

RM-ICCAVR
Reference Manual

750 Naples Street • San Francisco, CA 94112 • (415) 584-6360 • http://www.pumpkininc.com

© Copyright 2003 Pumpkin, Inc. last updated on May 21, 2004
All trademarks mentioned herein are properties of their respective companies.

Salvo Compiler Reference Manual
– ImageCraft ICCAVR

 Reference Manual

2 RM-ICCAVR Salvo Compiler Reference Manual – ImageCraft ICCAVR

Introduction
This manual is intended for Salvo users who are targeting Atmel
(http://www.atmel.com/) AVR® and MegaAVR™
microcontrollers1 with ImageCraft's (http://www.imagecraft.com/)
ICCAVR C compiler.

Related Documents
The following Salvo documents should be used in conjunction
with this manual when building Salvo applications with
ImageCraft's ICCAVR C compiler:

Salvo User Manual
Application Note AN-24

Example Projects
Example Salvo projects for use with ImageCraft's ICCAVR C
compiler and the ImageCraft IDE can be found in the:

\salvo\ex\ex1\sysv
\salvo\tut\tu1\sysv
\salvo\tut\tu2\sysv
\salvo\tut\tu3\sysv
\salvo\tut\tu4\sysv
\salvo\tut\tu5\sysv
\salvo\tut\tu6\sysv

directories of every Salvo for Atmel AVR and MegaAVR
distribution.

Features
Table 1 illustrates important features of Salvo's port to
ImageCraft's ICCAVR C compiler.

http://www.atmel.com/
http://www.imagecraft.com/

 Reference Manual

RM-ICCAVR Salvo Compiler Reference Manual – ImageCraft ICCAVR

3

general
available distributions Salvo Lite, LE & Pro for Atmel AVR

and MegaAVR

additional distributions Salvo tiny & SE for Atmel AVR and
MegaAVR & ICCAVR

supported targets AVR and MegaAVR family
header file(s) porticcavr.h

other target-specific file(s) porticcavr.s,
porticcatmega.s

project subdirectory name(s) SYSV

salvocfg.h
compiler auto-detected? yes2

libraries
\salvo\lib subdirectory iccavr

context switching

method
function- and label-based via

OSDispatch() &
OSCtxSw(label)

_OSLabel() required? yes
size of auto variables and

function parameters in tasks
total size must not exceed 254 8-bit

bytes
memory & registers

internal and external RAM
supported?

yes, via
-bsalvoram:0xstart.0xend

R20..R23 used? no
interrupts

controlled via I bit
interrupt status preserved in

critical sections? yes

method used saved on stack via #pragma
monitor

nesting limit unlimited
alternate methods possible? yes3

debugging
source-level debugging with Pro

library builds? yes

compiler
bitfield packing support? no
printf() / %p support? yes / yes
va_arg() support? yes

Table 1: Features of Salvo Port to ImageCraft's ICCAVR
C Compiler

 Reference Manual

4 RM-ICCAVR Salvo Compiler Reference Manual – ImageCraft ICCAVR

Libraries

Nomenclature
The Salvo libraries for ImageCraft's ICCAVR C compiler follow
the naming convention shown in Figure 1.

Salvo library

libsficcavr-a.a

type
f: freeware
l: standard

ImageCraft
C Compiler

configuration
a: multitasking with delays and events
d: multitasking with delays
e: multitasking with events
m: multitasking only
s: Salvo SE library
t: multitasking with delays and events,

tasks can wait with timeo

option
-: no option
i: library includes debugging information

y: Salvo tiny library

target
avr: AVR
atmega: MegaAVR

Figure 1: Salvo Library Nomenclature – ImageCraft's
ICCAVR C Compiler

Type
Salvo Lite distributions contain freeware libraries. All other Salvo
distributions contain standard libraries. See the Libraries chapter of
the Salvo User Manual for more information on library types.

Target
Each library is intended for one or more specific processors. Table
2 lists the correct library for each AVR and MegaAVR processor.

 Reference Manual

RM-ICCAVR Salvo Compiler Reference Manual – ImageCraft ICCAVR

5

target code processor(s)

avr:

AT90S2313, AT90S2323,
AT90S2333, AT90S2343,
AT90S4433, AT90S4434,

AT90S4444, AT90S8515(A),
AT90S8534, AT90S8535,

ATmega8(L), ATtiny26

atmega:

AT94K05, AT94K10,
AT94K40, ATmega103,

ATmega128(L), ATmega16,
ATmega161(L), ATmega162,
ATmega163(L), ATmega169,
ATmega32, ATmega323(L)

Table 2: Processors for Salvo Libraries – ImageCraft's
ICCAVR C Compiler

Note The target code for an unlisted processor can generally be
deduced by whether the processor is a member of the standard
AVR or MegaAVR family.

