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Overview
• This seminar will present an in-depth look at Pumpkin’s 

experience with the MSP430 as it was applied to our 
CubeSat Kit, an off-the-shelf build-it-yourself picosatellite 
kit. Of particular interest to ATC attendees:

Why we chose the MSP430 for an aerospace application.
How the MSP430 fits into an expandable bus-driven architecture.
How to integrate the MSP430 into a +3.3V/+5V power system.
How to design zero-power peripheral interfaces to the MSP430.
Advantages of the available MSP430 development toolsets.
The power, interface and peripheral chips we used with the 
MSP430.
Protecting the MSP430 from overcurrent / overvoltage.
How an RTOS simplifies MSP430 programming.
Software solutions to common problems in MSP430 applications.



Slide 5

www.pumpkininc.com
Part I: Picosatellites
• Development, debugging & functional testing: typical lab 

environment.
• Pre-delivery and pre-launch: 

Temperature, vacuum and shake tests.
Integration into launch vehicle. 
Picosatellite may remain in storage for months on end waiting for 
launch. 

• Launch & deployment: high g-forces (10g or more). 
• Operation in space: vacuum, wide temperature range 

(-20º to  +60º C), solar radiation, and remoteness.
• End of mission: deorbit and burn up in earth's 

atmosphere.
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Picosatellites (cont’d)
• Picosatellite components:

Structure. 
Command & Data Handling (C&DH), with high-frequency 
transceiver and antenna(s). 
Communications (COM). 
Electrical Power System (EPS).
Attitude Determination & Control System (AD&CS). 
Payload. 
Software, Software, Software.

• Picosatellites are often launched in groups from 
dedicated launchers as secondary payloads on a rocket.
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Part II: CubeSats
• The CubeSat is a 10x10x10cm, 1kg public picosatellite 

design specification proposed by Stanford and Cal Poly 
San Luis Obispo universities.

• Low-earth orbit (LEO) CubeSat missions have typical 
lifespans of 3-9 months. 

• Cost to complete a CubeSat mission (inception to launch 
to operation to end-of-life) ranges from <$100,000 to 
$1,500,000.

• Working from a standard promotes rapid development 
and idea sharing

• Picosatellites are already a hot topic in aerospace. 
Worldwide interest is focused on CubeSats in particular, 
partly because they are becoming a de facto standard.
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Part III: Kit Requirements
• This is not the $5,000,000-and-up satellite market!
• High percentage of potential end-users represented by 

educational organizations (universities and high schools). 
• Timelines allow less than 24 months from mission 

inception to launch. 
• Must be able to accommodate a wide variety of user 

payloads and high levels of mission complexity.
• CubeSats are by nature low-power due to the available 

solar radiation (<1W for typical 10x10x10cm “1U” cube).
• Scalable, expandable and non-obsolescent architecture.
• Multiple power supplies necessary for flexibility.
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Kit Requirements (cont’d)
• A COTS CubeSat kit should:

Implement as many of the CubeSat standard's specifications as 
possible, thereby shortening the design & development timeline.
Integrate as much functionality into as small a space as possible, 
so as to leave plenty of room for the CubeSat's payload and other 
mission-specific hardware. 
Be flexible, with a design that can accommodate a wide range of 
customer requirements and configurations. 
Be expandable and modular, to accept other COTS hardware and 
software. 
Provide a software development platform that's easy to use and 
debug. 
Have a clearly-defined future upgrade path. 
Include high-value-added features (hardware and software) to 
differentiate itself from the competition and "home-grown"
CubeSats. 
Be affordable. 
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Part IV: Structure & Layout
• Mechanical structure is constrained by exterior dimensions, 

defined access area and other requirements in the CubeSat 
specification. We chose a sheet-metal design for strength, 
light weight, maximal internal volume and design flexibility.

• A module bussing scheme patterned after the PC/104 
standard was chosen for interconnecting modules and 
connector reliability.

• All of the MSP430’s I/O pins are on the electrical bus, as 
well as GND/+3.3V/+5V, +5V_USB, power switching, power 
control, modem control signals, and a few other signals.

• ½U, 1U, 1½U, 2U and 3U sizes differ only by a single part –
the chassis walls assembly.
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Structure & Layout (cont’d)

Figure 1: Exploded View of a 1U 
MSP430-based CubeSat Kit.

