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Interrupts Explained
• Interrupts provide a means of changing the Program 

Counter (PC) – and hence which code is executed by the 
CPU – based on internal or external events.

• Interrupt code is executed from Interrupt Service Routines 
(ISRs). ISRs are vectored.

• Interrupts have often priorities associated with them.
• Interrupts can be nested.
• Servicing an interrupt can be thought of as a context 

switch.
• ISRs can normally call code anywhere in program 

memory.
• Instruction sets and architectures often have specific 

features to improve interrupt-handling performance.
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Part I (cont’d)
• When an interrupt occurs:

Interrupts are typically disabled (prevents unwanted nesting).
The PC and certain registers (e.g. STATUS) are saved on the 
stack.
The PC changes to the starting address of the ISR.
The ISR is executed to completion.
The saved registers are restored from the stack, interrupt are re-
enabled, and program execution resumes where it left off in non-
interrupt code.

• A non-standard return-from-interrupt may be required 
when e.g.:

The processor is in a low-power mode.
Exception handling is required.
An RTOS is used to schedule tasks.
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Part I (cont’d)
• Interrupts preempt normal code execution.

Interrupt code runs in the foreground.
Normal (e.g. main()) code runs in the background.

• Interrupts can be enabled and disabled.
Globally.
Individually on a per-peripheral basis.
Non-Maskable Interrupt (NMI).

• The occurrence of each interrupt is unpredictable.*
When an interrupt occurs.
Where an interrupt occurs.

• Interrupts are associated with a variety of on-chip and off-
chip  peripherals.

Timers, SCI, A/D & D/A.
NMI, change-on-pin.
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Part I (cont’d)
• Well-written ISRs:

Should be short and fast.
Should affect the rest of the system as little as possible.
Require a balance between doing very little – thereby leaving the 
background code with lots of processing – and doing a lot and 
leaving the background code with nothing to do.

• Applications that use interrupts should:
Disable interrupts as little as possible.
Respond to interrupts as quickly as possible.

• CPU Architectures can help by:
Assisting interrupt handling via dedicated instructions.
Vectoring interrupt sources.
Providing configurable interrupt priorities.
Individual control of interrupt enables.
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Part I (cont’d)
Why must global variables be protected?

Assume a 32-bit global variable var32 on a 16-bit machine. An 
ISR writes to the variable if non-zero. Mainline code records the 
variable and then resets it to zero “for the next round.”
Code to store a 32-bit variable on a 16-bit machine:

PC var32 = sample;
0x131E 924200020402    MOV.W   &_sample, &_var32
0x1324 924202020602    MOV.W   &_sample + 2, &_var32 + 2

Code to clear a 32-bit variable on a 16-bit machine:
PC var32 = 0;
0x5332 82430402        MOV.W   #0, &_var32
0x5336 82430602        MOV.W   #0, &_var32 + 2

Since it takes two instructions to zero var32, consider the case 
when var32 is 0x0801F3CE. In two instructions, var32 will go 
from 0x0801F3CE to 0x08010000 to 0x00000000. If an 
interrupt occurs just after PC=0x5332, var32 will be 
0x0000xxxx after var32=0. That may be all your application 
needs to crash … badly. 
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Interrupts on the MSP430
• MSP430 has 16 Interrupt vectors. Some vectors have sub-vectors 

(e.g. Timer_A1’s TAIV). Similar parts may have different vector 
tables!

• Interrupts have fixed priority.
• Once in the ISR, interrupts are disabled.They can be automatically 

re-enabled on exit via RETI. MSP430 compilers automatically add 
RETI to the end of declared ISR code.

• A single stack is used for all register saves, etc. Therefore limited in 
depth only by available RAM.

• Global Interrupt bit GIE in the Status Register SR/R2
• Individual peripherals usually have:

Module Enable Bit
Module Interrupt Enable Bit (IE)
Module Interrupt Flag (IF)
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Part II (cont’d)

MSP430F169 Interrupt Vector Table
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Part II (cont’d)
Interrupt acceptance on the MSP430:

1) Any currently executing instruction is completed.
2) The PC, which points to the next instruction, is pushed onto the 

stack.
3) The SR is pushed onto the stack.
4) The interrupt with the highest priority is selected if multiple 

interrupts occurred during the last instruction and are pending for 
service.

5) The interrupt request flag resets automatically on single-source 
flags. Multiple source flags remain set for servicing by software.

6) The SR is cleared. This terminates any low-power mode. 
Because the GIE bit is cleared, further interrupts are disabled.

7) The content of the interrupt vector is loaded into the PC: the 
program continues with the interrupt service routine at that 
address.
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Interrupt-driven MSP430 
UART Routines
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Part III (cont’d)
• Simplified overview of UART’s Tx interrupt system:

Interrupts are enabled via a single bit (UTXIEn in IEn).
An interrupt is generated when the outgoing character has left the 
Transmit Buffer for the Transmit Shift Register, thus freeing the 
Transmit Buffer for another character.
Single-buffered.

