
Slide 1

www.pumpkininc.com

Hardware and Software Design of
an RTOS-based MSP430-based

Picosatellite
Andrew E. Kalman, Ph.D.

Slide 2

www.pumpkininc.com
• Andrew E. Kalman

President and CTO, Pumpkin, Inc.

Author of

Creator of the

20+ years of embedded systems design and programming
experience
Contact: aek@pumpkininc.com

Introduction

Slide 3

www.pumpkininc.com
Outline
• Overview: Seminar Goals
• Part I: An Overview of Picosatellites
• Part II: The CubeSat Picosatellite Standard
• Part III: Product Requirements for a Picosatellite Kit
• Part IV: The CubeSat Kit’s Structure & Layout
• Part V: Why Pumpkin chose TI’s MSP430 for the

CubeSat Kit
• Part VI: Hardware Architecture of the CubeSat Kit’s

MSP430-centric FM430 Flight Module
• Part VII: Rapid MSP430 Software Development using the

Salvo RTOS
• Part VIII: Summary

Slide 4

www.pumpkininc.com
Overview
• This seminar will present an in-depth look at Pumpkin’s

experience with the MSP430 as it was applied to our
CubeSat Kit, an off-the-shelf build-it-yourself picosatellite
kit. Of particular interest to ATC attendees:

Why we chose the MSP430 for an aerospace application.
How the MSP430 fits into an expandable bus-driven architecture.
How to integrate the MSP430 into a +3.3V/+5V power system.
How to design zero-power peripheral interfaces to the MSP430.
Advantages of the available MSP430 development toolsets.
The power, interface and peripheral chips we used with the
MSP430.
Protecting the MSP430 from overcurrent / overvoltage.
How an RTOS simplifies MSP430 programming.
Software solutions to common problems in MSP430 applications.

Slide 5

www.pumpkininc.com
Part I: Picosatellites
• Development, debugging & functional testing: typical lab

environment.
• Pre-delivery and pre-launch:

Temperature, vacuum and shake tests.
Integration into launch vehicle.
Picosatellite may remain in storage for months on end waiting for
launch.

• Launch & deployment: high g-forces (10g or more).
• Operation in space: vacuum, wide temperature range

(-20º to +60º C), solar radiation, and remoteness.
• End of mission: deorbit and burn up in earth's

atmosphere.

Slide 6

www.pumpkininc.com
Picosatellites (cont’d)
• Picosatellite components:

Structure.
Command & Data Handling (C&DH), with high-frequency
transceiver and antenna(s).
Communications (COM).
Electrical Power System (EPS).
Attitude Determination & Control System (AD&CS).
Payload.
Software, Software, Software.

• Picosatellites are often launched in groups from
dedicated launchers as secondary payloads on a rocket.

Slide 7

www.pumpkininc.com
Part II: CubeSats
• The CubeSat is a 10x10x10cm, 1kg public picosatellite

design specification proposed by Stanford and Cal Poly
San Luis Obispo universities.

• Low-earth orbit (LEO) CubeSat missions have typical
lifespans of 3-9 months.

• Cost to complete a CubeSat mission (inception to launch
to operation to end-of-life) ranges from <$100,000 to
$1,500,000.

• Working from a standard promotes rapid development
and idea sharing

• Picosatellites are already a hot topic in aerospace.
Worldwide interest is focused on CubeSats in particular,
partly because they are becoming a de facto standard.

Slide 8

www.pumpkininc.com
Part III: Kit Requirements
• This is not the $5,000,000-and-up satellite market!
• High percentage of potential end-users represented by

educational organizations (universities and high schools).
• Timelines allow less than 24 months from mission

inception to launch.
• Must be able to accommodate a wide variety of user

payloads and high levels of mission complexity.
• CubeSats are by nature low-power due to the available

solar radiation (<1W for typical 10x10x10cm “1U” cube).
• Scalable, expandable and non-obsolescent architecture.
• Multiple power supplies necessary for flexibility.