Clockwise from center left: Chassis 
Walls Assembly, Cover Plate, User 
Module Stack, High-Frequency 
Transceiver, FM430 Flight Module, 
Base Plate. 

MSP430 resides on FM430 Flight 
Module.
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Part V: Choice of MSP430
• The MSP430's CubeSat Kit-friendly features include:

-40º to +85º C operating temperature range. 
Relatively large code space (up to 60K) enables a high level of 
systems integration, thereby reducing processor count. 
16-bit architecture and highly orthogonal and C-friendly 
architecture makes for efficient high-level programming. 
Good mix of on-board peripherals. Plenty of I/O.
JTAG & Flash accelerate the design & debug cycle.
Ultra-low-power design, dual clock sources and fast startup from 
sleep help minimize power consumption.
Well-organized prioritized interrupt vectors and interrupt control.
Wide range of tools (assemblers, compilers, RTOS, IDEs, JTAG 
debuggers, programmers, development kits, etc.) offered. 
Ready parts availability.
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Choice of MSP430 (cont’d)
• The CubeSat Kit's MSP430 Flight MCU is responsible for:

Doing supervisory tasks, e.g. monitoring on-board temperatures, 
voltages and currents, etc.
Managing bidirectional communications with the mission's ground 
station(s) (COM).
Acting autonomously and/or through commands from the ground 
station(s) or other satellites (C&DH). 
Handling data storage and retrieval, either on-chip (in RAM or 
Flash) or off-chip (mass storage). 
Configuring its I/O to interface to multiple peripherals that 
concurrently share the same MSP430 port pins and peripherals. 
Depending on system complexity, EPS and AD&C functions may 
be implemented either in the MSP430 or in additional mission-
specific CPUs and µC's that communicate with the MSP430. 
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Part VI: FM430 Hardware

Figure 2: FM430 Flight Module Block Diagram
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FM430 Hardware (cont’d)
• Power system requirements:

Many high-power (>= 1W) wireless transceivers operate with 5V 
supplies. The CubeSat Kit also accepts user payloads in the form
of 5V-only PC/104 modules. Therefore this must be a mixed-
supply system, supporting both 5V and the MSP430's 3.3V. 
The CubeSat Kit provides USB connectivity as a means of 
communicating with ground personnel when fully assembled and / 
or immediately prior to launch. USB can provide 5V at 500mA 
max, and can also be used to charge on-board batteries.
As only 1W average power from the sun is available to charge 
solar cells on a 1U CubeSat, the power consumption of the 
MSP430 and all support circuitry must be minimized so that the 
FM430 can run 24x7 in its supervisory roles while batteries are 
being charged. Transmitting alone requires 4-5W of continuous 
power and therefore can only be done for a few minutes of every 
orbit. 
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FM430 Hardware (cont’d)
• Power system solution:

5V available system-wide on CubeSat Kit Bus™. 
Due to concerns over switching noise, system complexity and 
FM430 protection, TI's TPS769xx family of LDO linear ultralow-
power regulators was chosen to supply 3.3V to the CubeSat Kit's 
Flight Module from the +5V system bus: 

17µA max quiescent current @ 100mA output. 
Overcurrent protection. 
1µA sleep current via –EN (on CubeSat Kit Bus). 
-40º to +125º C operating range.

The CubeSat Kit Bus also provides a total of 4 terminals (C, NO 
and NC) from 10A Launch and Remove-Before-Flight Switches to 
facilitate a wiring-free main power switching scheme.
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FM430 Hardware (cont’d)
…

These regulators require careful attention to choice of output 
capacitor for stabilization. Yet their stability is quite tolerant of 
changes in output capacitor ESR that will occur in space due to 
temperature fluctuations. Additionally, unused 3.3V power is 
available system-wide via the CubeSat Kit Bus. This LDO is the 
largest single power consumer on the Flight Module when the 
FM430 is sleeping. If the Flight Module is the only consumer of 
3.3V power, overall system inefficiencies due to the 5V↔3.3V 
downconversion are essentially irrelevant.
Because the Flight Module runs at 3.3V, and system power is 
supplied at 5V, we have the opportunity to feed the 3.3V LDO from 
a multitude of 5V sources, via a simple Schottky diode drop. 
Therefore the Flight Module is powered from system 5V or USB 
5V, whichever is present (Figure 3). 
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FM430 Hardware (cont’d)

