
Slide 1

www.pumpkininc.com

Maximizing Runtime Performance
in Peripheral-Rich MSP430

Applications
Andrew E. Kalman, Ph.D.

Slide 2

www.pumpkininc.com
• Andrew E. Kalman

President and CTO, Pumpkin, Inc.

Author of

Creator of the

20+ years of embedded systems design and programming
experience
Contact: aek@pumpkininc.com

Introduction

Slide 3

www.pumpkininc.com
Outline
• Overview: Seminar Goals
• Part I: Interrupts Explained
• Part II: Interrupts on the MSP430
• Part III: A Basic Example: Interrupt-driven MSP430 UART

Routines
• Part IV: A Complex Example: Bit-banged Tx/Rx UART

using MSP430’s Timer A
• Part V: Impact of RTOS on Interrupts
• Part VI: Additional Interrupt Topics
• Part VII: Summary

Slide 4

www.pumpkininc.com
Interrupts Explained
• Interrupts provide a means of changing the Program

Counter (PC) – and hence which code is executed by the
CPU – based on internal or external events.

• Interrupt code is executed from Interrupt Service Routines
(ISRs). ISRs are vectored.

• Interrupts have often priorities associated with them.
• Interrupts can be nested.
• Servicing an interrupt can be thought of as a context

switch.
• ISRs can normally call code anywhere in program

memory.
• Instruction sets and architectures often have specific

features to improve interrupt-handling performance.

Slide 5

www.pumpkininc.com
Part I (cont’d)
• When an interrupt occurs:

Interrupts are typically disabled (prevents unwanted nesting).
The PC and certain registers (e.g. STATUS) are saved on the
stack.
The PC changes to the starting address of the ISR.
The ISR is executed to completion.
The saved registers are restored from the stack, interrupt are re-
enabled, and program execution resumes where it left off in non-
interrupt code.

• A non-standard return-from-interrupt may be required
when e.g.:

The processor is in a low-power mode.
Exception handling is required.
An RTOS is used to schedule tasks.

Slide 6

www.pumpkininc.com
Part I (cont’d)
• Interrupts preempt normal code execution.

Interrupt code runs in the foreground.
Normal (e.g. main()) code runs in the background.

• Interrupts can be enabled and disabled.
Globally.
Individually on a per-peripheral basis.
Non-Maskable Interrupt (NMI).

• The occurrence of each interrupt is unpredictable.*
When an interrupt occurs.
Where an interrupt occurs.

• Interrupts are associated with a variety of on-chip and off-
chip peripherals.

Timers, SCI, A/D & D/A.
NMI, change-on-pin.

Slide 7

www.pumpkininc.com
Part I (cont’d)
• Well-written ISRs:

Should be short and fast.
Should affect the rest of the system as little as possible.
Require a balance between doing very little – thereby leaving the
background code with lots of processing – and doing a lot and
leaving the background code with nothing to do.

• Applications that use interrupts should:
Disable interrupts as little as possible.
Respond to interrupts as quickly as possible.

• CPU Architectures can help by:
Assisting interrupt handling via dedicated instructions.
Vectoring interrupt sources.
Providing configurable interrupt priorities.
Individual control of interrupt enables.

Slide 8

www.pumpkininc.com
Part I (cont’d)
Why must global variables be protected?

Assume a 32-bit global variable var32 on a 16-bit machine. An
ISR writes to the variable if non-zero. Mainline code records the
variable and then resets it to zero “for the next round.”
Code to store a 32-bit variable on a 16-bit machine:

PC var32 = sample;
0x131E 924200020402 MOV.W &_sample, &_var32
0x1324 924202020602 MOV.W &_sample + 2, &_var32 + 2

Code to clear a 32-bit variable on a 16-bit machine:
PC var32 = 0;
0x5332 82430402 MOV.W #0, &_var32
0x5336 82430602 MOV.W #0, &_var32 + 2

Since it takes two instructions to zero var32, consider the case
when var32 is 0x0801F3CE. In two instructions, var32 will go
from 0x0801F3CE to 0x08010000 to 0x00000000. If an
interrupt occurs just after PC=0x5332, var32 will be
0x0000xxxx after var32=0. That may be all your application
needs to crash … badly.

Slide 9

www.pumpkininc.com
Interrupts on the MSP430
• MSP430 has 16 Interrupt vectors. Some vectors have sub-vectors

(e.g. Timer_A1’s TAIV). Similar parts may have different vector
tables!