Slide 9

www.pumpkininc.com
Kit Requirements (cont’d)
• A COTS CubeSat kit should:

Implement as many of the CubeSat standard's specifications as
possible, thereby shortening the design & development timeline.
Integrate as much functionality into as small a space as possible,
so as to leave plenty of room for the CubeSat's payload and other
mission-specific hardware.
Be flexible, with a design that can accommodate a wide range of
customer requirements and configurations.
Be expandable and modular, to accept other COTS hardware and
software.
Provide a software development platform that's easy to use and
debug.
Have a clearly-defined future upgrade path.
Include high-value-added features (hardware and software) to
differentiate itself from the competition and "home-grown"
CubeSats.
Be affordable.

Slide 10

www.pumpkininc.com
Part IV: Structure & Layout
• Mechanical structure is constrained by exterior dimensions,

defined access area and other requirements in the CubeSat
specification. We chose a sheet-metal design for strength,
light weight, maximal internal volume and design flexibility.

• A module bussing scheme patterned after the PC/104
standard was chosen for interconnecting modules and
connector reliability.

• All of the MSP430’s I/O pins are on the electrical bus, as
well as GND/+3.3V/+5V, +5V_USB, power switching, power
control, modem control signals, and a few other signals.

• ½U, 1U, 1½U, 2U and 3U sizes differ only by a single part –
the chassis walls assembly.

Slide 11

www.pumpkininc.com
Structure & Layout (cont’d)

Figure 1: Exploded View of a 1U
MSP430-based CubeSat Kit.

Clockwise from center left: Chassis
Walls Assembly, Cover Plate, User
Module Stack, High-Frequency
Transceiver, FM430 Flight Module,
Base Plate.

MSP430 resides on FM430 Flight
Module.

Slide 12

www.pumpkininc.com
Part V: Choice of MSP430
• The MSP430's CubeSat Kit-friendly features include:

-40º to +85º C operating temperature range.
Relatively large code space (up to 60K) enables a high level of
systems integration, thereby reducing processor count.
16-bit architecture and highly orthogonal and C-friendly
architecture makes for efficient high-level programming.
Good mix of on-board peripherals. Plenty of I/O.
JTAG & Flash accelerate the design & debug cycle.
Ultra-low-power design, dual clock sources and fast startup from
sleep help minimize power consumption.
Well-organized prioritized interrupt vectors and interrupt control.
Wide range of tools (assemblers, compilers, RTOS, IDEs, JTAG
debuggers, programmers, development kits, etc.) offered.
Ready parts availability.

Slide 13

www.pumpkininc.com
Choice of MSP430 (cont’d)
• The CubeSat Kit's MSP430 Flight MCU is responsible for:

Doing supervisory tasks, e.g. monitoring on-board temperatures,
voltages and currents, etc.
Managing bidirectional communications with the mission's ground
station(s) (COM).
Acting autonomously and/or through commands from the ground
station(s) or other satellites (C&DH).
Handling data storage and retrieval, either on-chip (in RAM or
Flash) or off-chip (mass storage).
Configuring its I/O to interface to multiple peripherals that
concurrently share the same MSP430 port pins and peripherals.
Depending on system complexity, EPS and AD&C functions may
be implemented either in the MSP430 or in additional mission-
specific CPUs and µC's that communicate with the MSP430.

Slide 14

www.pumpkininc.com
Part VI: FM430 Hardware

Figure 2: FM430 Flight Module Block Diagram

Slide 15

www.pumpkininc.com
FM430 Hardware (cont’d)
• Power system requirements:

Many high-power (>= 1W) wireless transceivers operate with 5V
supplies. The CubeSat Kit also accepts user payloads in the form
of 5V-only PC/104 modules. Therefore this must be a mixed-
supply system, supporting both 5V and the MSP430's 3.3V.
The CubeSat Kit provides USB connectivity as a means of
communicating with ground personnel when fully assembled and /
or immediately prior to launch. USB can provide 5V at 500mA
max, and can also be used to charge on-board batteries.
As only 1W average power from the sun is available to charge
solar cells on a 1U CubeSat, the power consumption of the
MSP430 and all support circuitry must be minimized so that the
FM430 can run 24x7 in its supervisory roles while batteries are
being charged. Transmitting alone requires 4-5W of continuous
power and therefore can only be done for a few minutes of every
orbit.