Figure 3: Multiple 5V Sources Feeding Ultralow-
power 3.3V LDO Linear Regulator
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FM430 Hardware (cont’d)
• Mixed 3.3V/5V design requirements:

Flight Module components and their operating voltages: 
3.3V: MSP430, reset supervisor & serial-to-USB converter 
(serial side) 
5V: 2.4GHz spread-spectrum transceiver & serial-to-USB converter 
(USB side)

The MSP430 drives either the transceiver, the serial-to-USB 
converter or the CubeSat Kit Bus through USART1. Because of 
the high quiescent power consumption of the transceiver (1W) and
serial-to-USB converter (2mW) compared to the MSP430, these 
devices should only be powered when connectivity is required. 
Therefore a zero-power, isolating and (for the transceiver) level-
shifting interface must be employed.
Power-up / power-down of 3.3V and 5V sides may occur 
separately at any time. MSP430 must be protected from 
overcurrents on its I/O pins from output drivers. Transceiver and 
serial-to-USB converter must not be powered through input pins 
via MSP430 outputs.
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FM430 Hardware (cont’d)
• Mixed 3.3V/5V design challenges:

Any scheme that doesn't keep signals at the CMOS rails will 
consume large (relative to MSP430) quiescent power. 
Resistive level shifters (e.g. for 3.3V↔5V) either waste power or 
don't provide sufficient isolation. 
There are many integrated bidirectional level-shifting solutions on 
the market today. But few of them offer level translation and 
power-off isolation with zero current draw. 
Popular FET-based (bus) switches have simple, symmetric flow-
through architectures that are well-suited to voltage translation 
and bus isolation. However, they require charge pumps to 
increase the voltage at each switch's gate so that VGS is adequate 
to turn on the switch. This adds 10µA-2mA of current draw, 
typically on a per-level-translated-pin basis. 
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FM430 Hardware (cont’d)
• Mixed 3.3V/5V design solutions:

Assuming that individual control outputs idle high, they can be 
level-shifted using discrete MOSFETs and resistors at zero power 
(Figure 4). 
To translate 3.3V up to 5V, we use half of an AHCT244 powered 
at 5V (on demand). The –OE control signal must also be level-
shifted to 5V for minimum power consumption (Figure 5). 
To translate and isolate 5V down to 3.3V, we use half of an 
LVC244A powered at 3.3V (permanently). The –OE control signal 
must also pulled to the chip's VCC for minimum power 
consumption and power-on / power-off isolation (Figure 6). 
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FM430 Hardware (cont’d)

Figure 4: Level-shifting for Individual Unidirectional 
Control Signals
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FM430 Hardware (cont’d)

Figure 5: Level-shifting up to +5V using AHCT Logic
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FM430 Hardware (cont’d)

Figure 6: Level-shifting down to +3.3V and Isolating 
using LVC Logic
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FM430 Hardware (cont’d)
• Isolated bus-powered serial-to-USB interface 

requirements: 
The USB interface must power the FM430 Flight Module over USB 
when a USB cable is connected. 
The Flight Module must be powered from either the system 5V or 
the USB interface automatically. 
When unpowered, the serial-to-USB converter must be completely 
isolated from the MSP430, and consume no power. 
Programmable support for USB VID, PID, etc. 
Customizable USB drivers for multiple platforms (Win, Mac OS, 
Linux, etc.). 
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FM430 Hardware (cont’d)
• Isolated bus-powered serial-to-USB interface solution: 

FTDI's FT232BM with external configuration EEPROM and 
Win/Mac OS/Linux drivers. 
5V from USB bus drives 3.3V LDO for Flight Module. 
Bus-powered design provides 3.3V to power LVC244A isolation 
circuitry via FT232BM's 3V3_OUT pin. 
Programmable support for USB VID, PID, etc. 
When USB cable is removed, LVC244A automatically isolates 
MSP430 from FT232BM through its partial power-down mode 
(Figure 7). 
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FM430 Hardware (cont’d)

Figure 7: 3.3V Isolation Driven by Presence of 
External Power VCC_IO 
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FM430 Hardware (cont’d)

Figure 8: Bus-powered Serial-to-USB Converter for 
3.3V Interface 
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FM430 Hardware (cont’d)
• Protecting the MSP430's I/O:

