

RM-IAR18
Reference Manual

750 Naples Street • San Francisco, CA 94112 • (415) 584-6360 • http://www.pumpkininc.com

© Copyright 2003 Pumpkin, Inc. last updated on Jul 24, 2003
All trademarks mentioned herein are properties of their respective companies.

Salvo Compiler Reference Manual
– IAR PIC18 C

 Reference Manual

2 RM-IAR18 Salvo Compiler Reference Manual – IAR PIC18 C

Introduction
This manual is intended for Salvo users who are targeting
Microchip (http://www.microchip.com/) PIC18 PICmicro® MCUs
with IAR's (http://www.iar.com/) PIC18 C compiler.

Related Documents
The following Salvo documents should be used in conjunction
with this manual when building Salvo applications with IAR's
PIC18 C compiler:

Salvo User Manual
Application Note AN-14

Example Projects
Example Salvo projects for use with IAR's PIC18 C compiler and
the Microchip MPLAB v5.x IDE can be found in the:

\salvo\ex\ex1\sysp
\salvo\tut\tu1\sysp
\salvo\tut\tu2\sysp
\salvo\tut\tu3\sysp
\salvo\tut\tu4\sysp
\salvo\tut\tu5\sysp
\salvo\tut\tu6\sysp

directories of every Salvo for Microchip PICmicro® MCUs
distribution.

Features
Table 1 illustrates important features of Salvo's port to IAR's
PIC18 C compiler.

http://www.microchip.com/
http://www.iar.com/

 Reference Manual

RM-IAR18 Salvo Compiler Reference Manual – IAR PIC18 C

3

general
available distributions Salvo Lite, LE & Pro

for Microchip PICmicro® MCUs
supported targets PIC18 PICmicro® MCUs
header file(s) portiar18.h
other target-specific file(s) portpic18.c
project subdirectory name(s) SYSP

salvocfg.h
compiler auto-detected? yes1

libraries
\salvo\lib subdirectory iar18

context switching
method via

OSCtxSw(label)
_OSLabel() required? no
size of auto variables and

function parameters in tasks unrestricted

memory
memory models supported small and large

interrupts

controlled via
GIEL and/or GIEH bits. Controlled
via OSPIC18_INTERRUPT_MASK

configuration option
interrupt status preserved in

critical sections? yes

method used
external function to mimic operation
of __monitor keyword, with flexibility

to control GIEL and/or GIEH
nesting limit 8 levels
alternate methods possible? yes2

debugging
source-level debugging? yes

compiler
bitfield packing support? no
printf() / %p support? yes / yes
va_arg() support? yes

Table 1: Features of Salvo Port to IAR's PIC18 C
Compiler

Compiler Optimizations

Incompatible Optimizations
None of IAR's PIC18 C compiler's optimizations are known to be
incompatible with Salvo.3

 Reference Manual

4 RM-IAR18 Salvo Compiler Reference Manual – IAR PIC18 C

Libraries

Nomenclature
The Salvo libraries for IAR's PIC18 C compiler follow the naming
convention shown in Figure 1.

Salvo library

sfiar18-slna.r49

type
f: freeware
l: standard

IAR PIC18C
C Compiler

configuration
a: multitasking with delays and events
d: multitasking with delays
e: multitasking with events
m: multitasking only
t: multitasking with delays and events,

tasks can wait with timeouts

option
-: no option
i: library includes debugging

information

memory type for global Salvo objects
f: far - objects are __no_init __bank qualified
n: near - objects are __no_init __bank0 qualified

memory model
l: large (<=2MB address space)
s: small (<=64KB address space)*code model

o: static overlay*
s: stack * italicized items are not currently supported

Figure 1: Salvo Library Nomenclature – IAR's PIC18 C
Compiler

Type
Salvo Lite distributions contain freeware libraries. All other Salvo
distributions contain standard libraries. See the Libraries chapter of
the Salvo User Manual for more information on library types.

Target
No target-specific identifiers are required.

Option
Salvo Pro users can select between two sets of libraries – standard
libraries, and standard libraries incorporating source-level
debugging information. The latter have been built with IAR's
PIC18 C compiler C compiler's --debug command-line option.
This adds source-level debugging information to the libraries,
making them ideal for source-level debugging and stepping in the
C-SPY debugger. To use these libraries, simply select one that
includes the debugging information (e.g. sliar18islna.r49)

 Reference Manual

RM-IAR18 Salvo Compiler Reference Manual – IAR PIC18 C

5

instead of one without (e.g. sliar18-slna.r49) in your
Embedded Workbench project.