Slide 16

www.pumpkininc.com
FM430 Hardware (cont’d)
• Power system solution:

5V available system-wide on CubeSat Kit Bus™.
Due to concerns over switching noise, system complexity and
FM430 protection, TI's TPS769xx family of LDO linear ultralow-
power regulators was chosen to supply 3.3V to the CubeSat Kit's
Flight Module from the +5V system bus:

17µA max quiescent current @ 100mA output.
Overcurrent protection.
1µA sleep current via –EN (on CubeSat Kit Bus).
-40º to +125º C operating range.

The CubeSat Kit Bus also provides a total of 4 terminals (C, NO
and NC) from 10A Launch and Remove-Before-Flight Switches to
facilitate a wiring-free main power switching scheme.

Slide 17

www.pumpkininc.com
FM430 Hardware (cont’d)
…

These regulators require careful attention to choice of output
capacitor for stabilization. Yet their stability is quite tolerant of
changes in output capacitor ESR that will occur in space due to
temperature fluctuations. Additionally, unused 3.3V power is
available system-wide via the CubeSat Kit Bus. This LDO is the
largest single power consumer on the Flight Module when the
FM430 is sleeping. If the Flight Module is the only consumer of
3.3V power, overall system inefficiencies due to the 5V↔3.3V
downconversion are essentially irrelevant.
Because the Flight Module runs at 3.3V, and system power is
supplied at 5V, we have the opportunity to feed the 3.3V LDO from
a multitude of 5V sources, via a simple Schottky diode drop.
Therefore the Flight Module is powered from system 5V or USB
5V, whichever is present (Figure 3).

Slide 18

www.pumpkininc.com
FM430 Hardware (cont’d)

Figure 3: Multiple 5V Sources Feeding Ultralow-
power 3.3V LDO Linear Regulator

Slide 19

www.pumpkininc.com
FM430 Hardware (cont’d)
• Mixed 3.3V/5V design requirements:

Flight Module components and their operating voltages:
3.3V: MSP430, reset supervisor & serial-to-USB converter
(serial side)
5V: 2.4GHz spread-spectrum transceiver & serial-to-USB converter
(USB side)

The MSP430 drives either the transceiver, the serial-to-USB
converter or the CubeSat Kit Bus through USART1. Because of
the high quiescent power consumption of the transceiver (1W) and
serial-to-USB converter (2mW) compared to the MSP430, these
devices should only be powered when connectivity is required.
Therefore a zero-power, isolating and (for the transceiver) level-
shifting interface must be employed.
Power-up / power-down of 3.3V and 5V sides may occur
separately at any time. MSP430 must be protected from
overcurrents on its I/O pins from output drivers. Transceiver and
serial-to-USB converter must not be powered through input pins
via MSP430 outputs.

Slide 20

www.pumpkininc.com
FM430 Hardware (cont’d)
• Mixed 3.3V/5V design challenges:

Any scheme that doesn't keep signals at the CMOS rails will
consume large (relative to MSP430) quiescent power.
Resistive level shifters (e.g. for 3.3V↔5V) either waste power or
don't provide sufficient isolation.
There are many integrated bidirectional level-shifting solutions on
the market today. But few of them offer level translation and
power-off isolation with zero current draw.
Popular FET-based (bus) switches have simple, symmetric flow-
through architectures that are well-suited to voltage translation
and bus isolation. However, they require charge pumps to
increase the voltage at each switch's gate so that VGS is adequate
to turn on the switch. This adds 10µA-2mA of current draw,
typically on a per-level-translated-pin basis.

Slide 21

www.pumpkininc.com
FM430 Hardware (cont’d)
• Mixed 3.3V/5V design solutions:

Assuming that individual control outputs idle high, they can be
level-shifted using discrete MOSFETs and resistors at zero power
(Figure 4).
To translate 3.3V up to 5V, we use half of an AHCT244 powered
at 5V (on demand). The –OE control signal must also be level-
shifted to 5V for minimum power consumption (Figure 5).
To translate and isolate 5V down to 3.3V, we use half of an
LVC244A powered at 3.3V (permanently). The –OE control signal
must also pulled to the chip's VCC for minimum power
consumption and power-on / power-off isolation (Figure 6).

