

RM-MCC30
Reference Manual

750 Naples Street • San Francisco, CA 94112 • (415) 584-6360 • http://www.pumpkininc.com

created by Andrew E. Kalman on Aug 21, 2007 updated on Jan 29, 2010
All trademarks mentioned herein are properties of their respective companies.

Salvo Compiler Reference Manual
– Microchip MPLAB C30

 Reference Manual

2 RM-MCC30 Salvo Compiler Reference Manual – Microchip MPLAB C30

Introduction
This manual is intended for Salvo users who are targeting
Microchip PIC24® and dsPIC® single-chip microcontrollers with
Microchip's (http://www.microchip.com/) MPLAB C30 C
compiler.

Related Documents
The following Salvo documents should be used in conjunction
with this manual when building Salvo applications with
Microchip's MPLAB C30 C compiler:

• Salvo User Manual

Example Projects
Example Salvo projects for use with Microchip's MPLAB C30 C
compiler can be found in the:

\Pumpkin\Salvo\Example\PIC\PIC24

directories of every Salvo for Microchip PIC24® MCUs and
dsPIC® DSCs distribution.

Features
Table 1 illustrates important features of Salvo's port to Microchip's
MPLAB C30 C compiler.

http://www.microchip.com/

 Reference Manual

RM-MCC30 Salvo Compiler Reference Manual – Microchip MPLAB C30

3

General
Abbreviated as MCC30

Available distributions
Salvo Lite, LE & Pro

for Microchip PIC24® MCUs and dsPIC®
DSCs

Supported targets all PIC24, dsPIC30F & dsPIC33F devices
Header file(s) salvoportmcc30.h

Other target-specific file(s) salvoportmcc30.s,
salvohook_interrupt_PIC24_IRQ.c

salvocfg.h
Compiler auto-detected? yes1
Include target-specific

header file in
salvocfg.h?

recommended

Libraries

Located in

Lib\MCC30-v2
(for v2.x compilers and early linker)

Lib\MCC30-v3
(for v3.x compilers and later linker)

Behavior of user hooks in
libraries do nothing (dummy functions)

Same libraries for PIC24 &
dsPIC families? yes

Context Switching
Method function-based via

OSDispatch() & OSCtxSw()
Labels required? no
Size of auto variables and

function parameters in
tasks

total size must not exceed 65,535 8-bit
bytes

Interrupts
Interrupt latency in context

switcher 0 cycles

Interrupts in critical sections
controlled via

OSDisableHook(), OSEnableHook(),
OSRestoreHook(), OSSaveHook()

Interrupt status preserved in
critical sections? optional, via appropriate user functions

Method used in critical
sections see example user functions

Memory
Memory models supported small and large

Debugging
Source-level debugging with

Pro library builds? yes

Compiler
Bitfield packing support? no
printf() / %p support? yes / yes
va_arg() support? yes

Table 1: Features of Salvo port to Microchip's MPLAB
C30 C compiler

 Reference Manual

4 RM-MCC30 Salvo Compiler Reference Manual – Microchip MPLAB C30

Libraries

Nomenclature
The Salvo libraries for Microchip's MPLAB C30 C compiler C
compiler follow the naming convention shown in Figure 1.

Salvo library

libsalvolmcc30s-t.s

type
f: freeware
l: standard

configuration
a: multitasking with delays and events
d: multitasking with delays
e: multitasking with events
m: multitasking only
t: multitasking with delays and events,

tasks can wait with timeouts

option
-: no option
i: library includes debugging information

Microchip MPLAB
C30 C compiler for
PIC24 & dsPIC targets

memory model
s: small code, small data (default)
l: large code, large data

Figure 1: Salvo library nomenclature – Microchip's
MPLAB C30 C compiler

Type
Salvo Lite distributions contain freeware libraries. All other Salvo
distributions contain standard libraries. See the Libraries chapter of
the Salvo User Manual for more information on library types.

Target
Since the CPU instruction set is common to both the PIC24® and
dsPIC® architectures, all PIC24® and dsPIC® targets use the
same Salvo libraries.

Memory Model
The MPLAB C30 C compiler's small (default) and large code
and data memory models are supported:

Code Models
small up to 32K words program memory
large over 32K words of program memory

Table 2: Code models for Microchip's MPLAB C30 C
compiler

 Reference Manual

RM-MCC30 Salvo Compiler Reference Manual – Microchip MPLAB C30

5

Data Models
small up to 8KB of data memory
large over 8KB of data memory

Table 3: Code models for Microchip's MPLAB C30 C
compiler

Note Salvo libraries for Microchip's MPLAB C30 C compiler C
compiler are compiled with either small code and small data
models, or large code and large data models.