• Interrupts have fixed priority.
• Once in the ISR, interrupts are disabled.They can be automatically

re-enabled on exit via RETI. MSP430 compilers automatically add
RETI to the end of declared ISR code.

• A single stack is used for all register saves, etc. Therefore limited in
depth only by available RAM.

• Global Interrupt bit GIE in the Status Register SR/R2
• Individual peripherals usually have:

Module Enable Bit
Module Interrupt Enable Bit (IE)
Module Interrupt Flag (IF)

Slide 10

www.pumpkininc.com
Part II (cont’d)

MSP430F169 Interrupt Vector Table

Slide 11

www.pumpkininc.com
Part II (cont’d)
Interrupt acceptance on the MSP430:

1) Any currently executing instruction is completed.
2) The PC, which points to the next instruction, is pushed onto the

stack.
3) The SR is pushed onto the stack.
4) The interrupt with the highest priority is selected if multiple

interrupts occurred during the last instruction and are pending for
service.

5) The interrupt request flag resets automatically on single-source
flags. Multiple source flags remain set for servicing by software.

6) The SR is cleared. This terminates any low-power mode.
Because the GIE bit is cleared, further interrupts are disabled.

7) The content of the interrupt vector is loaded into the PC: the
program continues with the interrupt service routine at that
address.

Slide 12

www.pumpkininc.com

Interrupt-driven MSP430
UART Routines

Slide 13

www.pumpkininc.com
Part III (cont’d)
• Simplified overview of UART’s Tx interrupt system:

Interrupts are enabled via a single bit (UTXIEn in IEn).
An interrupt is generated when the outgoing character has left the
Transmit Buffer for the Transmit Shift Register, thus freeing the
Transmit Buffer for another character.
Single-buffered.

• For efficient use of the UART, we’ll fill a buffer with
characters and have the Tx ISR automatically send the
characters out until the buffer is empty.The buffer will be
filled from background code (e.g. somewhere in a main
loop), and it will be emptied via foreground code (the Tx
ISR).

Slide 14

www.pumpkininc.com
Part III (cont’d)
Initialization (UART0 Tx & Rx):

unsigned int tx0Count, tx0InP, tx0OutP,rx0Count, rx0InP, rx0OutP;
char tx0Buff[TXO_BUFF_SIZE], rx0Buff[RX0_BUFF_SIZE];

void OpenUSART0 (unsigned int UCTL_UTCTL,
unsigned int URCTL_UMCTL,
unsigned int BR1_BR0)

{
P3OUT &= ~BIT5; P3DIR &= ~BIT5;P3SEL |= BIT5; // pin inits
P3OUT |= BIT4; P3DIR |= BIT4; P3SEL |= BIT4; // “”

rx0Count = 0; rx0InP = 0; rx0OutP = 0; // buffer inits
tx0Count = 0; tx0InP = 0; tx0OutP = 0; // “”

UCTL0 = ((UCTL_UTCTL & 0xFF00)>>8) + SWRST; // module init as per TI’s instructions
UTCTL0 = ((UCTL_UTCTL & 0x00FF)>>0) ; // “”
URCTL0 = ((URCTL_UMCTL & 0xFF00)>>8) ; // “”
UMCTL0 = ((URCTL_UMCTL & 0x00FF)>>0) ; // “”
UBR10 = ((BR1_BR0 & 0xFF00)>>8) ; // “”
UBR00 = ((BR1_BR0 & 0x00FF)>>0) ; // “”

ME1 |= UTXE0 + URXE0; // enable Tx and Rx modules

UCTL0 &= ~SWRST; // finish init

IE1 |= URXIE0; // enable Rx ints
}

Slide 15

www.pumpkininc.com
Part III (cont’d)
Enqueueing a single outgoing byte into a Tx buffer:

unsigned char putcharTx0(unsigned char data)
{

if (tx0Count < TX0_BUFF_SIZE) // if there's any room in the buffer ...
{

tx0Buff[tx0InP++] = data; // put it in there ...