Slide 22

www.pumpkininc.com
FM430 Hardware (cont’d)

Figure 4: Level-shifting for Individual Unidirectional
Control Signals

Slide 23

www.pumpkininc.com
FM430 Hardware (cont’d)

Figure 5: Level-shifting up to +5V using AHCT Logic

Slide 24

www.pumpkininc.com
FM430 Hardware (cont’d)

Figure 6: Level-shifting down to +3.3V and Isolating
using LVC Logic

Slide 25

www.pumpkininc.com
FM430 Hardware (cont’d)
• Isolated bus-powered serial-to-USB interface

requirements:
The USB interface must power the FM430 Flight Module over USB
when a USB cable is connected.
The Flight Module must be powered from either the system 5V or
the USB interface automatically.
When unpowered, the serial-to-USB converter must be completely
isolated from the MSP430, and consume no power.
Programmable support for USB VID, PID, etc.
Customizable USB drivers for multiple platforms (Win, Mac OS,
Linux, etc.).

Slide 26

www.pumpkininc.com
FM430 Hardware (cont’d)
• Isolated bus-powered serial-to-USB interface solution:

FTDI's FT232BM with external configuration EEPROM and
Win/Mac OS/Linux drivers.
5V from USB bus drives 3.3V LDO for Flight Module.
Bus-powered design provides 3.3V to power LVC244A isolation
circuitry via FT232BM's 3V3_OUT pin.
Programmable support for USB VID, PID, etc.
When USB cable is removed, LVC244A automatically isolates
MSP430 from FT232BM through its partial power-down mode
(Figure 7).

Slide 27

www.pumpkininc.com
FM430 Hardware (cont’d)

Figure 7: 3.3V Isolation Driven by Presence of
External Power VCC_IO

Slide 28

www.pumpkininc.com
FM430 Hardware (cont’d)

Figure 8: Bus-powered Serial-to-USB Converter for
3.3V Interface

Slide 29

www.pumpkininc.com
FM430 Hardware (cont’d)
• Protecting the MSP430's I/O:

Absolute maximum over / undervoltage: ±0.3V
Overvoltage specification can be violated if MSP430 is OFF and
driving circuitry is ON. In-line resistor will protect MSP430 by
dropping voltage and limiting current.
Absolute maximum diode current at any pin: ±2mA
Overcurrent specification can be violated if MSP430 I/O is
configured as an output and connected to another output. This
could happen due to a programming error if I/O pin is used as both
input and output, depending on overall system configuration. In-
line resistor will protect MSP430 by limiting current.
Figure 6 and Figure 7 illustrate this technique. 4.7kΩ series
limiting resistors chosen for adequate margin under all possible
operating conditions (including user error).

Slide 30

www.pumpkininc.com
FM430 Hardware (cont’d)
• Reset supervisor:

TI's TPS3838 series nanopower supervisory circuit.
Supply current < 300nA.
-40º to +85º C operating range.
Open-drain output is required for reliable JTAG debugging.
–MR input on CubeSat Kit Bus to allow external MSP430 reset.

Figure 9: Nanopower Reset Supervisor with
Open-drain Output

Slide 31

www.pumpkininc.com
FM430 Hardware (cont’d)
• Multitasking the MSP430's I/O pins:

By isolating the transceiver and serial-to-USB converter from the
MSP430's bus, we can configure the directions of the eight
associated pins for multiple purposes: RS-232 Tx/Rx + DCE
handshaking (transceiver enabled), RS-232 Tx/Rx + DTE
handshaking (serial-to-USB converter enabled), and user-defined
(neither enabled).
With individual I/O pins dedicated to external peripheral enables,
multiple external peripherals can be driven from a single internal
peripheral. E.g. external camera, SD/MMC card and I2C bus can
all be driven from USART0 (but only one at a time).

Slide 32

www.pumpkininc.com
FM430 Hardware (cont’d)

Figure 10: Dedicated I/O Pin Usage. Pin Modes
Dictated by Configuration

Slide 33

www.pumpkininc.com
FM430 Hardware (cont’d)
• FM430 design results:

Accepts 64-pin MSP430’s, including ‘F149, ‘F169, ‘F1611, ‘F1612.
System-wide power consumption of <250µW asleep, <10mW
operational, functional over -40º to +85º C operating range.
Implemented on a single 90x96mm six-layer PCB.
MSP430's entire I/O pinout (and more) is available on two 40-pin
PC/104-type stacking connectors.
Mini-JTAG connector present for programming and debugging.
Having entire I/O space on CubeSat Kit Bus connector facilitates
the design of additional functionality (e.g. SD/MMC card socket for
mass memory) as future on-board enhancements to the original
(Rev A) design.