Absolute maximum over / undervoltage: ±0.3V
Overvoltage specification can be violated if MSP430 is OFF and 
driving circuitry is ON. In-line resistor will protect MSP430 by 
dropping voltage and limiting current. 
Absolute maximum diode current at any pin: ±2mA 
Overcurrent specification can be violated if MSP430 I/O is 
configured as an output and connected to another output. This 
could happen due to a programming error if I/O pin is used as both 
input and output, depending on overall system configuration. In-
line resistor will protect MSP430 by limiting current. 
Figure 6 and Figure 7 illustrate this technique. 4.7kΩ series 
limiting resistors chosen for adequate margin under all possible
operating conditions (including user error). 
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FM430 Hardware (cont’d)
• Reset supervisor:

TI's TPS3838 series nanopower supervisory circuit. 
Supply current < 300nA.
-40º to +85º C operating range.
Open-drain output is required for reliable JTAG debugging. 
–MR input on CubeSat Kit Bus to allow external MSP430 reset. 

Figure 9: Nanopower Reset Supervisor with       
Open-drain Output 
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FM430 Hardware (cont’d)
• Multitasking the MSP430's I/O pins:

By isolating the transceiver and serial-to-USB converter from the 
MSP430's bus, we can configure the directions of the eight 
associated pins for multiple purposes: RS-232 Tx/Rx + DCE 
handshaking (transceiver enabled), RS-232 Tx/Rx + DTE 
handshaking (serial-to-USB converter enabled), and user-defined 
(neither enabled).
With individual I/O pins dedicated to external peripheral enables, 
multiple external peripherals can be driven from a single internal 
peripheral. E.g. external camera, SD/MMC card and I2C bus can 
all be driven from USART0 (but only one at a time). 
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FM430 Hardware (cont’d)

Figure 10: Dedicated I/O Pin Usage. Pin Modes 
Dictated by Configuration 
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FM430 Hardware (cont’d)
• FM430 design results:

Accepts 64-pin MSP430’s, including ‘F149, ‘F169, ‘F1611, ‘F1612.
System-wide power consumption of <250µW asleep, <10mW 
operational, functional over -40º to +85º C operating range.
Implemented on a single 90x96mm six-layer PCB. 
MSP430's entire I/O pinout (and more) is available on two 40-pin 
PC/104-type stacking connectors. 
Mini-JTAG connector present for programming and debugging.
Having entire I/O space on CubeSat Kit Bus connector facilitates
the design of additional functionality (e.g. SD/MMC card socket for 
mass memory) as future on-board enhancements to the original 
(Rev A) design.
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FM430 Hardware (cont’d)

Figure 11: FM430 Flight Module Rev B
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Part VII: FM430 Software
• Integrated C development environment:

Isolates end-users (often novices) from having to learn assembly 
language … ignorance is bliss.
Applications written in C have acceptable speed, power and size 
results for vast majority of applications.
Plenty of C toolsets & IDEs available for the MSP430:

Archelon / Quadravox AQ430
GCC mspgcc
HI-TECH C for MSP430
IAR Embedded Workbench for MSP430
ImageCraft ICC430
Rowley CrossWorks for MSP430
TI Code Composer
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FM430 Software (cont’d)
• Pumpkin chose an RTOS-based approach to the 

CubeSat Kit’s system software because:
We felt it necessary to provide a formal paradigm to handle the 
interactions between the various sub-applications that would run 
on the CubeSat Kit, thereby managing complexity.
We wanted to extract the maximum performance out of the 
MSP430 – concurrency is a must.
We needed modularity so that users could pick and choose which 
software components they needed for their particular application, 
and to be able to selectively develop and debug individual 
application components.
Our experience has shown both novice and advanced 
programmers quickly appreciate the benefits of standardized 
multitasking and  RTOS services.
Programmers can communicate the actions of their tasks well to 
the hardware designers because of the clearly defined linear 
program flow.
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FM430 Software (cont’d)
• Pumpkin’s Salvo RTOS was chosen because:

Running your own RTOS under real-world, real-product conditions 
in end-user hands can only benefit all end-users of the RTOS.
Easier to customers to learn than a fully preemptive RTOS, no 
debugging headaches. All coding done in C.
Enables higher ISR and overall system performance (cycles / CPU 
watt) because of a variety of unique design features in Salvo.
Full feature set includes priority-based multitasking, delay 
services, multiple event types (semaphores, binary semaphores, 
messages, message queues and event flags), waiting with 
timeouts, support for low-power modes, complete configurability.
But perhaps most importantly, Salvo’s RAM footprint is tiny, much 
smaller than any other RTOS. This allows us to run memory-
hungry applications (e.g. image capture, IP-based web server, 
etc.) without requiring external memory or a larger Flight MCU.
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FM430 Software (cont’d)

We wanted a clean, lean and reliable MSP430 software 
application that could simultaneously manage the various 
internal and external MSP430 peripherals throughout the 
picosatellite in a clearly understandable way.