if (tx0InP > TX0_BUFF_SIZE-1) // wrap the input ptr if necessary ...
{

tx0InP = 0;
}

_DINT(); // general case -- see note on slide 21
tx0Count++; // update count (a shared global variable) ...
IE1 |= UTXIE0; // force an interrupt now that data is ready to be sent
_EINT();

return TRUE;
}

else
{

return FALSE;
}

}

Slide 16

www.pumpkininc.com
Part III (cont’d)
Dequeueing a single outgoing byte from the Tx buffer:

void ISRTx0 (void) __interrupt[UART0TX_VECTOR]
{

sendcharTx0();
}

void sendcharTx0(void)
{

TXBUF0 = tx0Buff[tx0OutP++]; // send char out UART transmitter

if (tx0OutP > TX0_BUFF_SIZE-1) // wrap output ptr if necessary
{

tx0OutP = 0;
}

tx0Count--; // update count

if (tx0Count == 0) // if that was the last one, disable further interrupts
{

IE1 &= ~UTXIE0;
}

}

Slide 17

www.pumpkininc.com
Part III (cont’d)
This code satisfies our requirements for the ISR and

overlying code because:
The code is relatively small.
Interrupts are disabled for a very short time (3 instructions):

_DINT();
32C2 DINT

IE2 |= UTXIE1;
F2D020000100 BIS.B #0x20, &1

tx1Count++;
92534A04 ADD.W #1, &_tx1Count

_EINT();
32D2 EINT

The system overhead is quite good – characters can be enqueued
into the buffer as fast as possible with no delays, and then they
are removed from the buffer at the baud rate.
Time spent within the ISR is quite short – mainly buffer
management.
Only shared global variable needing protection is count.

Slide 18

www.pumpkininc.com
Part III (cont’d)
Enqueueing a single incoming byte into the Rx buffer:

void ISRRx0 (void) __interrupt[UART0RX_VECTOR]
{

rcvcharRx0();
}

void rcvcharRx0(void)
{

if (rx0Count < RX0_BUFF_SIZE) // watch for overruns when updating count
{

rx0Buff[rx0InP++] = RXBUF0; // take char from UART receiver and place in buffer

if (rx0InP > RX0_BUFF_SIZE-1) // wrap input ptr if necessary
{

rx0InP = 0;
}

rx0Count++;
}

}

Slide 19

www.pumpkininc.com
Part III (cont’d)
Dequeueing a single incoming byte from an Rx buffer:

unsigned char getcharRx0(unsigned char * dataP)
{

if (rx0Count) // if there's any char in the buffer ...
{

*dataP = rx0Buff[rx0OutP++]; // get it ...

if (rx0OutP > RX0_BUFF_SIZE-1) // wrap the output ptr if necessary ...
{

rx0OutP = 0;
}

_DINT(); // general case -- see note on slide 21
rx0Count--; // // update count (a shared global variable) ...
_EINT();

return TRUE;
}
else
{

return FALSE;
}

}

Slide 20

www.pumpkininc.com
Part III (cont’d)
• With two UARTs each with dedicated Tx and Rx ISRs

and mainline code, maximum interrupt latency is only 2 +
3 + 2 + 3 = 10 instructions. This is good for the UARTs
and the system as a whole.

• Can be optimized by observing that increments and
decrements of (16-bit) int-sized count variables on the
MSP430 are atomic and do not require disabling of
interrupts. This drops the latency down to only 2 + 2 = 4
instructions (in putcharTxn()).

Slide 21

www.pumpkininc.com

• Further optimization is possible on the MSP430. In the
transmitter, it’s unnecessary to disable global interrupts
when (re-)enabling transmit interrupts (it’s atomic).
Therefore we’ve removed all interrupt latency:

Part III (cont’d)

unsigned char getcharRx0(unsigned char * dataP)
{

if (rx0Count)
{

*dataP = rx0Buff[rx0OutP++];

if (rx0OutP > RX0_BUFF_SIZE-1)
{

rx0OutP = 0;
}

rx0Count--;

return TRUE;
}

else
{

return FALSE;
}

}

unsigned char putcharTx0(unsigned char data)
{

if (tx0Count < TX0_BUFF_SIZE)
{

tx0Buff[tx0InP++] = data;

if (tx0InP > TX0_BUFF_SIZE-1)
{

tx0InP = 0;
}

tx0Count++;
IE1 |= UTXIE0;

return TRUE;
}

else
{

return FALSE;
}

}

Slide 22

www.pumpkininc.com
Part III (cont’d)
• When compared to this interrupt-based UART approach,

a non-interrupt-based approach has the following
characteristics:

On the Tx side, a new character cannot be sent until the TXEPT
flag is set. At very high speeds (e.g. 115,200bps), this may be
more efficient (I.e. smaller code size and quicker outputs). But at
low speeds (e.g. 9,600bps), looping to poll this bit prevents any
other background code from executing.
On the Rx side, the faster the baud rate, the more often the
receiver must be polled to avoid overrun errors. Even a low baud
rate requires tat the application poll within a critical period or errors
will return.