Slide 34

www.pumpkininc.com
FM430 Hardware (cont’d)

Figure 11: FM430 Flight Module Rev B

Slide 35

www.pumpkininc.com
Part VII: FM430 Software
• Integrated C development environment:

Isolates end-users (often novices) from having to learn assembly
language … ignorance is bliss.
Applications written in C have acceptable speed, power and size
results for vast majority of applications.
Plenty of C toolsets & IDEs available for the MSP430:

Archelon / Quadravox AQ430
GCC mspgcc
HI-TECH C for MSP430
IAR Embedded Workbench for MSP430
ImageCraft ICC430
Rowley CrossWorks for MSP430
TI Code Composer

Slide 36

www.pumpkininc.com
FM430 Software (cont’d)
• Pumpkin chose an RTOS-based approach to the

CubeSat Kit’s system software because:
We felt it necessary to provide a formal paradigm to handle the
interactions between the various sub-applications that would run
on the CubeSat Kit, thereby managing complexity.
We wanted to extract the maximum performance out of the
MSP430 – concurrency is a must.
We needed modularity so that users could pick and choose which
software components they needed for their particular application,
and to be able to selectively develop and debug individual
application components.
Our experience has shown both novice and advanced
programmers quickly appreciate the benefits of standardized
multitasking and RTOS services.
Programmers can communicate the actions of their tasks well to
the hardware designers because of the clearly defined linear
program flow.

Slide 37

www.pumpkininc.com
FM430 Software (cont’d)
• Pumpkin’s Salvo RTOS was chosen because:

Running your own RTOS under real-world, real-product conditions
in end-user hands can only benefit all end-users of the RTOS.
Easier to customers to learn than a fully preemptive RTOS, no
debugging headaches. All coding done in C.
Enables higher ISR and overall system performance (cycles / CPU
watt) because of a variety of unique design features in Salvo.
Full feature set includes priority-based multitasking, delay
services, multiple event types (semaphores, binary semaphores,
messages, message queues and event flags), waiting with
timeouts, support for low-power modes, complete configurability.
But perhaps most importantly, Salvo’s RAM footprint is tiny, much
smaller than any other RTOS. This allows us to run memory-
hungry applications (e.g. image capture, IP-based web server,
etc.) without requiring external memory or a larger Flight MCU.

Slide 38

www.pumpkininc.com
FM430 Software (cont’d)

We wanted a clean, lean and reliable MSP430 software
application that could simultaneously manage the various
internal and external MSP430 peripherals throughout the
picosatellite in a clearly understandable way.

Our customers’ experience has reinforced the correctness
of our decision to go with an approach based on the
Salvo RTOS as the foundation for the CubeSat Kit’s
software.

Slide 39

www.pumpkininc.com
FM430 Software (cont’d)
• CubeSat Kit software requirements:

USART0: Manage shared access to SD/MMC card, I2C & user.
USART1: Manage isolation & interface to USB, transceiver & user.
USB: Detect when USB I/F is present. Acquire & release USB
interface.
Transceiver: Tx / Rx when requested. Acquire & release
transceiver interface, including the control of transceiver power
when Tx'ing / Rx'ing.
P6: Sample at a variety of rates via A/D inputs. Handshake control
to USB / transceiver interface.
User processes: TCP/IP & web server over SLIP, 1200 baud
Tx/Rx software USART, camera image capture, magnetometer
data capture, command processor, EPS control and monitoring,
mission supervisor, etc.
Power Consumption: Sleep whenever no activity is warranted.

Slide 40

www.pumpkininc.com
FM430 Software (cont’d)
• Task to read ambient temperature

unsigned long int DegC; // global, accessible to all
…
void TaskMeasureAmbientTemp(void)
{

unsigned int ADCresult;

/* setup ADC12 to read ch 10, etc. */
ADC12CTL0 = ADC12ON+REFON+REF2_5V+SHT0_6;
ADC12CTL1 = SHP;
ADC12MCTL0 = INCH_10+SREF_1;

/* wait 10ms for reference startup */
OS_Delay(1);