• For efficient use of the UART, we’ll fill a buffer with 
characters and have the Tx ISR automatically send the 
characters out until the buffer is empty.The buffer will be 
filled from background code (e.g. somewhere in a main 
loop), and it will be emptied via foreground code (the Tx
ISR).
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Part III (cont’d)
Initialization (UART0 Tx & Rx):

unsigned int  tx0Count, tx0InP, tx0OutP,rx0Count, rx0InP, rx0OutP;
char tx0Buff[TXO_BUFF_SIZE], rx0Buff[RX0_BUFF_SIZE];

void OpenUSART0 ( unsigned int UCTL_UTCTL,
unsigned int URCTL_UMCTL,
unsigned int BR1_BR0)

{
P3OUT &= ~BIT5; P3DIR &= ~BIT5;P3SEL |=  BIT5; // pin inits
P3OUT |=  BIT4; P3DIR |=  BIT4; P3SEL |=  BIT4; //  “”

rx0Count = 0; rx0InP = 0; rx0OutP = 0; // buffer inits
tx0Count = 0; tx0InP = 0; tx0OutP = 0; //  “”

UCTL0 = ((UCTL_UTCTL  & 0xFF00)>>8) + SWRST;  // module init as per TI’s instructions
UTCTL0  = ((UCTL_UTCTL  & 0x00FF)>>0)       ; //  “”
URCTL0  = ((URCTL_UMCTL & 0xFF00)>>8)      ; //  “”
UMCTL0 = ((URCTL_UMCTL & 0x00FF)>>0)       ; //  “”
UBR10    = ((BR1_BR0     & 0xFF00)>>8)      ;  //  “”
UBR00    = ((BR1_BR0     & 0x00FF)>>0)       ; //  “”

ME1    |=  UTXE0 + URXE0; // enable Tx and Rx modules

UCTL0  &= ~SWRST; // finish init

IE1 |= URXIE0; // enable Rx ints
}
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Part III (cont’d)
Enqueueing a single outgoing byte into a Tx buffer:

unsigned char putcharTx0(unsigned char data)
{

if (tx0Count < TX0_BUFF_SIZE) // if there's any room in the buffer ...
{

tx0Buff[tx0InP++] = data; // put it in there ...

if (tx0InP > TX0_BUFF_SIZE-1) // wrap the input ptr if necessary ...
{

tx0InP = 0;
}

_DINT(); // general case -- see note on slide 21
tx0Count++; // update count (a shared global variable) ...
IE1 |= UTXIE0; // force an interrupt now that data is ready to be sent
_EINT();

return TRUE;
}

else
{

return FALSE;
}

}
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Part III (cont’d)
Dequeueing a single outgoing byte from the Tx buffer:

void ISRTx0 (void) __interrupt[UART0TX_VECTOR]
{

sendcharTx0();
}

void sendcharTx0(void)
{

TXBUF0 = tx0Buff[tx0OutP++]; // send char out UART transmitter 

if (tx0OutP > TX0_BUFF_SIZE-1) // wrap output ptr if necessary
{

tx0OutP = 0;
}

tx0Count--; // update count

if (tx0Count  ==  0) // if that was the last one, disable further interrupts
{

IE1 &= ~UTXIE0;
}

}
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Part III (cont’d)
This code satisfies our requirements for the ISR and 

overlying code because:
The code is relatively small.
Interrupts are disabled for a very short time (3 instructions):

_DINT();
32C2            DINT

IE2 |= UTXIE1;
F2D020000100    BIS.B   #0x20, &1

tx1Count++;
92534A04        ADD.W   #1, &_tx1Count

_EINT();
32D2            EINT

The system overhead is quite good – characters can be enqueued 
into the buffer as fast as possible with no delays, and then they 
are removed from the buffer at the baud rate.
Time spent within the ISR is quite short – mainly buffer 
management.
Only shared global variable needing protection is count.
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Part III (cont’d)
Enqueueing a single incoming byte into the Rx buffer:

void ISRRx0 (void) __interrupt[UART0RX_VECTOR]
{

rcvcharRx0();
}

void rcvcharRx0(void)
{

if (rx0Count < RX0_BUFF_SIZE) // watch for overruns when updating count
{

rx0Buff[rx0InP++] = RXBUF0; // take char from UART receiver and place in buffer

if (rx0InP > RX0_BUFF_SIZE-1) // wrap input ptr if necessary
{

rx0InP = 0;
}

rx0Count++;
} 

}
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Part III (cont’d)
Dequeueing a single incoming byte from an Rx buffer:

unsigned char getcharRx0( unsigned char * dataP )
{

if (rx0Count) // if there's any char in the buffer ...
{

*dataP = rx0Buff[rx0OutP++]; // get it  ...

if (rx0OutP > RX0_BUFF_SIZE-1) // wrap the output ptr if necessary ...
{

rx0OutP = 0;
}

_DINT(); // general case -- see note on slide 21
rx0Count--; // // update count (a shared global variable) ...
_EINT();

return TRUE;
}
else
{

return FALSE;
}

}
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Part III (cont’d)
• With two UARTs each with dedicated Tx and Rx ISRs 

and mainline code, maximum interrupt latency is only 2 + 
3 + 2 + 3 = 10 instructions. This is good for the UARTs 
and the system as a whole.

