

RM-IARAVR
Reference Manual

750 Naples Street • San Francisco, CA 94112 • (415) 584-6360 • http://www.pumpkininc.com

© Copyright 2003 Pumpkin, Inc. last updated on Jun 5, 2008
All trademarks mentioned herein are properties of their respective companies.

Salvo Compiler Reference Manual
– IAR AVR C

 Reference Manual

2 RM-IARAVR Salvo Compiler Reference Manual – IAR AVR C

Introduction
This manual is intended for Salvo users who are targeting Atmel
(http://www.atmel.com/) AVR® and MegaAVR™
microcontrollers1 with IAR's (http://www.iar.com/) Embedded
Workbench for C AVR.

Related Documents
The following Salvo documents should be used in conjunction
with this manual when building Salvo applications with IAR's
AVR C compiler:

• Salvo User Manual

Example Projects
Example Salvo projects for use with IAR's AVR C compiler and
the Embedded Workbench IDE can be found in the:

\Pumpkin\Salvo\Example\AVR\AT90S8515

directories of every Salvo for Atmel AVR and MegaAVR
distribution.

Tip These example projects can be easily modified for any AVR
or MegaAVR device.

Features
Table 1 illustrates important features of Salvo's port to IAR's AVR
C compiler.

http://www.atmel.com/
http://www.iar.com/

 Reference Manual

RM-IARAVR Salvo Compiler Reference Manual – IAR AVR C

3

General
Abbreviated as IARAVR

Available distributions Salvo Lite, LE & Pro
for Atmel AVR and MegaAVR

Supported targets entire AVR and MegaAVR family
Header file(s) salvoportiaravr.h
Other target-specific file(s) salvoportiaravr.c

salvocfg.h
Compiler auto-detected? yes2
Include target-specific header file

in salvocfg.h? yes
Libraries

Located in

Lib\IARAVR-v2
(for v2.x compilers)
Lib\IARAVR-v3

(for v3.x compilers)
Lib\IARAVR-v4

(for v4.x compilers)
Context Switching

Method function-based via
OSDispatch() & OSCtxSw()

Labels required? no
Size of auto variables and

function parameters in tasks
total size must not exceed 254 8-bit

bytes
Memory & Registers

Internal and external RAM
supported?

yes / yes (see section on external
memory)

Register usage follows assembly language interface
Interrupts

Interrupt latency in context
switcher ?? cycles

Interrupts in critical sections
controlled via user hooks

Default behavior in critical
sections see example user hooks

Debugging
Source-level debugging with Pro

library builds? yes
Compiler

Bitfield packing support? no
printf() / %p support? yes / yes
va_arg() support? yes

Table 1: Features of Salvo port to IAR's AVR C compiler

 Reference Manual

4 RM-IARAVR Salvo Compiler Reference Manual – IAR AVR C

Libraries

Nomenclature
The Salvo libraries for IAR's AVR C compiler follow the naming
convention shown in Figure 1.

Salvo library

salvofiaravr1s-a.r90

type
f: freeware
l: standard

IAR AVR
C Compiler

configuration
a: multitasking with delays and events
d: multitasking with delays
e: multitasking with events
m: multitasking only
t: multitasking with delays and events,

tasks can wait with timeouts

option
-: no option
i: library includes

debugging informationgeneric target (see table)
0: -v0
1: -v1
2: -v2
3: -v3
4: -v4
5: -v5
6: -v6

memory model
l: large
s: small
t: tiny

Figure 1: Salvo Library Nomenclature – IAR's AVR C

Compiler

Note Each successive version of IAR's AVR C/C++ compiler
uses different library formats. Therefore independent sets of Salvo
libraries are available for each compiler version – see libraries in
Table 1, above.

Type
Salvo Lite distributions contain freeware libraries. All other Salvo
distributions contain standard libraries. See the Libraries chapter of
the Salvo User Manual for more information on library types.

Target
Each library is built using generic options and is intended for one
or more specific processors, based on the compiler's -v option
appropriate for the selected processor. Table 2 lists the correct
library for each AVR derivative.