/* enable conversions */
ADC12CTL0 |= ENC;

for (;;)
{

ADC12CTL0 |= ADC12SC; /* start conversion */
OS_Delay(200); /* wait 2s */
ADCresult = ADC12MEM0; /* read result */
DegC = ((((long)ADCresult-1615)*704)/4095); /* calc. DegC */

}
}

Slide 41

www.pumpkininc.com
FM430 Software (cont’d)
• TaskMeasureAmbientTemp() attributes:

Runs independently of others, i.e. loosely-coupled.
Runs at a low priority. Ambient temp sensing is not a high-priority
issue in this system. OK if other, higher-priority tasks prevent it
from running immediately after its 2s delay expires.
Uses minimal run-time resources. During the 2s period between
successive reads of ADC12MEM0, no CPU cycles are expended on
TaskMeasureAmbientTemp(), and other tasks are free to run.
No inter-task communications, because it runs alone, accessing
global variables.

• TaskMeasureAmbientTemp() additional features:
Salvo's ability to context-switch at any place in the task allows
other tasks to run while TaskMeasureAmbientTemp() is waiting
for 10ms delay during ADC12 initialization.

Slide 42

www.pumpkininc.com
FM430 Software (cont’d)
• Task to detect if USB is connected:

void TaskDetectUSB(void)
{

for (;;)
{

/* proceed if USB/MHX I/F is not in use */
OS_WaitBinSem(BINSEM_USB_MHX_AVAIL_P, OSNO_TIMEOUT);
OpenUSBMHXIF(USB);

if (!FM430status.USBpresent && (P1IN & BIT7))
{

FM430status.USBpresent = 1;
FM430Msg0("DetectUSB: USB connected.");

}
else if (FM430status.USBpresent && !(P1IN & BIT7))
{

FM430status.USBpresent = 0;
FM430Msg0("DetectUSB: USB disconnected.");

}

CloseUSBMHXIF(USB); /* release USB/MHX I/F */
OSSignalBinSem(BINSEM_USB_MHX_AVAIL_P);

OS_Delay(25); /* come back in 25 ticks */
}

}

Slide 43

www.pumpkininc.com
FM430 Software (cont’d)
• TaskDetectUSB() attributes:

Runs independently of others, i.e. loosely-coupled.
Runs at a moderate priority. System should detect USB
connections quickly.
Uses minimal run-time resources. During the 250ms period
between testing for USB presence, no CPU cycles are expended
on TaskDetectUSB(), and other tasks are free to run.
A binary semaphore is used to control access to a shared
resource, the USB / transceiver interface.

• TaskDetectUSB() additional features:
TaskDetectUSB() will be "held off" until the USB / transceiver
interface is available. If the interface is not available (i.e. another
task is using it), TaskDetectUSB() will acquire it when the
interface is released and TaskDetectUSB() is the highest-
priority task waiting to use the interface.

Slide 44

www.pumpkininc.com
FM430 Software (cont’d)
• Task to transmit data via transceiver:

void TaskTalkMHX(void)
{

for (;;)
{

/* proceed if USB/MHX I/F is not in use */
OS_WaitBinSem(BINSEM_USB_MHX_AVAIL_P, OSNO_TIMEOUT);
OpenUSBMHXIF(MHX);

/* turn transceiver on, wait 1s while it resets */
Enable_5V_to_MHX();
OS_Delay(100);

FM430PutstrTx1("ATA\r"); /* enter command mode, wait 1s */
OS_Delay(100);

/* send some data, wait 1s, turn transceiver off */
sprintf(strTmp, "TalkMHX:" " Ambient temp is %d C", DegC);
FM430Msg1(strTmp);
OS_Delay(100);
Disable_5V_to_MHX();

CloseUSBMHXIF(MHX); /* release USB/MHX I/F */
OSSignalBinSem(BINSEM_USB_MHX_AVAIL_P);

}
}

Slide 45

www.pumpkininc.com
FM430 Software (cont’d)
• TaskTalkMHX() attributes:

Runs independently of others, i.e. loosely-coupled.
Runs at a moderate priority.
Uses minimal run-time resources. During the 3s period that the
task waits for delays to expire, no CPU cycles are expended on
TaskTalkMHX(), and other tasks are free to run.
A binary semaphore is used to control access to a shared
resource, the USB / transceiver interface.

