

RM-IARARM
Reference Manual

750 Naples Street • San Francisco, CA 94112 • (415) 584-6360 • http://www.pumpkininc.com

created by Andrew E. Kalman on Sep 10, 2007 updated on Sep 10, 2007
All trademarks mentioned herein are properties of their respective companies.

Salvo Compiler Reference Manual
– IAR Embedded Workbench for
ARM

 Reference Manual

2 RM-MCC30 Salvo Compiler Reference Manual – IAR Embedded Workbench for ARM

Introduction
This manual is intended for Salvo users who are targeting ARM
ARM7TDMI single-chip microcontrollers with IAR's
(http://www.iar.com/) Embedded Workbench for ARM
development suite.

Related Documents
The following Salvo documents should be used in conjunction
with this manual when building Salvo applications with IAR
Embedded Workbench for ARM:

Salvo User Manual

Example Projects
Example Salvo projects for use with IAR Embedded Workbench
for ARM can be found in the:

\Pumpkin\Salvo\Example\ARM

directories of every Salvo for ARM® distribution.

Features
Table 1 illustrates important features of Salvo's port to IAR
Embedded Workbench for ARM.

http://www.iar.com/

 Reference Manual

RM-MCC30 Salvo Compiler Reference Manual – IAR Embedded Workbench for ARM

3

General
Abbreviated as IARARM

Available distributions Salvo Lite, LE & Pro
for ARM®

Supported targets all ARM7TDMI-based devices
Header file(s) salvoportiararm.h

Other target-specific file(s) salvoportiararm.s79,
salvohook_interrupt_IRQ.c

salvocfg.h
Compiler auto-detected? yes1
Include target-specific header file

in salvocfg.h? recommended

Libraries
Behavior of user hooks in

libraries do nothing (dummy functions)

Located in Lib\IARARM-v4
Context Switching

Method function-based via
OSDispatch() & OSCtxSw()

Labels required? no
Size of auto variables and

function parameters in tasks
total size must not exceed 65,535

8-bit bytes
Interrupts

Interrupt latency in context
switcher 0 cycles

Interrupts in critical sections
controlled via

OSDisableHook(),
OSEnableHook(),
OSRestoreHook(),
OSSaveHook()

Interrupt status preserved in
critical sections?

optional, via appropriate user
functions

Method used in critical sections see example user functions
Debugging

Source-level debugging with Pro
library builds? yes

Compiler
Bitfield packing support? no
printf() / %p support? yes / yes
va_arg() support? yes

Table 1: Features of Salvo port to IAR Embedded
Workbench for ARM

Libraries

Nomenclature
The Salvo libraries for IAR Embedded Workbench for ARM
follow the naming convention shown in Figure 1.

 Reference Manual

4 RM-MCC30 Salvo Compiler Reference Manual – IAR Embedded Workbench for ARM

Salvo library

salvoliararm4ltiit.r79

type
f: freeware
l: standard

configuration
a: multitasking with delays and events
d: multitasking with delays
e: multitasking with events
m: multitasking only
t: multitasking with delays and events,

tasks can wait with timeouts

option
-: no option
i: library includes debugging information

IAR Embedded
Workbench for ARM

ARM7TDMI

endianness
b: big-endian
l: little-endian

interworking
-: no interworking
i: interworking enabled

mode
a: ARM mode
t: Thumb mode

Figure 1: Salvo library nomenclature – IAR Embedded
Workbench for ARM

Type
Salvo Lite distributions contain freeware libraries. All other Salvo
distributions contain standard libraries. See the Libraries chapter of
the Salvo User Manual for more information on library types.

Target
Since the CPU instruction set is common to all target architectures
based on the ARM7TDMI core, all ARM7TDMI targets use the
same Salvo libraries.

Note There is no target-specific dependence apart from whether
the target operates in little- or big-endian mode.

Option
Salvo Pro users can select between two sets of libraries – standard
libraries, and standard libraries incorporating source-level
debugging information. The latter have been built with the
appropriate command-line options. This adds source-level
debugging information to the libraries, making them ideal for
source-level debugging and stepping in C-SPY. To use these
libraries, simply select one that includes the debugging information
(e.g. salvoliararm4ltiit.r79) instead of one without (e.g.
salvoliararm4lti-t.r79) in your Embedded Workbench
project.