 Reference Manual

RM-IARAVR Salvo Compiler Reference Manual – IAR AVR C

5

Target Code Processor(s)

0:

AT90S2313, AT90S2323,
AT90S2333, AT90S2343,

AT90S4433, ATtiny13, ATtiny22,
ATtiny26, ATtiny2313,

generic –v0

1:

AT90S4414, AT90S4434,
AT90S8515, AT90S8534,

AT90S8535, ATmega8, ATmega48,
ATmega8515, ATmega8535,

generic –v1
2: generic –v2

3:

ATmega16, ATmega32,
ATmega103, ATmega128,
ATmega161, ATmega162,
ATmega163, ATmega168,
ATmega169, ATmega323,

generic –v3
4: generic –v4
5: generic –v5
6: generic –v6

Table 2: Processors for Salvo libraries – IAR's AVR C
compiler

Note Table 2 is not exhaustive – if you are unsure which target
code to use with a Salvo library, refer to the Processor variant
section of the IAR AVR C compiler's Reference Manual.

Additionally, you can inspect the command-line options passed to
the compiler when building a Embedded Workbench project to
discover which processor variant is associated with your AVR
target.

When building your application with a Salvo library, you can
either specify a specific target (e.g. --cpu=8515) or a generic
target (e.g. –v1) to IAR's AVR C compiler.3 In either case, the
generic option associated with your target must match the Salvo
library's target code.

Memory Model
IAR's AVR C compiler's tiny, small and large memory models
are supported. In library builds, the memory model applied to all of
the source files must match that used in the library – a mismatch
will generate a link-time error with an obvious message. For
source-code builds, the same memory model must be applied to all
of the source files.

 Reference Manual

6 RM-IARAVR Salvo Compiler Reference Manual – IAR AVR C

Note Unlike the library configuration option specified in the
salvocfg.h file for a library build, none is specified for the
selected memory model. Therefore particular attention must be
paid to the memory model settings used to build an application.
The memory model is usually specified on a project-wide basis in
the Embedded Workbench IDE.

Option
Salvo Pro users can select between two sets of libraries – standard
libraries, and standard libraries incorporating source-level
debugging information.4 The latter have been built with IAR's
AVR C compiler C compiler's --debug command-line option. This
adds source-level debugging information to the libraries, making
them ideal for source-level debugging and stepping in the C-SPY
debugger. To use these libraries, simply select one that includes the
debugging information (e.g. salvoliaravr1tia.r90) instead of
one without (e.g. salvoliaravr1t-a.r90) in your Embedded
Workbench project.

Configuration
Different library configurations are provided for different Salvo
distributions and to enable the user to minimize the Salvo kernel's
footprint. See the Libraries chapter of the Salvo User Manual for
more information on library configurations.

Build Settings
Salvo's libraries for IAR's AVR C compiler are built using the
default settings outlined in the Libraries chapter of the Salvo User
Manual. Target-specific settings and overrides are listed in Table 2.

Target-specific Settings
Delay sizes 8 bits

Idling hook dummy,
can be overridden

Interrupt hook disables then restores GIE bit,
can be overridden

Watchdog hook clears WDT without other changes,
can be overridden

System tick counter available, 32 bits
Task priorities enabled

Table 3: Build settings and overrides for Salvo libraries
for IAR's AVR C compiler

 Reference Manual

RM-IARAVR Salvo Compiler Reference Manual – IAR AVR C

7

Note Salvo Lite libraries have precompiled limits for the number
of supported tasks, events, etc. Salvo LE and Pro libraries have no
such limits. See the Libraries chapter of the Salvo User Manual for
more information.

Available Libraries
There are a total of 330 Salvo libraries for IAR's AVR C compiler
– 165 for AVR C v2.x, and 165 for AVR C v3.x. Each Salvo for
Atmel AVR and MegaAVR distribution contains the Salvo
libraries of the lesser distributions beneath it.

Target-Specific Salvo Source Files
The source file salvoportiaravr.c is needed for Salvo Pro
source-code builds.

salvocfg.h Examples
Below are examples of salvocfg.h project configuration files for
different Salvo for Atmel AVR and MegaAVR distributions.