• Can be optimized by observing that increments and 
decrements of (16-bit) int-sized count variables on the 
MSP430 are atomic and do not require disabling of 
interrupts. This drops the latency down to only 2 + 2 = 4 
instructions (in putcharTxn()).
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• Further optimization is possible on the MSP430. In the 
transmitter, it’s unnecessary to disable global interrupts 
when (re-)enabling transmit interrupts (it’s atomic). 
Therefore we’ve removed all interrupt latency:

Part III (cont’d)

unsigned char getcharRx0( unsigned char * dataP )
{

if (rx0Count) 
{

*dataP = rx0Buff[rx0OutP++];

if (rx0OutP > RX0_BUFF_SIZE-1)
{

rx0OutP = 0;
}

rx0Count--;

return TRUE;
}

else
{

return FALSE;
}

}

unsigned char putcharTx0(unsigned char data)
{

if  (tx0Count < TX0_BUFF_SIZE) 
{

tx0Buff[tx0InP++] = data; 

if ( tx0InP > TX0_BUFF_SIZE-1)
{ 

tx0InP = 0;
}

tx0Count++; 
IE1 |= UTXIE0; 

return TRUE;
}

else
{

return FALSE;
}

}
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Part III (cont’d)
• When compared to this interrupt-based UART approach, 

a non-interrupt-based approach has the following 
characteristics:

On the Tx side, a new character cannot be sent until the TXEPT 
flag is set. At very high speeds (e.g. 115,200bps), this may be 
more efficient (I.e. smaller code size and quicker outputs). But at 
low speeds (e.g. 9,600bps), looping to poll this bit prevents any 
other background code from executing.
On the Rx side, the faster the baud rate, the more often the 
receiver must be polled to avoid overrun errors. Even a low baud
rate requires tat the application poll within a critical period or errors 
will return. 

• Not using interrupts requires the use of polling. Polling is 
inefficient, because it consumes CPU cycles that could 
otherwise be spent on other things.
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Bit-banged Tx/Rx UART 
using MSP430’s Timer A
• Existing MSP430 application using:

USART0: Tx/Rx @ 9600, SPI and I2C.
USART1: Tx/Rx @ 9600.
DMA, ADC, P1, P2, etc.

• Needed a 4800bps receiver and 1200bps transmitter. 
Incoming and outgoing packets vary in length.

• Solution: Dedicate Timer_A0 to 4800bps receiver, and 
Timer_A1 to 1200bps transmitter. Move OSTimer() 
(@100Hz) from Timer_A0 to Timer_A2.

• Note: Timer_A0 is on one interrupt vector, and Timer_A1 
& Timer_A2 are on another.
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Part IV (cont’d)
ISR for 1200bps bit-banged transmitter:

void Timer_A1 (void) __interrupt[TIMERA1_VECTOR] 
{
switch (TAIV)
{
case 2:
CCR1 += SWUART_TX_BITTIME;  // every 833us
SWUART_Tx_XmtBit();
break;

case 4:
CCR2 += TIMERA2_RELOAD; // every 10ms
OSTimer();
break;

case 10: // probably should check for overflow ...
default:

while(1);         // error check -- should NOT get here
break;

}
}

• SWUART_Tx_XmtBit() is a state machine to output a null-
terminated string by bit-banging an output port. It sets a single bit flag 
when done.
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Part IV (cont’d)
• Instead of disabling interrupts globally when dealing with the 1200bps 

transmitter or the RTOS, individual control is used:
void CSK_SWUART_Tx_XmtStr(void)
{
TxByteCount = 0; // setup for Tx of string
TxBitCount  = 0;                    //  “”
CCR1 = TAR + SWUART_TX_BITTIME;     // start 1 bit time from now 
CCTL1 |= CCIE; // and go!     

}

void OSDisableHook(void)  
{
CCTL2 &=   ~CCIE; // b/c Timer A2 interrupt calls OSTimer()

}

• No need to disable interrupts globally when Timer_A1 is easily 
controlled via CCIE bit. 