If additional flexibility is required, a Salvo Pro user can build an
application with a different combination of memory models, e.g.,
the small code and the large data models by using Salvo source
code.

See Configuring for Different Memory Models for information
on properly selecting the different memory models.

Option
Salvo Pro users can select between two sets of libraries – standard
libraries, and standard libraries incorporating source-level
debugging information. The latter have been built with the
appropriate command-line options. This adds source-level
debugging information to the libraries, making them ideal for
source-level debugging and stepping in the MPLAB IDE. To use
these libraries, simply select one that includes the debugging
information (e.g. libsalvolmcc30lit.a) instead of one without
(e.g. libsalvolmcc30l-t.a) in your MPLAB project.

Configuration
Different library configurations are provided for different Salvo
distributions and to enable the user to minimize the Salvo kernel's
footprint. See the Libraries chapter of the Salvo User Manual for
more information on library configurations.

Build Settings
Salvo's libraries for Microchip's MPLAB C30 C compiler are built
using the default settings outlined in the Libraries chapter of the
Salvo User Manual. Target-specific settings and overrides are
listed in Table 4.

 Reference Manual

6 RM-MCC30 Salvo Compiler Reference Manual – Microchip MPLAB C30

Compiled Limits
Max. number of tasks 4
Max. number of events 8
Max. number of event flags 1
Max. number of message

queues 1

Target-specific Settings
Delay sizes 8 bits
Idling hook enabled
Interrupt-enable bits during

critical sections controlled via user functions

System tick counter available, 32 bits
Task priorities enabled
Watchdog timer controlled via user functions

Table 4: Build settings and overrides for Salvo libraries
for Microchip's MPLAB C30 C compiler

Note The compiled limits for tasks, events, etc. in Salvo libraries
can be overridden to be less (all Salvo distributions) or more (all
Salvo distributions except Salvo Lite) than the library default. See
the Libraries chapter of the Salvo User Manual for more
information.

Available Libraries
Salvo Lite for Microchip PIC24® MCUs and dsPIC® DSCs
contains a single freeware library in a single configuration. Salvo
LE for Microchip PIC24® MCUs and dsPIC® DSCs adds standard
libraries in multiple configurations. Salvo Pro for Microchip
PIC24® MCUs and dsPIC® DSCs adds standard libraries in
multiple configurations with debugging information included.

Each Salvo for Microchip PIC24® MCUs and dsPIC® DSCs
distribution contains the Salvo libraries of the lesser distributions
beneath it. Additionally, Salvo Pro distributions contain makefiles
for all possible library configurations.

Target-Specific Salvo Source Files
Depending on the desired code model, Table 5 illustrates that
different target-specific source files are required for Salvo Pro
source-code builds.

 Reference Manual

RM-MCC30 Salvo Compiler Reference Manual – Microchip MPLAB C30

7

Target-specific Source Files
small Src\MCC30\salvoportmcc30-sm.s
large Src\MCC30\salvoportmcc30-lm.s

Table 5: Target-specific files required for different code
models of Microchip's MPLAB C30 C compiler

Note These files are independent of the
OSMCC30_LARGE_CM symbol.

salvocfg.h Examples
Below are examples of salvocfg.h project configuration files for
various different Salvo distributions and the PIC24HJ256GP610.

Salvo Lite Library Build
#define OSUSE_LIBRARY TRUE
#define OSLIBRARY_TYPE OSF
#define OSLIBRARY_CONFIG OST
#define OSTASKS 3
#define OSEVENTS 4
#define OSEVENT_FLAGS 0
#define OSMESSAGE_QUEUES 1

Listing 1: Example salvocfg.h for library build using
libsalvofmcc30s-t.a

Salvo LE & Pro Library Build
#define OSUSE_LIBRARY TRUE
#define OSLIBRARY_TYPE OSL
#define OSLIBRARY_CONFIG OSA
#define OSTASKS 7
#define OSEVENTS 11
#define OSEVENT_FLAGS 0
#define OSMESSAGE_QUEUES 4

Listing 2: Example salvocfg.h for library build using
libsalvolmcc30s-a.a or libsalvolmcc30sia.a

 Reference Manual

8 RM-MCC30 Salvo Compiler Reference Manual – Microchip MPLAB C30

Salvo Pro Source-Code Build
#define OSEVENTS 9
#define OSEVENT_FLAGS 1
#define OSMESSAGE_QUEUES 2
#define OSTASKS 17

#define OSENABLE_BINARY_SEMAPHORES TRUE
#define OSENABLE_TIMEOUTS TRUE
#define OSBYTES_OF_DELAYS 4
#define OSBYTES_OF_TICKS 4

Listing 3: Example salvocfg.h for source-code build

Performance

Interrupt Latencies
Since Salvo's context switcher for Microchip's MPLAB C30 C
compiler does not need to control interrupts, Salvo applications can
easily be created with zero total interrupt latency for interrupts of
interest.