Salvo Lite Library Build
#define OSUSE_LIBRARY TRUE
#define OSLIBRARY_TYPE OSF
#define OSLIBRARY_CONFIG OST
#define OSTASKS 2
#define OSEVENTS 4
#define OSEVENT_FLAGS 0
#define OSMESSAGE_QUEUES 1

Listing 1: Example salvocfg.h for library build using
salvofiaravr1s-t.r90

Salvo LE & Pro Library Build
#define OSUSE_LIBRARY TRUE
#define OSLIBRARY_TYPE OSL
#define OSLIBRARY_CONFIG OST
#define OSTASKS 7
#define OSEVENTS 13
#define OSEVENT_FLAGS 3
#define OSMESSAGE_QUEUES 2

Listing 4: Example salvocfg.h for library build using
salvoliaravr3t-t.r90 or salvoliaravr4tit.r90

 Reference Manual

8 RM-IARAVR Salvo Compiler Reference Manual – IAR AVR C

Salvo Pro Source-Code Build
#define OSENABLE_IDLING_HOOK TRUE
#define OSENABLE_SEMAPHORES TRUE
#define OSTASKS 9
#define OSEVENTS 17
#define OSEVENT_FLAGS 2
#define OSMESSAGE_QUEUES 4

Listing 5: Example salvocfg.h for source-code build

Performance

Memory Usage

Example Application5 Program Memory
Usage6

Data Memory
Usage7

\AVR\…\tut5lite xx xx
\AVR\…\tut5le xx xx
\AVR\…\tut5pro xx xx

Table 4: ROM and RAM requirements for Salvo
applications built with IAR's AVR C compiler

User Hooks

Overriding Default Hooks
In library builds, users can define new hook functions in their
projects and the linker will choose the user function(s) over the
default function(s) contained in the Salvo library.

In source-code builds, users can remove the default hook file(s)
from the project and substitute their own hook functions.

Idling
The default idling hook in salvohook_idle.c is a dummy
function, as shown below.

void OSIdlingHook (void)
{
 ;
}

Listing 1: Default Salvo idling hook for IAR's AVR C
compiler

 Reference Manual

RM-IARAVR Salvo Compiler Reference Manual – IAR AVR C

9

Users can replace it (e.g. with a directive to put the AVR to sleep)
by building their own version with their application.

Interrupt
The default interrupt hooks in salvohook_interrupt.c is shown
below.8

static unsigned char s;

void OSDisableHook(void)
{
 unsigned char s_local;

 s_local = __save_interrupt();
 __disable_interrupt();
 s = s_local;
}

void OSEnableHook(void)
{
 __restore_interrupt(s);
}

Listing 2: Default Salvo interrupt hooks for IAR's AVR C
compiler

These functions clear the GIE bit (i.e. disable global interrupts)
across Salvo's critical section, and restore the bit to its previous
value thereafter. These hooks are suitable for all applications.
These hooks work very well within Salvo services called from
interrupts, as the GIE bit is automatically cleared upon entry to an
interrupt. Therefore interrupts are not re-enabled at the end of a
Salvo service that is called in an ISR. This avoids unnecessary
interrupt nesting. The use of the auto variable sreg_local avoids
issues that would affect the shared global sreg when a Salvo
service is called from within an ISR.

Note Not disabling all source of interrupts that call Salvo services
during critical sections will cause the Salvo application to fail.

Watchdog
The default watchdog hook in salvohook_wdt.c is shown below.9

void OSClrWDTHook (void)
{
 __watchdog_reset();

 Reference Manual

10 RM-IARAVR Salvo Compiler Reference Manual – IAR AVR C

}

Listing 3: Default Salvo watchdog hook for IAR's AVR C
compiler

Users can replace it (e.g. with a dummy function – this would stop
Salvo from clearing the watchdog timer and allow the user to clear
it elsewhere) by building their own version with their application.

Compiler Issues

Runtime Models and Compatible Libraries
The runtime models used by Embedded Workbench for AVR have
evolved over the years. When building an application with Salvo
libraries, it's necessary to link to the libraries compatible with the
version of Embedded Workbench for AVR that you are using.
Table 5 lists the locations of Salvo libraries as a function of the
Embedded Workbench for AVR version.

Embedded
Workbench for AVR

Version

IAR C
Compiler
Version

IAR
Runtime
Model

Salvo Library
Location

2.x v2.x 1 Lib\IARAVR-v2
3.x v3.x 1 Lib\IARAVR-v3
4.x v4.x 2 Lib\IARAVR-v4

Table 5: Compiler versions, runtime models and Salvo
library locations for IAR's AVR C compiler

Incompatible Optimizations
There are no known incompatibilities between IAR's AVR C
compiler and Salvo.

Special Considerations

Stack Issues
IAR's AVR C compiler uses two separate stacks – one for return
addresses (the hardware stack, RSTACK, which uses SP) and one for
local storage (the data stack, CSTACK, which uses Y).