• 1200bps timing accuracy is more important than absolute accuracy of 
10ms system tick timer OSTimer(). Therefore 
SWUART_Tx_XmtBit() was located in the highest possible 
remaining timer slot available, and OSTimer() below it.
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Part IV (cont’d)
• How to pass information up to the overlying application 

without requiring the disabling of interrupts? One solution 
is to employ a single bit as a binary semaphore, which is 
tested-and-cleared in the background with protection, and 
if originally found to be set, signal another background 
process:

if (statusBits->SWUARTStrSent == 1)

{
CCTL1 &= ~CCIE;
statusBits->SWUARTStrSent = 0;
CCTL1 |=  CCIE;
OSSignalBinSem(BINSEM_XMITDONE_P);

}

• In this example, Timer_A1 interrupts are disabled for only 
3 instructions.
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Part IV (cont’d)
• The receiver posed a greater challenge:

Higher bit rate requires higher interrupt priority to ensure timely 
processing.
Higher processing rate also requires HFXTAL as MCLK.

• Approach was similar to transmitter – a FSM was 
employed to sample incoming bits once start bit falling 
edge was detected via capture mode hardware.

• Some interleaving of ISR processing was used to avoid 
excessively long execution in any particular state of the 
FSM.

• Need to pass information from ISR (complete received 
char) to background process just like transmitter.
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Part IV (cont’d)
• Review:

Transmitter: 
Interrupt-driven.
At adequate priority.
Related interrupt control does not affect any other interrupts. 
Highly responsive system because driving background process 
launches immediately upon end-of-transmission (no polling).

Receiver:
Interrupt-driven.
At higher priority due to higher bit rate.
Related interrupt control does not affect any other interrupts. 
Highly responsive system because driving background process 
launches immediately upon end-of-transmission (no polling).
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Impact of RTOS on 
Interrupts
• An RTOS performs context switches based on predefined 

behavior (e.g. time slicing, event-driven task scheduling, 
etc.). Normal operation involves register saves and 
restores, manipulation of the stack, and changes to global 
variables. For all of these reasons, an RTOS must 
typically disable interrupts during a critical section. 

• Disabling interrupts in a critical section prevents 
corruption of the RTOS’ global variables (e.g. task control 
blocks) when RTOS services that act on these variables 
are called from within ISRs.
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Part V (cont’d)
• How the RTOS controls interrupts during critical sections 

may be critical to the performance of your application. 
If interrupts are disabled globally in critical sections, you’ll need to 
characterize how long they are disabled. Too long a period and 
your peripheral performance may be limited.
If interrupts are disabled on a per-peripheral basis in critical 
sections, the RTOS’ impact on interrupts is limited to the particular 
peripherals.
In some RTOSes it is possible to avoid the need to disable 
interrupts in a critical section by using a simple semaphore-based 
approach to pass information from the ISR level up to the 
background level and into the RTOS.
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Additional Interrupt Topics
• Interrupt-related runtime problems can be exceptionally 

hard to debug. Common interrupt-related errors include:
Failing to protect global variables (sometimes due to feature 
creep).
Forgetting to actually include the ISR in the application. No linker 
error!
Not testing or validating thoroughly. The window in which some 
interrupt-related errors can occur can be as small as a single 
instruction.
Stack overflow.
Overlooking errata or peculiarities (e.g. MSP430’s DMA).
Running out of CPU horsepower to execute the ISR fast enough.
Thinking that you can detect a “bad time for interrupts” from inside 
the ISR by checking a flag set in the background and thereby 
avoid corrupting a background process. 
Trying to outsmart the compiler.
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Summary
• By coding efficiently you can run multiple peripherals at 

high speeds on the MSP430.
• Polling is to be avoided – use interrupts to deal with each 

peripheral only when attention is required.
• Allocate processes to peripherals based on existing 

(fixed) interrupt priorities. Certain peripherals (e.g. DMA) 
can tolerate substantial latency.

• Use GIE when it’s shown to be most efficient and the 
application can tolerate it. Otherwise control individual IE 
bits to minimize system interrupt latency.

• An interrupt-based approach eases the handling of 
asynchronous events.
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Live Demo

Q&A Session

Thank you for 
attending this 

Pumpkin seminar   
at the ATC 2006!
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Notice

This presentation is available online in Microsoft®

PowerPoint® and Adobe® Acrobat® formats at:

www.pumpkininc.com/content/doc/press/Pumpkin_MSP430ATC2006.ppt

and: 

www.pumpkininc.com/content/doc/press/Pumpkin_MSP430ATC206.pdf
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1. MSP430x15x, MSP430x16x, MSP430x161x Mixed Signal Microcontroller, Texas Instruments 

Datasheet SLAS368D, October 2002.
2. MSP430x1xx Family User’s Guide Revision F, Texas Instruments SLAU049F, 2006.
3. Salvo User Manual, Pumpkin, Inc., 2003.
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