 Reference Manual

RM-MCC30 Salvo Compiler Reference Manual – IAR Embedded Workbench for ARM

5

Configuration
Different library configurations are provided for different Salvo
distributions and to enable the user to minimize the Salvo kernel's
footprint. See the Libraries chapter of the Salvo User Manual for
more information on library configurations.

Build Settings
Salvo's libraries for IAR Embedded Workbench for ARM are built
using the default settings outlined in the Libraries chapter of the
Salvo User Manual. Target-specific settings and overrides are
listed in Table 2.

Compiled Limits
Max. number of tasks 4
Max. number of events 8
Max. number of event flags 1
Max. number of message

queues 1

Target-specific Settings
Delay sizes 8 bits
Idling hook enabled
Interrupt-enable bits during

critical sections controlled via user functions

System tick counter available, 32 bits
Task priorities enabled
Watchdog timer controlled via user functions

Table 2: Build settings and overrides for Salvo libraries
for IAR Embedded Workbench for ARM

Note The compiled limits for tasks, events, etc. in Salvo libraries
can be overridden to be less (all Salvo distributions) or more (all
Salvo distributions except Salvo Lite) than the library default. See
the Libraries chapter of the Salvo User Manual for more
information.

Available Libraries
Salvo Lite for ARM contains four freeware libraries in a single
configuration. Salvo LE for ARM adds standard libraries in
multiple configurations. Salvo Pro for ARM adds standard libraries
in multiple configurations with debugging information included.

Each Salvo for ARM distribution contains the Salvo libraries of the
lesser distributions beneath it. Additionally, Salvo Pro distributions
contain makefiles for all possible library configurations.

 Reference Manual

6 RM-MCC30 Salvo Compiler Reference Manual – IAR Embedded Workbench for ARM

Target-Specific Salvo Source Files

salvoportiararm.s79
The source file salvoportiararm.s79 is required for Salvo Pro
source-code builds.

ARM vs. Thumb Mode
By default, salvoportiararm.s79 is assembled for Thumb mode.
To assemble it for ARM mode, ensure that the symbol
MAKE_FOR_ARM is defined during assembly, e.g. from the command
line or via Embedded Workbench.

Big-Endian vs. Little-Endian
salvoportiararm.s79 can be assembled for little-endian
(assembler default) and big-endian (assembler command-line
argument: -e) targets without any modifications.

Interworking
salvoportiararm.s79 can be assembled independent of any
interworking settings.

salvocfg.h Examples
Below are examples of salvocfg.h project configuration files for
various different Salvo distributions and the ARM7TDMI core.

Salvo Lite Library Build
#define OSUSE_LIBRARY TRUE
#define OSLIBRARY_TYPE OSF
#define OSLIBRARY_CONFIG OST
#define OSTASKS 3
#define OSEVENTS 4
#define OSEVENT_FLAGS 0
#define OSMESSAGE_QUEUES 1

Listing 1: Example salvocfg.h for library build using
salvofiararm4lti-t.r79

 Reference Manual

RM-MCC30 Salvo Compiler Reference Manual – IAR Embedded Workbench for ARM

7

Salvo LE & Pro Library Build
#define OSUSE_LIBRARY TRUE
#define OSLIBRARY_TYPE OSL
#define OSLIBRARY_CONFIG OSA
#define OSTASKS 7
#define OSEVENTS 11
#define OSEVENT_FLAGS 0
#define OSMESSAGE_QUEUES 4

Listing 2: Example salvocfg.h for library build using
salvoliararm4lti-a.r79 or salvoliararm4ltiia.r79

Salvo Pro Source-Code Build
#define OSEVENTS 9
#define OSEVENT_FLAGS 1
#define OSMESSAGE_QUEUES 2
#define OSTASKS 17

#define OSENABLE_BINARY_SEMAPHORES TRUE
#define OSENABLE_IDLING_HOOK TRUE
#define OSENABLE_TIMEOUTS TRUE
#define OSBYTES_OF_DELAYS 1
#define OSBYTES_OF_TICKS 4

Listing 3: Example salvocfg.h for source-code build

Performance

Interrupt Latencies
Since Salvo's context switcher for IAR Embedded Workbench for
ARM does not need to control interrupts, Salvo applications can
easily be created with zero total interrupt latency for interrupts of
interest.