 Reference Manual

RM-IARAVR Salvo Compiler Reference Manual – IAR AVR C

11

Compared to a non-Salvo, non-multitasking application with
similar call trees, the corresponding Salvo application will require
an additional 6 bytes (i.e. two return addresses and two saved
registers) in the hardware stack10.

The hardware stack and the software stack are set to the same
location. However the hardware stack grows downwards, and the
software stack grows upwards.

External RAM
Salvo's global objects11 can be placed in internal or external RAM.
The placement of data objects is controlled by linker options – see
the IAR documentation for more information.

Memory Models and Salvo's Global Objects
The compiler's default memory attributes and default pointer types
are automatically applied to Salvo's global objects based on the
memory model selected. Therefore Salvo's OSLOC_XYZ
configuration options should not be used in Salvo Pro source-code
builds.

Data Storage
Table 6 illustrates the effect of the selected memory model on
Salvo's global objects.

memory model

employed
maximum
object size

pointer
size

address range

tiny 127 bytes 1 byte 0x0-0xFF
small 32 Kbytes 2 bytes 0x0-0xFFFF
large 32 Kbytes 3 bytes 0x0-0xFFFFFF

Table 6: Effect of Memory Model on Salvo's Global
Objects

The tiny memory model is useful when wishing to minimize the
amount of RAM used by Salvo, and the Salvo code's ROM
requirements. With the tiny memory model, the maximum
number of tasks and events is severely restricted.12

The small memory model is required when the size of Salvo's
global objects exceeds 127 bytes.

 Reference Manual

12 RM-IARAVR Salvo Compiler Reference Manual – IAR AVR C

The large memory model is likely to be unnecessary for most
applications, but is included for completeness. If used, the Salvo
objects cannot cross a 64K boundary.

Note A user's application must be built with the same memory
model as the Salvo library in use. However, the memory attributes
of the user's data need not be the same as those of Salvo's global
objects.

For example, one could build a small memory model application
with the __tiny attribute applied to some of the user's data, in
order to maximize speed and minimize ROM associated with that
user data.

Function Pointers
The Salvo context switcher uses the AVR's IJMP instruction to
implement indirect function calls. Since IJMP only supports
PC(15..0), all Salvo tasks must be __nearfunc (the compiler's
default),13 and must therefore be located within the first 128KB of
program space. The compiler's __farfunc function memory
attribute is not supported for use on Salvo tasks.

Optimizations
Salvo is compatible with IAR's AVR code optimizations at all
levels in both source and library builds.

Global Register Variables
Registers R4-R15 are available to the user as global register
variables via the compiler's --lock_regs option.

1 tinyAVR devices are not supported because of their lack of RAM.
2 This is done automatically through the __GNUC__ and __AVR __ symbols

defined by the compiler.
3 Either in Embedded Workbench or in a command-line build.
4 The Salvo libraries provided with Salvo Lite and LE do not contain C-SPY-

compatible debugging information because this requires the inclusion of
source file listings.

5 Salvo 4.1.0-rc0 with v3.42A compiler.
6 In bytes. Salvo code only.
7 In bytes. Salvo objects only.

 Reference Manual

RM-IARAVR Salvo Compiler Reference Manual – IAR AVR C

13

8 This hook is valid for all AVR and MegaAVR targets because the register and

GIE bit locations are the same for all targets.
9 This hook is valid for all AVR and MegaAVR targets because the watchdog

control register is the same for all targets.
10 Salvo Pro application can reduce this by 2 bytes (one return address) by

inlining OSSched().
11 E.g. task control blocks, queue pointers, counters, etc.
12 Especially since the stack is also located in low RAM.
13 I.e. two bytes are used for function pointers.

	Salvo Compiler Reference Manual – IAR AVR C
	Related Documents
	Example Projects
	Features
	Libraries
	Nomenclature
	Type
	Target
	Memory Model
	Option
	Configuration
	Build Settings
	Available Libraries

	Target-Specific Salvo Source Files
	salvocfg.h Examples
	Salvo Lite Library Build
	Salvo LE & Pro Library Build
	Salvo Pro Source-Code Build

	Performance
	Memory Usage

	User Hooks
	Overriding Default Hooks
	Idling
	Interrupt
	Watchdog

	Compiler Issues
	Runtime Models and Compatible Libraries
	Incompatible Optimizations

	Special Considerations
	Stack Issues
	External RAM
	Memory Models and Salvo's Global Objects
	Data Storage

	Function Pointers
	Optimizations
	Global Register Variables

