytes, with optimization setting of -O0.
7 This hook is valid for all AVR and MegaAVR targets because the register and

GIE bit locations are the same for all targets.
8 This hook is valid for all AVR and MegaAVR targets because the watchdog

control register is the same for all targets.
9 Salvo Pro application can reduce this by 2 bytes (one return address) by

inlining OSSched().
10 E.g. task control blocks, queue pointers, counters, etc.

http://www.avrfreaks.net/

	Salvo Compiler Reference Manual – AVR-GCC
	Related Documents
	Example Projects
	Features
	Libraries
	Nomenclature
	Type
	Target
	Option
	Configuration
	Build Settings
	Available Libraries

	Target-Specific Salvo Source Files
	salvocfg.h Examples
	Salvo Lite Library Build
	Salvo LE & Pro Library Build
	Salvo Pro Source-Code Build

	Performance
	Memory Usage

	User Hooks
	Interrupt
	Watchdog

	Compiler Issues
	Incompatible Optimizations
	Register R1

	Special Considerations
	ATmega2560/2561 (256KB and greater program memory)
	Stack Issues
	External SRAM
	Data Segments

	Credits & Acknowledgements