In a properly-configured application, only those interrupts that call
Salvo services will experience interrupt latency from Salvo's
operations. Users must ensure that these interrupt sources are
disabled (and re-enabled) via the user interrupt hooks.

Disabling and re-enabling interrupts globally in the user interrupt
hooks (i.e., the default user interrupt hook behavior) is of course
permitted, but will result in non-zero interrupt latencies for all
interrupt sources, even those that do not call Salvo services. See
the target-specific source files of this distribution for examples.

Memory Usage
Examples of the total memory usage of actual Salvo-based
applications are listed below.

Example Application2 Program Memory
Usage3

Data Memory
Usage4

tut5lite (for PIC24) 3813 84
tut5le (for PIC24) 3747 84
tut5pro (for PIC24) 3651 82

Table 6: Program and data memory requirements for
Salvo applications built with Microchip's MPLAB C30 C

compiler

 Reference Manual

RM-MCC30 Salvo Compiler Reference Manual – Microchip MPLAB C30

9

Special Considerations

Configuring for Different Memory Models
When building a Salvo application with MPLAB C30, the memory
models of all objects linked together to form an application must
be consistent. The memory models are specified in the MPLAB
IDE under Project → Build Options → Project → MPLAB C30
→ Memory Model.5

In library builds, the memory models applied to all of the source
files must match that used in the library – a mismatch may
generate link-time errors and or runtime errors. For source-code
builds, the same memory models must be applied to all of the
source files.

Note Unlike the library configuration and variant options
specified in the salvocfg.h file for a library build, none is
specified for the selected memory model(s). Therefore particular
attention must be paid to the memory model settings used to build
an application. The memory model is usually specified on a
project-wide basis in the MPLAB IDE.

Code Models
Use of the large code model requires that the Salvo symbol
OSMCC30_LARGE_CM be defined for all Salvo code modules.6
Symbols can be defined in the MPLAB IDE under Project →
Build Options → Project→ MPLAB C30 → General →
Preprocessor Macros.

Note OSMCC30_LARGE_CM should not be defined when
using the small code model.

See also Target-Specific Salvo Source Files, above.

Data Models
No symbols are required for the small or large data models.

 Reference Manual

10 RM-MCC30 Salvo Compiler Reference Manual – Microchip MPLAB C30

Compiler Issues

Incompatible Optimizations
There are no known incompatible optimizations.

1 This is done automatically through the C30, __C30 and/or __C30__ symbols

defined by the compiler.
2 Salvo 4.0.0.
3 In bytes. Includes .reset, .ivt, .aivt, .text, .dinit & .isr

sections.
4 In bytes. Includes .nbss section. This represents all of Salvo's objects. Does

not include RAM allocated to the heap or stack. Salvo applications typically
require the same (small) stack size as simple, non-multitasking applications.

5 The MPLAB IDE passes command-line arguments to the MPLAB C30
compiler and linker as part of the build process. E.g., –mlarge-code
-mlarge-data for large code and data models.

6 Unfortunately the MPLAB C30 compiler does not emit any symbols that
identify which memory model(s) are in use … therefore Salvo users must
define this symbol, which drives conditional compilation of the Salvo source
code that is affected by the memory model settings.

	Salvo Compiler Reference Manual – Microchip MPLAB C30
	Introduction
	Related Documents
	Example Projects
	Features
	Libraries
	Nomenclature
	Type
	Target
	Memory Model
	Option
	Configuration
	Build Settings
	Available Libraries

	Target-Specific Salvo Source Files
	salvocfg.h Examples
	Salvo Lite Library Build
	Salvo LE & Pro Library Build
	Salvo Pro Source-Code Build

	Performance
	Interrupt Latencies
	Memory Usage

	Special Considerations
	Configuring for Different Memory Models
	Code Models
	Data Models

	Compiler Issues
	Incompatible Optimizations