Code Model
Currently, only the IAR PIC18 C compiler's stack code model is
supported. This allows for reentrancy, etc.

Memory Model
Currently, only the IAR PIC18 C compiler's large memory model
is supported. In library builds, the memory model applied to all of
the source files must match that used in the library. For source-
code builds, the same memory model must be applied to all of the
source files.

memory model code description

l / OSL:
Large memory model. Program

space is a maximum of 1M words
(2MB).

s / OSS:
Small memory model. Program

space is a maximum of 32K words
(64KB).

Table 2: Memory Models for Salvo Libraries – IAR's
PIC18 C Compiler

Note Unlike the library configuration and variant options
specified in the salvocfg.h file for a library build, none is
specified for the selected memory model. Therefore particular
attention must be paid to the memory model settings used to build
an application. The memory model is usually specified on a node-
by-node basis inside an IDE (e.g. MPLAB).

Memory Type for Global Salvo Objects
You can choose the memory type for Salvo's global objects in your
application by choosing the appropriate library. near type objects
can be accessed the fastest, but consume precious RAM in the
Access Bank. far type objects will be placed in banked RAM,
which will result in slower accesses. The global object codes are
listed in Table 3.

 Reference Manual

6 RM-IAR18 Salvo Compiler Reference Manual – IAR PIC18 C

memory type code description

f / OSF:
Salvo objects are declared as type
__no_init __bank, and will be

located in banked RAM.

n / OSN:

Salvo objects are declared as type
__no_init __bank0, and will be

located in the first 128 bytes of
internal RAM (i.e. in access RAM).

Table 3: Memory Types for Salvo Libraries – IAR's PIC18
C Compiler

The code required to access Salvo's global objects (e.g. the task
control blocks, or tcbs) will vary in size and speed depending on
where the objects are located. __bank0 type objects can be
accessed the fastest, but consume precious RAM in the Access
Bank. __bank type objects will be placed in banked RAM, which
will result in slower accesses.

Since there are only 128 bytes of access RAM in the PIC18
architecture, in larger applications it may be necessary to place
Salvo's global objects in banked RAM.

Configuration
Different library configurations are provided for different Salvo
distributions and to enable the user to minimize the Salvo kernel's
footprint. See the Libraries chapter of the Salvo User Manual for
more information on library configurations.

Build Settings
Salvo's libraries for IAR's PIC18 C compiler are built using the
default settings outlined in the Libraries chapter of the Salvo User
Manual. Target-specific settings and overrides are listed in Table 4.

 Reference Manual

RM-IAR18 Salvo Compiler Reference Manual – IAR PIC18 C

7

compiled limits
max. number of tasks 3
max. number of events 5
max. number of event flags4 1
max. number of message

queues5 1

target-specific settings
delay sizes 8 bits
idling hook enabled
interrupt-enable bits during

critical sections GIEH = GIEL = 0

message pointers can point to ROM or RAM
Salvo objects far
system tick counter available, 32 bits
task priorities enabled
watchdog timer cleared in OSSched().

Table 4: Build Settings and Overrides for Salvo Libraries
for IAR's PIC18 C Compiler

Note The compiled limits for tasks, events, etc. in Salvo libraries
can be overridden to be less (all Salvo distributions) or more (all
Salvo distributions except Salvo Lite) than the library default. See
the Libraries chapter of the Salvo User Manual for more
information.

Available Libraries
There are 20 Salvo libraries for IAR's PIC18 C compiler. Each
Salvo for Microchip PICmicro® MCUs distribution contains the
Salvo libraries of the lesser distributions beneath it.

salvocfg.h Examples
Below are examples of salvocfg.h project configuration files for
different Salvo for PICmicro® MCUs distributions targeting the
PIC18C452.

Note When overriding the default number of tasks, events, etc. in
a Salvo library build, OSTASKS and OSEVENTS (respectively) must
also be defined in the project's salvocfg.h. If left undefined, the
default values (see Table 4) will be used.

