The CubeSat Kit Hinge™ System
&
Designing your own CSK PPM
Andrew E. Kalman, Ph.D.
Outline

• Part I: The CubeSat Kit Hinge System
• Part II: Design your own CubeSat Kit Pluggable Processor Module (PPM)
I: The CSK Hinge System

<table>
<thead>
<tr>
<th>Feature / Characteristic</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure compatibility</td>
<td>CubeSat Kit Rev D and later (0.5U, 1U, 1.5U, 2U & 3U)</td>
</tr>
<tr>
<td>Number of panels supported</td>
<td>Up to eight (i.e., up to four on each end)</td>
</tr>
<tr>
<td>Solar cell surfaces supported</td>
<td>Fixed side panels & single- or double-sided deployable panels</td>
</tr>
<tr>
<td>Minimum panel mass supported</td>
<td>150g per deployable panel</td>
</tr>
<tr>
<td>End bias</td>
<td>None – panels can be hinged on either end of CubeSat Kit</td>
</tr>
<tr>
<td>Harness compatibility</td>
<td>six 26AWG wires per deployable panel</td>
</tr>
<tr>
<td>Number of actuations</td>
<td>> 100</td>
</tr>
<tr>
<td>CDS compatibility</td>
<td>Must fit within P-POD (i.e., max 6.5mm normal height)</td>
</tr>
<tr>
<td>Additional mass</td>
<td>< 75g for four deployable panels, all hinged on one end</td>
</tr>
<tr>
<td>Volume</td>
<td>Located entirely “outside” 100mm x 100mm cross-section</td>
</tr>
<tr>
<td>Deployment angles</td>
<td>0 to 190 degrees per panel</td>
</tr>
<tr>
<td>Deployment (spring) forces</td>
<td>Sufficient to open fully in zero-g vacuum environment</td>
</tr>
<tr>
<td>Material(s)</td>
<td>Hard-anodized aluminum, stainless steel</td>
</tr>
<tr>
<td>Testing regime</td>
<td>Protoflight standards</td>
</tr>
<tr>
<td>Vibration compatibility</td>
<td>NASA GEVS GSFC-STD-7000</td>
</tr>
<tr>
<td>Vacuum compatibility</td>
<td>10⁻⁴ Torr</td>
</tr>
<tr>
<td>Operating temperature range</td>
<td>-100C to +100C</td>
</tr>
</tbody>
</table>
CSK Hinge Components

- Hinge feet & hinges
- Precision shoulder bolts
- Springs
- Large & small buttons
- Harnesses & cables
Panel Details

- 1.6mm (0.062”) PCBs leave precious little room for solar cells on 3 available faces
- Buttons protect facing cells from potentially damaging contact, align panels, relieve stress on hinges, and perform other functions
Panel Designs

- Panels are “build to print”
- Deployable panels can be hinged on either end
• Pumpkin’s MISC 2 is the first CubeSat to utilize the CubeSat Kit Hinge

• All four single-sided deployable panels are hinged at bus end
Vibe Testing

• MISC 2 in a P-POD at Cal Poly in March 2009
• A close fit!
• Two MISC 2s were tested – no anomalies
II: Design your own CSK PPM

• Pluggable Processor Modules (PPMs) enable rapid adaptation of the CubeSat Kit architecture to an existing codebase that has tight ties to a particular processor architecture or family.

• The PPM:
 ▪ is where your CubeSat’s processor(s) is(are) located
 ▪ takes power from the CSK bus, uses it locally, conditions it for the Motherboard (MB) and optionally for the CSK bus
 ▪ accepts a few high-level control signals from the CSK bus
 ▪ connects to various resources on the MB
 ▪ connects to I/O and other signals on the CSK bus
CSK Architecture Block Diagram
PPM Provides Flexibility

- As a PPM designer, you have the freedom to specify:
 - which processor(s) to use
 - which voltage(s) to operate at
 - which clock sources to use
 - which additional external components (e.g., external memory, WDTs, user debug connectors) to use
 - PCB details (e.g., how many layers, material)
 - etc.
PPM on MB – Top View

Top view of Pluggable Processor Module (PPM) mounted on Motherboard (MB) inside 1U skeletonized CubeSat Kit.
Allowable PPM PCB Sizes

Examples of CubeSat Kit Pluggable Processor Module (PPM) PCB outlines. Dimensions in inches.
PPM PCB Views

Top and bottom views of bare example CubeSat Kit Pluggable Processor Module (PPM) PCBs.

Left/bottom: PPM A1/A2/A3 Right/top: PPM B1
PPM Connector Pinout

To/From Flight MCU on Processor Module

CubeSat Kit PPM connector on MB.

40 of 48 I/O pins are unallocated and always available to the user.

On-board peripherals have dedicated control signals (e.g., handshake signals HS[5..0], -ON_SD, etc.).