• Not using interrupts requires the use of polling. Polling is
inefficient, because it consumes CPU cycles that could
otherwise be spent on other things.

Slide 23

www.pumpkininc.com

Bit-banged Tx/Rx UART
using MSP430’s Timer A
• Existing MSP430 application using:

USART0: Tx/Rx @ 9600, SPI and I2C.
USART1: Tx/Rx @ 9600.
DMA, ADC, P1, P2, etc.

• Needed a 4800bps receiver and 1200bps transmitter.
Incoming and outgoing packets vary in length.

• Solution: Dedicate Timer_A0 to 4800bps receiver, and
Timer_A1 to 1200bps transmitter. Move OSTimer()
(@100Hz) from Timer_A0 to Timer_A2.

• Note: Timer_A0 is on one interrupt vector, and Timer_A1
& Timer_A2 are on another.

Slide 24

www.pumpkininc.com
Part IV (cont’d)
ISR for 1200bps bit-banged transmitter:

void Timer_A1 (void) __interrupt[TIMERA1_VECTOR]
{
switch (TAIV)
{
case 2:
CCR1 += SWUART_TX_BITTIME; // every 833us
SWUART_Tx_XmtBit();
break;

case 4:
CCR2 += TIMERA2_RELOAD; // every 10ms
OSTimer();
break;

case 10: // probably should check for overflow ...
default:

while(1); // error check -- should NOT get here
break;

}
}

• SWUART_Tx_XmtBit() is a state machine to output a null-
terminated string by bit-banging an output port. It sets a single bit flag
when done.

Slide 25

www.pumpkininc.com
Part IV (cont’d)
• Instead of disabling interrupts globally when dealing with the 1200bps

transmitter or the RTOS, individual control is used:
void CSK_SWUART_Tx_XmtStr(void)
{
TxByteCount = 0; // setup for Tx of string
TxBitCount = 0; // “”
CCR1 = TAR + SWUART_TX_BITTIME; // start 1 bit time from now
CCTL1 |= CCIE; // and go!

}

void OSDisableHook(void)
{
CCTL2 &= ~CCIE; // b/c Timer A2 interrupt calls OSTimer()

}

• No need to disable interrupts globally when Timer_A1 is easily
controlled via CCIE bit.

• 1200bps timing accuracy is more important than absolute accuracy of
10ms system tick timer OSTimer(). Therefore
SWUART_Tx_XmtBit() was located in the highest possible
remaining timer slot available, and OSTimer() below it.

Slide 26

www.pumpkininc.com
Part IV (cont’d)
• How to pass information up to the overlying application

without requiring the disabling of interrupts? One solution
is to employ a single bit as a binary semaphore, which is
tested-and-cleared in the background with protection, and
if originally found to be set, signal another background
process:

if (statusBits->SWUARTStrSent == 1)

{
CCTL1 &= ~CCIE;
statusBits->SWUARTStrSent = 0;
CCTL1 |= CCIE;
OSSignalBinSem(BINSEM_XMITDONE_P);

}

• In this example, Timer_A1 interrupts are disabled for only
3 instructions.

Slide 27

www.pumpkininc.com
Part IV (cont’d)
• The receiver posed a greater challenge:

Higher bit rate requires higher interrupt priority to ensure timely
processing.
Higher processing rate also requires HFXTAL as MCLK.

• Approach was similar to transmitter – a FSM was
employed to sample incoming bits once start bit falling
edge was detected via capture mode hardware.

• Some interleaving of ISR processing was used to avoid
excessively long execution in any particular state of the
FSM.

• Need to pass information from ISR (complete received
char) to background process just like transmitter.

Slide 28

www.pumpkininc.com
Part IV (cont’d)
• Review:

Transmitter:
Interrupt-driven.
At adequate priority.
Related interrupt control does not affect any other interrupts.
Highly responsive system because driving background process
launches immediately upon end-of-transmission (no polling).

Receiver:
Interrupt-driven.
At higher priority due to higher bit rate.
Related interrupt control does not affect any other interrupts.
Highly responsive system because driving background process
launches immediately upon end-of-transmission (no polling).

Slide 29

www.pumpkininc.com
Impact of RTOS on
Interrupts
• An RTOS performs context switches based on predefined

behavior (e.g. time slicing, event-driven task scheduling,
etc.). Normal operation involves register saves and
restores, manipulation of the stack, and changes to global
variables. For all of these reasons, an RTOS must
typically disable interrupts during a critical section.