• TaskTalkMHX() additional features:
Like TaskDetectUSB(), TaskTalkMHX() must acquire the
USB / transceiver interface before proceeding, etc.
Once TaskTalkMHX() has acquired the USB / transceiver
interface, all other tasks wishing to use the interface must wait (i.e.
"are blocked") until TaskTalkMHX() releases the interface at the
end of transmission.

Slide 46

www.pumpkininc.com
FM430 Software (cont’d)
• Sleep whenever there are no eligible tasks:

void OSIdlingHook (void)
{

__low_power_mode_1();
}

OSIdlingHook() is called only when no tasks are eligible to run.
Therefore it's the ideal place to sleep the processor, until an event
(i.e an internal or external interrupt) occurs.

• Exit LPM after each interrupt that calls an RTOS service:
#pragma vector=TIMERA0_VECTOR
__interrupt void Timer_A (void)
{

CCR0 += 10000;
OSTimer();
__low_power_mode_off_on_exit();

}

Don't re-enter LPM until Salvo's scheduler has processed
event(s). ISRs that are independent of Salvo can resume LPM on
exit.

Slide 47

www.pumpkininc.com
FM430 Software (cont’d)
• Initialize, create tasks and events, begin multitasking:

void main (void)
{

/* user & Salvo init */
Init();
OSInit();

/* several interrupts are used */
__enable_interrupt();

/* create tasks */
OSCreateTask(TaskStatusMonitor, OSTCBP(1), 3);
OSCreateTask(TaskDetectUSB, OSTCBP(2), 8);
OSCreateTask(TaskTalkUSB, OSTCBP(3), 5);
OSCreateTask(TaskTalkMHX, OSTCBP(4), 7);
OSCreateTask(TaskMeasureAmbientTemp, OSTCBP(5), 11);
…
/* create events */
OSCreateBinSem(BINSEM_USB_MHX_AVAIL_P, 1);

/* go */
for (;;)
{

OSSched();
}

}

Slide 48

www.pumpkininc.com
FM430 Software (cont’d)
• Extending the application:

Use additional binary semaphores and task priorities to manage
access to resources.
Run additional periodic tasks at multiples of system tick period.
Use messages and message queues for intertask
communications.
Use free-running system timer for timestamps.
Handle lost events via wait-with-timeout.
Interface to mass memory (e.g. via SD/MMC cards).
Run uIP-based web server supporting multiple simultaneous
connections over TCP/IP via SLIP.

Slide 49

www.pumpkininc.com
FM430 Software (cont’d)
• Example Application:

CubeSat Kit demonstration code with 10 tasks to exercise
hardware for test, handle USART0 and USART1 comms, detect
USB, indicate system status, monitor on-board temperature, issue
status monitor messages, and run uIP web server and SLIP link.

• Salvo configured for:
Priority-based multitasking, 16-bit delays, binary semaphores, 32-
bit system timer, 10 tasks and 2 events.

• Salvo’s memory requirements on MSP430F169 for this
application:

1890 bytes Flash.
107 bytes RAM.
Default of 90 bytes RAM for stack is more than sufficient.

• Observed power profile:
Over 97% of the time in LPM.

Slide 50

www.pumpkininc.com
FM430 Software (cont’d)

MSP430F149 CubeSat Kit
Demonstration Application

Flash Utilization

main() & Salvo tasks
[3880]

FM430 utility functions
[1136]

uIP TCP/IP stack, SLIP
code & web server
[5654]
uIP web server files
(*.html, etc.) [8700]

Salvo RTOS [1890]

ISRs & interrupt vectors
[190]

C library functions
(printf(), etc.) [1906]

Free [37828]

Figure 11:

Flash Map

Slide 51

www.pumpkininc.com
FM430 Software (cont’d)

Figure 12:

RAM Map

MSP430F149 CubeSat Kit
Demonstration Application

RAM Utilization

Application variables
[66]

uIP TCP/IP stack, SLIP
code & web server [293]

FM430 USART0 buffers
(256 Tx & 256 Rx) &
control [539]
FM430 USART1 buffers
(256 Tx & 256 Rx) &
control [539]
Salvo RTOS (10 tasks &
2 events) [107]

Stack [90]

Free [414]

Slide 52

www.pumpkininc.com
Part VIII: Summary
• MSP430 is the right choice for us because:

The single-chip MSP430F14x/16x/161x minimizes parts count on
the FM430.
The MSP430’s on-board peripherals (USARTS, ADC, DAC, DMA,
timers, interrupts) and multi-purpose I/O enables very high level of
application functionality and system integration.
Its ultralow-power operation and configurable clock module enable
24x7 MCU operation in a hostile environment.
The MSP430’s 3.3V operation easily integrated into 5V design.
Its C-friendly architecture with 50/55/60K Flash and 10/5/2K RAM,
respectively, presents the opportunity for substantial functional
software integration, thereby reducing system parts count.