Entire CubeSat Kit Bus connector (except for S[5..0] & MHX socket signals) is available to PPM.
PPM Standardized Signals

- IO.[7..0]:
 - IO.[3..0]: SPI MISO/MOSI/SCLK & -CS_SD
 - IO.[5,4]: UART0
 - IO.[7,6]: UART1
- SCL_SYS, SDA_SYS: System I2C
- -FAULT_OC, SENSE: Power-related (optional)
- -RESET, OFF_VCC: Reset / power control
- -ON_SD: SD card power
- -OE_USB: USB interface
- -ON_MHX, -OE_MHX: MHX interface (optional)
- HS[5..0]: MHX/USB handshake signals (optional)
- VREF[2..0]: Reference voltages
- USBDP, USBDM: USB direct signals
PPM User Signals & Power

• PPM user signals
 ▪ IO.[47..8] – as yet undefined, up to designer’s discretion
 ▪ USER[11..0] – undefined

• PPM power
 ▪ +5V_USB & +5V_SYS: from EPS & USB to PPM
 ▪ VCC_SD: from PPM to MB SD Card, +3.3V
 ▪ VCC: on PPM, and to MB – can range from +2.7V to +5V
 ▪ DGND: Digital ground
 ▪ AGND: Analog (quiet) ground
 ▪ VBATT: Raw battery voltage (e.g. +7.4V)
 ▪ VBACKUP: +3V battery backup (e.g. for SRAM)
PPM A1: MSP430F1612

- Utilizes TI’s MSP430F1612IPM (64-pin LQFP package)
- Regulates +5V_SYS & +5V_USB down to +3.3V for processor, VCC on MB and SD Card
- Has local POR supervisor & overcurrent protection / auto-reset
- Has 32.768kHz & 7.3728MHz crystals
- All 48 I/O pins to IO.[47..0] on CSK bus
- PCA9515 I2C isolator routes MSP430 SCL & SDA to SCL_SYS & SDA_SYS, enabled via –CS_SD
- Some I/O signals also routed to –ON_XX, -OE_XX, HS[5..0]
- VREF[2..0] used
- VBACKUP not used
- 11g, small-footprint PCB
PPM B1: C8051F120

- Utilizes SiLabs C8051F120-GQ (100-pin LQFP package)
- Regulates +5V_SYS & +5V_USB down to +3.3V for processor, VCC on MB and SD Card
- Uses on-chip POR
- Has local overcurrent protection / auto-reset
- Has optional high-speed crystal
- Has 1Mbit SRAM via P4.[7..5], P6.n, P7.n (multiplexed mode, paged)
- Has 6-pin FPC user debug header
- P0.n, P1.n, P2.n, P3.n, P4.0, AIN0.n, CP0/1 & DAC0/1 mapped to IO.[47..34, 30..0] on CSK bus
- I2C (P0.[7,6]) direct to SCL_SYS & SDA_SYS
- –ON_XX, -OE_XX, HS[5..0] on dedicated lines via P4 & P5
- VREF[2..0] used
- VBACKUP used for SRAM backup
- 17g, medium-footprint PCB
PPM A1 & B1

CubeSat Kit Pluggable Processor Modules PPM A1 (left) and PPM B1 (right)
PPM B1 PCB Design

- 4-layer PCB
- .007” traces / rules
- All SMT components
- 48.5 hrs design time
- Created with input from first customer

Artwork layers 1 & 4 of PPM B1 Rev A PCB
Review

• A PPM designer must resolve, specify and do:
 ▪ Mechanical interface & packaging constraints
 ▪ Electrical interface
 ▪ I/O & bus signals
 ▪ Programming / debug (e.g., JTAG)
 ▪ Power & control signals
 ▪ Schematics
 ▪ PCB layout
 ▪ Parts procurement
 ▪ Assembly & test
 ▪ Software drivers (e.g., SD card)
Conclusions

• CSK Hinge design fully vetted, now in production.
• Virtually any microprocessor / microcontroller / CPU can be used on a PPM, subject to volume & power constraints.
• Single-chip micros, processors with external memory, multi-processor systems, DSPs, CPU+SDR, CPU w/TMR Flash memory, etc. are all candidates for PPM integration. If it fits within the physical and power envelope of the open PPM specification, you can fly it!
• Existing software and hardware designs can be ported to the CubeSat Kit with the design of an appropriate PPM.
• Once compatible with the CubeSat Kit, your CubeSat Kit & PPM can utilize other COTS CSK-compatible hardware.
Q&A Session

Thank you for attending this Pumpkin presentation at CubeSat Developers Workshop 2009!
Notice

This presentation is available online in Microsoft® PowerPoint® and Adobe® Acrobat® formats at:

www.pumpkininc.com/content/doc/press/Pumpkin_CSDWSLO_2009.ppt

and:

Appendix

• Speaker information
 - Dr. Kalman is Pumpkin’s president and chief technology architect. He entered the embedded programming world in the mid-1980's. After co-founding Euphonix, Inc – the pioneering Silicon Valley high-tech pro-audio company – he founded Pumpkin, Inc. to explore the feasibility of applying high-level programming paradigms to severely memory-constrained embedded architectures. He is the creator of the Salvo RTOS and the CubeSat Kit. He holds two United States patents. He is a consulting professor in the Department of Aeronautics & Astronautics at Stanford University and directs the department’s Space Systems Development Laboratory (SSDL). Contact Dr. Kalman at aek@pumpkininc.com.

• Acknowledgements
 - Pumpkin’s Salvo and CubeSat Kit customers, whose real-world experience with our products helps us improve and innovate.

• CubeSat Kit information
 - More information on Pumpkin’s CubeSat Kit can be found at http://www.cubesatkit.com/.

• Copyright notice
 © 2000-2009 Pumpkin, Inc. All rights reserved. Pumpkin and the Pumpkin logo, Salvo and the Salvo logo, The RTOS that runs in tiny places, CubeSat Kit, CubeSat Kit Bus, the CubeSat Kit logo and MISC are all trademarks of Pumpkin, Inc. Don’t leave Earth without it is a service mark of Pumpkin, Inc. All other trademarks and logos are the property of their respective owners. No endorsements of or by third parties listed are implied. All specifications subject to change without notice. Unless stated otherwise, all photographs, images and illustrations are the property of Pumpkin, Inc. and may not be used without permission.

First presented at the CubeSat Developers Workshop in San Luis Obispo at Cal Poly University on Friday, April 24, 2009.