Option
Salvo Pro users can select between two sets of libraries – standard
libraries, and standard libraries incorporating source-level
debugging information. The latter have been built with
ImageCraft's ICCAVR C compiler's +g command-line option. This
adds source-level debugging information to the libraries, making
them ideal for source-level debugging and stepping in the
ICCAVR debugger. To use these libraries, simply select one that
includes the debugging information (e.g. libsliccavrit.a)
instead of one without (e.g. libsliccavr-t.a) in your ICCAVR
project.

Configuration
Different library configurations are provided for different Salvo
distributions and to enable the user to minimize the Salvo kernel's
footprint. See the Libraries chapter of the Salvo User Manual for
more information on library configurations.

Build Settings
Salvo's libraries for ImageCraft's ICCAVR C compiler are built
using the default settings outlined in the Libraries chapter of the
Salvo User Manual. Target-specific settings and overrides are
listed in Table 3.

 Reference Manual

6 RM-ICCAVR Salvo Compiler Reference Manual – ImageCraft ICCAVR

compiled limits

max. number of tasks 3
max. number of events 5
max. number of event flags 1
max. number of message

queues 1

target-specific settings
delay sizes 8 bits
watchdog timer cleared in OSSched().
system tick counter available, 32 bits

Table 3: Build Settings and Overrides for Salvo Libraries
for ImageCraft's ICCAVR C Compiler

Note The compiled limits for tasks, events, etc. in Salvo libraries
can be overridden to be less (all Salvo distributions) or more (all
Salvo distributions except Salvo Lite) than the library default. See
the Libraries chapter of the Salvo User Manual for more
information.

Available Libraries
There are a total of 34 Salvo libraries for ImageCraft's ICCAVR C
compiler. Each Salvo for Atmel AVR and MegaAVR distribution
contains the Salvo libraries of the lesser distributions beneath it.

Target-Specific Salvo Source Files
One of two different source files, porticcavr.s or
porticcatmega.s, is required for Salvo Pro source code builds.
Use the one appropriate for your target as per the target code
nomenclature shown in Table 2.

Note porticcavr.s will work on every AVR target that has
8KB or less of program memory. porticcatmega.s is required for
MegaAVR targets can address more than 8KB of program
memory.

salvocfg.h Examples
Below are examples of salvocfg.h project configuration files for
different Salvo for Atmel AVR and MegaAVR distributions
targeting the AT90S8515.

 Reference Manual

RM-ICCAVR Salvo Compiler Reference Manual – ImageCraft ICCAVR

7

Note When overriding the default number of tasks, events, etc. in
a Salvo library build, OSTASKS and OSEVENTS (respectively) must
also be defined in the project's salvocfg.h. If left undefined, the
default values (see Table 3) will be used.

Salvo Lite Library Build
#define OSUSE_LIBRARY TRUE
#define OSLIBRARY_TYPE OSF
#define OSLIBRARY_CONFIG OSA

Listing 1: Example salvocfg.h for Library Build Using
libsficcavr-a.a

Salvo tiny Library Build
#define OSUSE_LIBRARY TRUE
#define OSLIBRARY_TYPE OSL
#define OSLIBRARY_CONFIG OSY

Listing 2: Example salvocfg.h for Library Build Using
libsliccavr-y.a

Salvo SE Library Build
#define OSUSE_LIBRARY TRUE
#define OSLIBRARY_TYPE OSL
#define OSLIBRARY_CONFIG OSS

Listing 3: Example salvocfg.h for Library Build Using
libsliccavr-s.a

Salvo LE & Pro Library Build
#define OSUSE_LIBRARY TRUE
#define OSLIBRARY_TYPE OSL
#define OSLIBRARY_CONFIG OSA

Listing 4: Example salvocfg.h for Library Build Using
libsliccavr-a.a or libsliccavria.a

Salvo Pro Source-Code Build
#define OSENABLE_IDLING_HOOK TRUE
#define OSENABLE_SEMAPHORES TRUE
#define OSEVENTS 1
#define OSTASKS 3

Listing 5: Example salvocfg.h for Source-Code Build

 Reference Manual

8 RM-ICCAVR Salvo Compiler Reference Manual – ImageCraft ICCAVR

Performance

Memory Usage
tutorial memory usage4 total ROM5 total RAM6

tu1lite 239 / 232 22
tu2lite 325 / 317 22
tu3lite 358 / 349 24
tu4lite 695 / 654 33
tu5lite 1058 / 961 45
tu6lite 1144 / 10387 478
tu6pro9 1025 / 94710 4311

Table 4: ROM and RAM requirements for Salvo
Applications built with ImageCraft's ICCAVR C Compiler

Special Considerations

Stack Issues
ImageCraft's ICCAVR C compiler uses two separate stacks – one
for return addresses (the hardware stack, which uses SP) and one
for parameter passing and local storage (the software stack, which
uses Y).