Salvo Lite Library Build
#define OSUSE_LIBRARY TRUE

 Reference Manual

8 RM-IAR18 Salvo Compiler Reference Manual – IAR PIC18 C

#define OSLIBRARY_TYPE OSF
#define OSLIBRARY_GLOBALS OSF
#define OSLIBRARY_CONFIG OSA

Listing 1: Example salvocfg.h for Library Build Using
sfiar18-slfa.lib

Salvo LE & Pro Library Build
#define OSUSE_LIBRARY TRUE
#define OSLIBRARY_TYPE OSL
#define OSLIBRARY_GLOBALS OSF
#define OSLIBRARY_CONFIG OSA

Listing 2: Example salvocfg.h for Library Build Using
sliar18-slfa.lib

Salvo Pro Source-Code Build
#define OSENABLE_IDLING_HOOK TRUE
#define OSENABLE_SEMAPHORES TRUE
#define OSEVENTS 1
#define OSIAR_PIC18_ATTR_ALL __no_init
#define OSLOC_ALL __bank0
#define OSTASKS 3

Listing 3: Example salvocfg.h for Source-Code Build

 Reference Manual

RM-IAR18 Salvo Compiler Reference Manual – IAR PIC18 C

9

Performance

Memory Usage
tutorial memory usage6 total ROM7 total RAM8

tu1lite 494 11
tu2lite 858 24
tu3lite 942 26
tu4lite 1902 34
tu5lite 3042 53
tu6lite 3632 56
tu6pro9 3338 52

Table 5: ROM and RAM requirements for Salvo
Applications built with IAR's PIC18 C Compiler

Special Considerations

Stack Issues
For architectural reasons, IAR's PIC18 C compiler passes
parameters on a software stack, and uses the PIC18's hardware
stack for call…return addresses. While the compiler supports
both stack (reentrant) and static overlay models, Salvo supports
only the stack model.

Locating Global Salvo Objects in Source-Code Builds
With IAR's PIC18 C compiler, the initialization of Salvo's global
objects can be controlled en masse through the
OSIAR_PIC18_ATTR_ALL configuration option. When set to
__no_init, Salvo's global objects will not be initialized. This is
useful in cases where you wish to maintain Salvo's state across
wake-from-sleep resets, etc. When used thusly, OSInit() must be
called to initialize Salvo's global objects at least once.

To selectively place certain Salvo global objects in access or
banked RAM, set Salvo's OSLOC_XYZ configuration parameters to
__bank, __bank0, etc..

 Reference Manual

10 RM-IAR18 Salvo Compiler Reference Manual – IAR PIC18 C

Interrupt Control
The PIC18 architecture supports two distinct priority levels. When
enabled, two separate global-interrupt-enable bits, GIEH and GIEL,
are used to control high- and low-priority interrupts, respectively.

Interrupts are automatically disabled within Salvo's critical
sections. By default, both GIEH and GIEL are reset (i.e. made 0)
during critical sections. This is controlled by Salvo's
OSPIC18_INTERRUPT_MASK configuration option (default value:
0xC0).

Salvo Pro users can reconfigure the way in which interrupts are
disabled during critical sections by redefining
OSPIC18_INTERRUPT_MASK in the project's salvocfg.h. For
example, if Salvo services (e.g. OSTimer()) are called only from
low-priority interrupts, then a value of 0x40 for
OSPIC18_INTERRUPT_MASK ensures that only low-priority
interrupts are disabled during a Salvo critical section. In this
configuration, high-priority interrupts will therefore be unaffected
by Salvo. This is especially useful when high-rate interrupts are
present.

1 This is done automatically through the __IAR_SYSTEMS_ICC__ and __TID__

symbols defined by the compiler.
2 Via either in-line assembly or a function call.
3 As of v2.10, the __monitor keyword was known to behave incorrectly.
4 Each event flag has RAM allocated to its own event flag control block.
5 Each message queue has RAM allocated to its own message queue control

block.
6 Salvo v3.2.1 with IAR PIC18 C v2.10A.
7 In bytes.
8 In bytes, all banks, udata. Does not include stack (default: 0x130 bytes).

Salvo global objects are in access RAM (near).
9 Salvo Pro build differs slightly from Salvo Lite build due to configuration –

see tutorial's salvocfg.h.

	Salvo Compiler Reference Manual – IAR PIC18 C
	Introduction
	Related Documents
	Example Projects
	Features
	Compiler Optimizations
	Incompatible Optimizations

	Libraries
	Nomenclature
	Type
	Target
	Option
	Code Model
	Memory Model
	Memory Type for Global Salvo Objects
	Configuration
	Build Settings
	Available Libraries

	salvocfg.h Examples
	Salvo Lite Library Build
	Salvo LE & Pro Library Build
	Salvo Pro Source-Code Build

	Performance
	Memory Usage

	Special Considerations
	Stack Issues
	Locating Global Salvo Objects in Source-Code Builds
	Interrupt Control