Our customers’ experience has reinforced the correctness 
of our decision to go with an approach based on the 
Salvo RTOS as the foundation for the CubeSat Kit’s 
software.
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FM430 Software (cont’d)
• CubeSat Kit software requirements:

USART0: Manage shared access to SD/MMC card,  I2C & user.
USART1: Manage isolation & interface to USB, transceiver & user.
USB: Detect when USB I/F is present. Acquire & release USB 
interface.
Transceiver: Tx / Rx when requested. Acquire & release 
transceiver interface, including the control of transceiver power 
when Tx'ing / Rx'ing.
P6: Sample at a variety of rates via A/D inputs. Handshake control 
to USB / transceiver interface.
User processes: TCP/IP & web server over SLIP, 1200 baud
Tx/Rx software USART, camera image capture, magnetometer 
data capture, command processor, EPS control and monitoring, 
mission supervisor, etc.
Power Consumption: Sleep whenever no activity is warranted.
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FM430 Software (cont’d)
• Task to read ambient temperature

unsigned long int DegC; // global, accessible to all
…
void TaskMeasureAmbientTemp( void )
{

unsigned int ADCresult;

/* setup ADC12 to read ch 10, etc. */
ADC12CTL0  = ADC12ON+REFON+REF2_5V+SHT0_6; 
ADC12CTL1  = SHP;
ADC12MCTL0 = INCH_10+SREF_1; 

/* wait 10ms for reference startup */
OS_Delay(1);

/* enable conversions */
ADC12CTL0 |= ENC;

for (;;)
{   

ADC12CTL0 |= ADC12SC;                       /* start conversion */
OS_Delay(200); /* wait 2s          */
ADCresult = ADC12MEM0; /* read result      */
DegC = ((((long)ADCresult-1615)*704)/4095); /* calc. DegC */

}
}
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FM430 Software (cont’d)
• TaskMeasureAmbientTemp() attributes:

Runs independently of others, i.e. loosely-coupled.
Runs at a low priority. Ambient temp sensing is not a high-priority 
issue in this system. OK if other, higher-priority tasks prevent it 
from running immediately after its 2s delay expires.
Uses minimal run-time resources. During the 2s period between 
successive reads of ADC12MEM0, no CPU cycles are expended on
TaskMeasureAmbientTemp(), and other tasks are free to run.
No inter-task communications, because it runs alone, accessing 
global variables. 

• TaskMeasureAmbientTemp() additional features:
Salvo's ability to context-switch at any place in the task allows 
other tasks to run while TaskMeasureAmbientTemp() is waiting 
for 10ms delay during ADC12 initialization. 
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FM430 Software (cont’d)
• Task to detect if USB is connected:

void TaskDetectUSB( void )
{

for (;;)
{

/* proceed if USB/MHX I/F is not in use */
OS_WaitBinSem(BINSEM_USB_MHX_AVAIL_P, OSNO_TIMEOUT);
OpenUSBMHXIF(USB);

if ( !FM430status.USBpresent && (P1IN & BIT7) )
{

FM430status.USBpresent = 1;
FM430Msg0("DetectUSB: USB connected.");

}
else if ( FM430status.USBpresent && !(P1IN & BIT7) )
{

FM430status.USBpresent = 0;
FM430Msg0("DetectUSB: USB disconnected.");

}

CloseUSBMHXIF(USB); /* release USB/MHX I/F */  
OSSignalBinSem(BINSEM_USB_MHX_AVAIL_P);    

OS_Delay(25); /* come back in 25 ticks */
}

}
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FM430 Software (cont’d)
• TaskDetectUSB() attributes:

Runs independently of others, i.e. loosely-coupled. 
Runs at a moderate priority. System should detect USB 
connections quickly. 
Uses minimal run-time resources. During the 250ms period 
between testing for USB presence, no CPU cycles are expended 
on TaskDetectUSB(), and other tasks are free to run. 
A binary semaphore is used to control access to a shared 
resource, the USB / transceiver interface. 