Compared to a non-Salvo, non-multitasking application with
similar call trees, the corresponding Salvo application will require
an additional 4 bytes (i.e. two return addresses) in the hardware
stack.12

The size of the hardware stack can be set in the ICCAVR IDE via
Project → Options → Target → Advanced → Return Stack
Size or on the iccavr linker command line, e.g.:

iccavr … -dhwstk_size:20 …

Applications using nested interrupts, floating points or longs will
require a hardware stack larger than the default size – see ICCAVR
Help for more information.

External SRAM
Salvo's global objects13 can be placed in internal or external RAM.
In ImageCraft's ICCAVR IDE, the placement of objects (e.g.
variables) in the data program area is controlled via Project →

 Reference Manual

RM-ICCAVR Salvo Compiler Reference Manual – ImageCraft ICCAVR

9

Options → Target → Device Configuration (Internal SRAM),
etc. On the iccavr linker command line, placement of these
objects is specified via –bdata:start.end, e.g.:

iccavr … -bdata:0x260.0xffff …

specifies that the data program area start at 0x260 (the end of
internal SRAM) and extend to 0xFFFF (the 64K boundary).

Salvo's global objects can be placed – as a group – anywhere in
RAM (internal or external) by specifying the start and end
addresses of the salvoram program area. This applies to source-
code and library builds. For example, to place all of Salvo's global
objects in a 256-byte block of external RAM just beneath the 32K
boundary, use

iccavr … -bsalvoram:0x7F00.0x7FFF …

when linking your application.14

Note If you do not use the –b linker command-line argument, the
salvoram program area will be located immediately after the bss
program area in the data program area. Therefore it is only
required if you wish to locate Salvo's global objects separately
from your program's variables, etc. You can override the order of
the program areas by using the .area assembler directive.

Data Segments
The RAMPD register is normally used to access the entire data space
on processors with more than 64K bytes data space. There are no
provisions for accessing Salvo's global objects outside of the
current data segment of 64K bytes.

Code Compressor
Salvo is compatible with ImageCraft's ICCAVR Code
Compressor15 in both library- and source-code builds.

Indirect Function Calls
In order for Code Compressor to work properly, all indirectly
called functions must be called through xicall. The context-
switching method employed by Salvo with ImageCraft's ICCAVR
C compiler uses xicall for all of its indirect function calls.

 Reference Manual

10 RM-ICCAVR Salvo Compiler Reference Manual – ImageCraft ICCAVR

Registers R20..R23
ICCAVR can be instructed to not use registers R20..R23. In
practice, this has little effect on the Salvo code – it may result in a
small speedup and smaller ROM size.

The Salvo libraries are built without using R20..R23 so that control
of these registers is left to the programmer.

Salvo Pro users can control the use of these registers in a source-
code build.

Library Locations
ImageCraft's ICCAVR C compiler expects libraries to be in
\icc\lib. Therefore the Salvo installer places its libraries for
ICCAVR in both \salvo\lib\iccavr and \icc\lib.

1 tinyAVR devices are not supported because of their lack of RAM.
2 This is done automatically through the __IMAGECRAFT__ and _AVR symbols

defined by the compiler.
3 Since saving and restoring of the I bit is intimately associated with the

compiler's #pragma monitor, alternate methods are generally not
recommended.

4 Salvo v3.2.0 with ICCAVR v6.28.
5 In words. Second number reflects ROM size with Code Compressor enabled.

Includes interrupt vectors and func_lit table for functions called indirectly
via xicall. R20..R23 are not used.

6 In bytes. Does not include RAM reserved for the return address (hardware)
stack or the parameter passing and local storage (software) stack.

7 Includes 2 bytes from the idata section.
8 Includes 2 bytes from the data section.
9 Salvo Pro build differs slightly from Salvo Lite build due to configuration –

see tutorial's salvocfg.h.
10 Includes 2 bytes from the idata section.
11 Includes 2 bytes from the data section.
12 Salvo Pro application can reduce this by 2 bytes (one return address) by

inlining OSSched().
13 E.g. task control blocks, queue pointers, counters, etc.
14 Failure to allocate enough RAM for the salvoram program area will result in

an area 'salvoram' not large enough linker error.
15 Code Compressor is included in ICCAVR Professional.

	Salvo Compiler Reference Manual – ImageCraft ICCAVR
	Introduction
	Related Documents
	Example Projects
	Features
	Libraries
	Nomenclature
	Type
	Target
	Option
	Configuration
	Build Settings
	Available Libraries

	Target-Specific Salvo Source Files
	salvocfg.h Examples
	Salvo Lite Library Build
	Salvo tiny Library Build
	Salvo SE Library Build
	Salvo LE & Pro Library Build
	Salvo Pro Source-Code Build

	Performance
	Memory Usage

	Special Considerations
	Stack Issues
	External SRAM
	Data Segments
	Code Compressor
	Indirect Function Calls

	Registers R20..R23
	Library Locations