• Disabling interrupts in a critical section prevents
corruption of the RTOS’ global variables (e.g. task control
blocks) when RTOS services that act on these variables
are called from within ISRs.

Slide 30

www.pumpkininc.com

Part V (cont’d)
• How the RTOS controls interrupts during critical sections

may be critical to the performance of your application.
If interrupts are disabled globally in critical sections, you’ll need to
characterize how long they are disabled. Too long a period and
your peripheral performance may be limited.
If interrupts are disabled on a per-peripheral basis in critical
sections, the RTOS’ impact on interrupts is limited to the particular
peripherals.
In some RTOSes it is possible to avoid the need to disable
interrupts in a critical section by using a simple semaphore-based
approach to pass information from the ISR level up to the
background level and into the RTOS.

Slide 31

www.pumpkininc.com
Additional Interrupt Topics
• Interrupt-related runtime problems can be exceptionally

hard to debug. Common interrupt-related errors include:
Failing to protect global variables (sometimes due to feature
creep).
Forgetting to actually include the ISR in the application. No linker
error!
Not testing or validating thoroughly. The window in which some
interrupt-related errors can occur can be as small as a single
instruction.
Stack overflow.
Overlooking errata or peculiarities (e.g. MSP430’s DMA).
Running out of CPU horsepower to execute the ISR fast enough.
Thinking that you can detect a “bad time for interrupts” from inside
the ISR by checking a flag set in the background and thereby
avoid corrupting a background process.
Trying to outsmart the compiler.

Slide 32

www.pumpkininc.com
Summary
• By coding efficiently you can run multiple peripherals at

high speeds on the MSP430.
• Polling is to be avoided – use interrupts to deal with each

peripheral only when attention is required.
• Allocate processes to peripherals based on existing

(fixed) interrupt priorities. Certain peripherals (e.g. DMA)
can tolerate substantial latency.

• Use GIE when it’s shown to be most efficient and the
application can tolerate it. Otherwise control individual IE
bits to minimize system interrupt latency.

• An interrupt-based approach eases the handling of
asynchronous events.

Slide 33

www.pumpkininc.com

Live Demo

Q&A Session

Thank you for
attending this

Pumpkin seminar
at the ATC 2006!

Slide 34

www.pumpkininc.com
Notice

This presentation is available online in Microsoft®

PowerPoint® and Adobe® Acrobat® formats at:

www.pumpkininc.com/content/doc/press/Pumpkin_MSP430ATC2006.ppt

and:

www.pumpkininc.com/content/doc/press/Pumpkin_MSP430ATC206.pdf

Slide 35

www.pumpkininc.com
Suggested Reading
1. MSP430x15x, MSP430x16x, MSP430x161x Mixed Signal Microcontroller, Texas Instruments

Datasheet SLAS368D, October 2002.
2. MSP430x1xx Family User’s Guide Revision F, Texas Instruments SLAU049F, 2006.
3. Salvo User Manual, Pumpkin, Inc., 2003.

Slide 36

www.pumpkininc.com
Appendix
• Speaker information

Dr. Kalman is Pumpkin's president and chief technology architect. He entered the embedded programming
world in the mid-1980's. After co-founding Euphonix, Inc – the pioneering Silicon Valley high-tech pro-audio
company – he founded Pumpkin to explore the feasibility of applying high-level programming paradigms to
severely memory-constrained embedded architectures. He holds two United States patents and is a consulting
professor at Stanford University.

• Acknowledgements
Pumpkin’s Salvo and CubeSat Kit customers, whose real-world experience with our products helps us improve
and innovate.

• Salvo, CubeSat Kit and CubeSat information
More information on Pumpkin’s Salvo RTOS and Pumpkin’s CubeSat Kit can be found at
http://www.pumpkininc.com/ and http://www.cubesatkit.com/, respectively.

• Copyright notice
© 2006 Pumpkin, Inc. All rights reserved. Pumpkin and the Pumpkin logo, Salvo and the Salvo logo, The
RTOS that runs in tiny places, CubeSat Kit, CubeSat Kit Bus and the CubeSat Kit logo are all trademarks of
Pumpkin, Inc. All other trademarks and logos are the property of their respective owners. No endorsements of
or by third parties listed are implied. All specifications subject to change without notice.

First presented at the TI MSP430 Advanced Technical Conference in Dallas, Texas on November 7-9, 2006.