• TaskDetectUSB() additional features:
TaskDetectUSB() will be "held off" until the USB / transceiver 
interface is available. If the interface is not available (i.e. another 
task is using it), TaskDetectUSB() will acquire it when the 
interface is released and TaskDetectUSB() is the highest-
priority task waiting to use the interface. 
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FM430 Software (cont’d)
• Task to transmit data via transceiver:

void TaskTalkMHX( void )
{

for (;;)
{    

/* proceed if USB/MHX I/F is not in use */
OS_WaitBinSem(BINSEM_USB_MHX_AVAIL_P, OSNO_TIMEOUT);
OpenUSBMHXIF(MHX);

/* turn transceiver on, wait 1s while it resets */
Enable_5V_to_MHX();
OS_Delay(100);

FM430PutstrTx1("ATA\r"); /* enter command mode, wait 1s */ 
OS_Delay(100);

/* send some data, wait 1s, turn transceiver off */
sprintf(strTmp, "TalkMHX:" " Ambient temp is %d C", DegC); 
FM430Msg1(strTmp);
OS_Delay(100);
Disable_5V_to_MHX();

CloseUSBMHXIF(MHX); /* release USB/MHX I/F */
OSSignalBinSem(BINSEM_USB_MHX_AVAIL_P);

}
}
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FM430 Software (cont’d)
• TaskTalkMHX() attributes:

Runs independently of others, i.e. loosely-coupled. 
Runs at a moderate priority. 
Uses minimal run-time resources. During the 3s period that the 
task waits for delays to expire, no CPU cycles are expended on
TaskTalkMHX(), and other tasks are free to run. 
A binary semaphore is used to control access to a shared 
resource, the USB / transceiver interface. 

• TaskTalkMHX() additional features:
Like TaskDetectUSB(), TaskTalkMHX() must acquire the 
USB / transceiver interface before proceeding, etc.
Once TaskTalkMHX() has acquired the USB / transceiver 
interface, all other tasks wishing to use the interface must wait (i.e. 
"are blocked") until TaskTalkMHX() releases the interface at the 
end of transmission.
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FM430 Software (cont’d)
• Sleep whenever there are no eligible tasks:

void OSIdlingHook (void)
{

__low_power_mode_1();
}

OSIdlingHook() is called only when no tasks are eligible to run. 
Therefore it's the ideal place to sleep the processor, until an event
(i.e an internal or external interrupt) occurs. 

• Exit LPM after each interrupt that calls an RTOS service:
#pragma vector=TIMERA0_VECTOR
__interrupt void Timer_A (void)
{

CCR0 += 10000;
OSTimer(); 
__low_power_mode_off_on_exit();

}

Don't re-enter LPM until Salvo's scheduler has processed 
event(s). ISRs that are independent of Salvo can resume LPM on 
exit. 
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FM430 Software (cont’d)
• Initialize, create tasks and events, begin multitasking:

void main (void)
{

/* user & Salvo init */
Init();
OSInit();

/* several interrupts are used */
__enable_interrupt(); 

/* create tasks */
OSCreateTask(TaskStatusMonitor,      OSTCBP(1),  3);
OSCreateTask(TaskDetectUSB,          OSTCBP(2),  8);
OSCreateTask(TaskTalkUSB,            OSTCBP(3),  5);
OSCreateTask(TaskTalkMHX,            OSTCBP(4),  7);
OSCreateTask(TaskMeasureAmbientTemp, OSTCBP(5), 11);
…
/* create events */
OSCreateBinSem(BINSEM_USB_MHX_AVAIL_P, 1);

/* go */
for (;;)
{

OSSched();
}

}
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FM430 Software (cont’d)
• Extending the application:

Use additional binary semaphores and task priorities to manage 
access to resources.
Run additional periodic tasks at multiples of system tick period.
Use messages and message queues for intertask 
communications.
Use free-running system timer for timestamps.
Handle lost events via wait-with-timeout.
Interface to mass memory (e.g. via SD/MMC cards).
Run uIP-based web server supporting multiple simultaneous 
connections over TCP/IP via SLIP.
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FM430 Software (cont’d)
• Example Application:

CubeSat Kit demonstration code with 10 tasks to exercise 
hardware for test, handle USART0 and USART1 comms, detect 
USB, indicate system status, monitor on-board temperature, issue 
status monitor messages, and run uIP web server and SLIP link.