In a properly-configured application, only those interrupts that call
Salvo services will experience interrupt latency from Salvo's
operations. Users must ensure that these interrupt sources are
disabled (and re-enabled) via the user interrupt hooks.

Disabling and re-enabling interrupts globally in the user interrupt
hooks (i.e., the default user interrupt hook behavior) is of course
permitted, but will result in non-zero interrupt latencies for all
interrupt sources, even those that do not call Salvo services. See
the target-specific source files of this distribution for examples.

 Reference Manual

8 RM-MCC30 Salvo Compiler Reference Manual – IAR Embedded Workbench for ARM

Memory Usage
Examples of the total memory usage of actual Salvo-based
applications are listed below.

Example Application2 Program Memory
Usage3

Data Memory
Usage4

tut5lite (for ARM7TDMI
core) 1844 147

tut5le (for ARM7TDMI
core) 1800 147

tut5pro (for ARM7TDMI
core) 2156 143

Table 3: Program and data memory requirements for
Salvo applications built with IAR Embedded Workbench

for ARM

1 This is done automatically through the OSIAR_ICC and __TID__ symbols

defined by the compiler.
2 Salvo 4.0.0.
3 In bytes. Entire CODE section.
4 In bytes. Entire DATA_Z section. This represents all of Salvo's objects. Does

not include RAM allocated to the heap or stack. Salvo applications typically
require the same (small) stack size as simple, non-multitasking applications.

	Salvo Compiler Reference Manual – IAR Embedded Workbench for ARM
	Introduction
	Related Documents

	Salvo User Manual
	Example Projects
	Features
	Libraries
	Nomenclature
	Type

	Salvo Lite distributions contain freeware libraries. All other Salvo distributions contain standard libraries. See the Libraries chapter of the Salvo User Manual for more information on library types.
	Salvo Lite distributions contain freeware libraries. All other Salvo distributions contain standard libraries. See the Libraries chapter of the Salvo User Manual for more information on library types.
	
	Target
	Option
	Configuration

	Different library configurations are provided for different Salvo distributions and to enable the user to minimize the Salvo kernel's footprint. See the Libraries chapter of the Salvo User Manual for more information on library configurations.
	Different library configurations are provided for different Salvo distributions and to enable the user to minimize the Salvo kernel's footprint. See the Libraries chapter of the Salvo User Manual for more information on library configurations.
	
	Build Settings

	Salvo's libraries for IAR Embedded Workbench for ARM are built using the default settings outlined in the Libraries chapter of the Salvo User Manual. Target-specific settings and overrides are listed in Table 2.
	Salvo's libraries for IAR Embedded Workbench for ARM are built using the default settings outlined in the Libraries chapter of the Salvo User Manual. Target-specific settings and overrides are listed in Table 2.
	Note The compiled limits for tasks, events, etc. in Salvo libraries can be overridden to be less (all Salvo distributions) or more (all Salvo distributions except Salvo Lite) than the library default. See the Libraries chapter of the Salvo User Manual fo
	Note The compiled limits for tasks, events, etc. in Salvo libraries can be overridden to be less (all Salvo distributions) or more (all Salvo distributions except Salvo Lite) than the library default. See the Libraries chapter of the Salvo User Manual fo
	
	Available Libraries

	Target-Specific Salvo Source Files
	salvoportiararm.s79
	ARM vs. Thumb Mode
	Big-Endian vs. Little-Endian
	Interworking

	salvocfg.h Examples
	Salvo Lite Library Build
	Salvo LE & Pro Library Build
	Salvo Pro Source-Code Build

	Performance
	Interrupt Latencies
	Memory Usage