Slide 53

www.pumpkininc.com
Summary (cont’d)
…

There are a wide range of high-quality programming tools
available for the MSP430. Programming and debugging the
MSP430 over JTAG is easy.
The Salvo RTOS on MSP430 simplifies software development,
enables code modularity, and results in a maintainable and
expandable high-performance application with low power
requirements.
TI’s continuing development of the MSP430 family means that
faster and/or larger-memory family members can be seamlessly
designed into the CubeSat Kit as future upgrades.

Slide 54

www.pumpkininc.com

Live Demo

Q&A Session

Thank you for
attending this

Pumpkin seminar
at the ATC 2005!

Slide 55

www.pumpkininc.com
Suggested Reading
1. Interfacing the 3-V MSP430 to 5-V Circuits, Texas Instruments Application Report SLAA148,

October 2002.
2. SN54AHCT244, SN74AHCT244 Octal Buffers/Drivers with 3-state Outputs, Texas Instruments

Datasheet SCLS288L, July 2003.
3. SN74LVC244A Octal Buffers/Driver with 3-state Outputs, Texas Instruments Datasheet

SCAS414U, August 2003.
4. TPS3836E18 / J25 / H30 / L30 / K33, TPS3837E18 / J25 / L30 / K33, TPS3838E18 / J25 / L30 /

K33 Nanopower Supervisory Circuits, Texas Instruments Datasheet SLVS292B, December
2002.

5. TPS76901, TPS76912, TPS76915, TPS76918, TPS76925, TPS76927, TPS76928, TPS76930,
TPS76933, TPS76950 Ultralow-power 100-mA Low-dropout Linear Regulators, Texas
Instruments Datasheet SLVS203E, May 2001.

6. MSP430x15x, MSP430x16x, MSP430x161x Mixed Signal Microcontroller, Texas Instruments
Datasheet SLAS368D, October 2002.

7. The I2C-bus specification, Philips Semiconductors.
8. Salvo User Manual, Pumpkin, Inc., 2003.
9. CubeSat Kit User Manual, Pumpkin, Inc. 2005.
10. The uIP Embedded TCP/IP Stack, Adam Dunkels, http://www.sics.se/~adam/uip/.

Slide 56

www.pumpkininc.com
Appendix
• Speaker information

Dr. Kalman is Pumpkin's president and chief software architect. He entered the embedded programming world
in the mid-1980's. After co-founding a successful Silicon Valley high-tech pro-audio startup, he founded
Pumpkin with an emphasis on software quality, performance and applicability to a wide range of
microcontroller-based applications. He holds two United States patents, is a consulting professor at Stanford
University and is invariably involved in a variety of hardware and software projects.

• Salvo, CubeSat Kit and CubeSat information
More information on the Pumpkin’s Salvo RTOS and Pumpkin’s CubeSat Kit can be found at
http://www.pumpkininc.com/ and http://www.cubesatkit.com/, respectively.
More information on the open CubeSat standard and the CubeSat community can be found at
http://www.cubesat.info/.

• Copyright notice
© 2005 Pumpkin, Inc. All rights reserved. Pumpkin and the Pumpkin logo, Salvo and the Salvo logo, The
RTOS that runs in tiny places, CubeSat Kit, CubeSat Kit Bus and the CubeSat Kit logo are all trademarks of
Pumpkin, Inc. The TI signature, logo and Technology for Innovators are trademarks of Texas Instruments and
are used with permission. All other trademarks and logos are the property of their respective owners. No
endorsements of or by third parties listed are implied. All specifications subject to change without notice.

First presented at TI’s 4th annual MSP430 Advanced Technical Conference in Dallas, Texas on November 1-3,
2005.