• Salvo configured for:
Priority-based multitasking, 16-bit delays, binary semaphores, 32-
bit system timer, 10 tasks and 2 events. 

• Salvo’s memory requirements on MSP430F169 for this 
application:

1890 bytes Flash.
107 bytes RAM.
Default of 90 bytes RAM for stack is more than sufficient.

• Observed power profile:
Over 97% of the time in LPM.
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FM430 Software (cont’d)

MSP430F149 CubeSat Kit
Demonstration Application

Flash Utilization

main() & Salvo tasks
[3880]

FM430 utility functions
[1136]

uIP TCP/IP stack, SLIP
code & web server
[5654]
uIP web server files
(*.html, etc.) [8700]

Salvo RTOS [1890]

ISRs & interrupt vectors
[190]

C library functions
(printf(), etc.) [1906]

Free [37828]

Figure 11: 

Flash Map
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FM430 Software (cont’d)

Figure 12: 

RAM Map

MSP430F149 CubeSat Kit
Demonstration Application

RAM Utilization

Application variables
[66]

uIP TCP/IP stack, SLIP
code & web server [293]

FM430 USART0 buffers
(256 Tx & 256 Rx) &
control [539]
FM430 USART1 buffers
(256 Tx & 256 Rx) &
control [539]
Salvo RTOS (10 tasks &
2 events) [107]

Stack [90]

Free [414]
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Part VIII: Summary
• MSP430 is the right choice for us because:

The single-chip MSP430F14x/16x/161x minimizes parts count on 
the FM430. 
The MSP430’s on-board peripherals (USARTS, ADC, DAC, DMA, 
timers, interrupts) and multi-purpose I/O enables very high level of 
application functionality and system integration. 
Its ultralow-power operation and configurable clock module enable 
24x7 MCU operation in a hostile environment. 
The MSP430’s 3.3V operation easily integrated into 5V design. 
Its C-friendly architecture with 50/55/60K Flash and 10/5/2K RAM, 
respectively, presents the opportunity for substantial functional 
software integration, thereby reducing system parts count. 
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Summary (cont’d)
…

There are a wide range of high-quality programming tools 
available for the MSP430. Programming and debugging the 
MSP430 over JTAG is easy.
The Salvo RTOS on MSP430 simplifies software development, 
enables code modularity, and results in a maintainable and 
expandable high-performance application with low power 
requirements. 
TI’s continuing development of the MSP430 family means that 
faster and/or larger-memory family members can be seamlessly 
designed into the CubeSat Kit as future upgrades.
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Live Demo

Q&A Session

Thank you for 
attending this 

Pumpkin seminar   
at the ATC 2005!
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Appendix
• Speaker information

Dr. Kalman is Pumpkin's president and chief software architect. He entered the embedded programming world 
in the mid-1980's. After co-founding a successful Silicon Valley high-tech pro-audio startup, he founded 
Pumpkin with an emphasis on software quality, performance and applicability to a wide range of 
microcontroller-based applications. He holds two United States patents, is a consulting professor at Stanford 
University and is invariably involved in a variety of hardware and software projects. 

• Salvo, CubeSat Kit and CubeSat information
More information on the Pumpkin’s Salvo RTOS and Pumpkin’s CubeSat Kit can be found at 
http://www.pumpkininc.com/ and http://www.cubesatkit.com/, respectively.
More information on the open CubeSat standard and the CubeSat community can be found at 
http://www.cubesat.info/. 

• Copyright notice
© 2005 Pumpkin, Inc. All rights reserved. Pumpkin and the Pumpkin logo, Salvo and the Salvo logo, The 
RTOS that runs in tiny places, CubeSat Kit, CubeSat Kit Bus and the CubeSat Kit logo are all trademarks of 
Pumpkin, Inc. The TI signature, logo and Technology for Innovators are trademarks of Texas Instruments and 
are used with permission. All other trademarks and logos are the property of their respective owners. No 
endorsements of or by third parties listed are implied. All specifications subject to change without notice.

First presented at TI’s 4th annual MSP430 Advanced Technical Conference in Dallas, Texas on November 1-3, 
2005. 


