

Presented at TI's 2nd Annual MSP430 Advanced Technical Conference, Ft. Worth, Texas, Nov. 11-13, 2003

Using the

RTOS on TI's MSP430

speaker: Andrew E. Kalman, Ph.D.

www.pumpkininc.com

The Salvo™ RTOS on TI's MSP430
� 1 �

PART I

Introduction to Salvo

www.pumpkininc.com

The Salvo™ RTOS on TI's MSP430
� 2 �

The Source � Pumpkin, Inc.
● An embedded solutions company

● Established 1995 in San Francisco, California

● Focused on providing highest-quality tools for embedded
system designers

● Active in both hardware and software design for a variety of
end-user clients

● Works closely with chip and compiler vendors to assure
maximum value for Salvo users

www.pumpkininc.com

The Salvo™ RTOS on TI's MSP430
� 3 �

Salvo � A Unique RTOS
● Minimal on-chip resource requirements

● Designed expressly for use in single-chip µC's

● Event-driven, priority-based, cooperative multitasking

● Certified for use with all major MSP430 compilers:

● Available in different flavors:
● Salvo Lite freeware / demo / evaluation
● Salvo tiny included with some compilers / IDEs
● Salvo SE available from certain compiler vendors
● Salvo LE all supported functionality
● Salvo Pro Salvo LE + source code

● Portable (cross-compiler and cross-target)

● Highly configurable (written 98% in C)

● Easy to learn

● Royalty-free

www.pumpkininc.com

The Salvo™ RTOS on TI's MSP430
� 4 �

Who Uses It, and How
● World-wide user base

● Large Corporations ● U.S. Military
● Smaller Companies ● Educational Institutions
● Individual Consultants ● Governmental Organizations

● Applications include:
● Military ● Space
● Avionics ● Telecom
● Recreation ● Wireless
● Data logging ● Robotics
● Safety devices ● Food handling
● GPS equipment ● Transportation
● Medical devices ● Instrumentation
● Handheld devices ● Alternative energy
● Industrial / process control ● Autonomous vehicles

www.pumpkininc.com

The Salvo™ RTOS on TI's MSP430
� 5 �

What's Included
● Comprehensive user manual (over 500 pages)

● Every distribution contains:
● Configurable installer
● Salvo libraries
● Tutorial and example projects
● "Getting started" application notes
● Compiler reference manuals

● Additional resources for Salvo users:
● Responsive tech support
● Web forums

www.pumpkininc.com

The Salvo™ RTOS on TI's MSP430
� 6 �

Compared to other Programming Methodologies

 Foreground /
Background

Preemptive
RTOS

Cooperative
RTOS

Salvo
RTOS

Interrupt latency low moderate low low
Interrupt response low high low low
Task response low fast moderate moderate
Stack requirements low high moderate low
RAM requirements varies high moderate low
ROM requirements user high moderate moderate
Intrusiveness user high moderate low
Coupling tight loose loose loose
Extensibility poor excellent excellent excellent
Handles complexity poorly well well well
Effort to learn least most more more

www.pumpkininc.com

The Salvo™ RTOS on TI's MSP430
� 7 �

The RTOS Approach to System Software
Features:

● Loosely-coupled: Each task can run independently of others
● Priority-based: The highest-priority, eligible task is always running, or will

run as soon as the current task yields (i.e. context-switches)
● Event-driven: While a task is waiting, delayed or stopped, no processing

(i.e. 0 CPU cycles) is expended in "maintaining" the task
● Inter-task Communications: Distributed program execution based on

task-to-task or ISR-to-task actions

Benefits:
● Loose Coupling: Adding and / or removing tasks from the application �

even during runtime � is very simple. Application features can be easily
compartmentalized, enabled, tested, etc. Especially beneficial where
multiple programmers are involved in creating a single, large application.

● Priority-based Task Execution: Important, time-critical tasks get CPU
resources when they need them. Less-important, "do-whenever" tasks
get the CPU only when appropriate.

● Event-driven Behavior: System exhibits excellent overall system
responsiveness, because there is no polling. CPU resources are always
directed towards the highest-priority eligible task. System is always
"primed, waiting for an event" and can sleep between events.

 ● Inter-task Communications: Connect loosely-coupled processes in a
well-defined manner.

www.pumpkininc.com

The Salvo™ RTOS on TI's MSP430
� 8 �

Features and Operational Details
Tasks:

● 16 dynamic task priority levels
● "Run forever" task structure
● Tasks can be created, started, stopped, destroyed, etc.
● A context switch always results in the most-eligible task running
● Constraints:
● Context switch may only occur at the task level
● A tasks' local / auto variables are usually replaced with static

variablesi

Events:
● Binary semaphores, semaphores, messages, message queues and

event flags are supported
● Events can be created and signaled from anywhere. Tasks can wait

events (with optional timeouts)

Timers:
● Single system timer controls all task delays and timeouts, as well as

system tick services
● OSTimer() can be called from any periodic timer

www.pumpkininc.com

The Salvo™ RTOS on TI's MSP430
� 9 �

MSP430 Port
Memory Requirements

● RAM usage per task control block: 14 bytes max.ii
● RAM usage per event control block: 6 bytes max.iii
● Stack size: Similar to typical foreground / background application
● ROM usage: 400-1700 bytes

tutorial memory usageiv total ROMv total RAMvi

tu1lite 450 22
tu2lite 596 22
tu3lite 638 24
tu4lite 1148 34
tu5lite 1562 50
tu6lite 1678vii 52viii
tu6pro 1550ix 48x

Table 1: ROM and RAM requirements for Salvo Applications
built with IAR's MSP430 C Compiler

Context Switching
25µs @ MCLK = 8MHz (with priorities, events, etc.)xi

Interrupt Control
● Default configuration is for GIE to be disabled during critical sections
● Interrupt latency can be minimized via user (re-)configuration of interrupt

controlxii

www.pumpkininc.com

The Salvo™ RTOS on TI's MSP430
� 10 �

MSP430 Real-world Results
Suitability

● MSP430's 2K RAM and 60K ROM are ideal for Salvo applications � 20-
task, 30-event application consumes under 15% RAM and 5% ROM,
leaving plenty of RAM and ROM for user application

● Salvo runs on every member of the MSP430 family

Low Power
● Salvo's event-driven multitasking allows application to sleep at all times,

waking only for activity (i.e. internal or external events)

Performance
● MSP430's highly orthogonal instruction set and comprehensive

addressing modes mean rapid execution of Salvo services

Tools
● Non-intrusive, easy to debug
● Works seamlessly with all major toolsets
● Pumpkin and MSP430 compiler vendors are actively involved in further

integrating Salvo into their toolsets

www.pumpkininc.com

The Salvo™ RTOS on TI's MSP430
� 11 �

Conclusion
● Using Salvo on the MSP430 helps the embedded designer in:

● Implementing new designs quickly
● Enhancing functionality using existing on-chip resources
● Improving real-time performance
● Multitasking
● Using memory efficiently
● Minimizing costs
● Managing complexity
● Reducing time-to-market

"… let me say that the RTOS has exceeded all of
our expectations and we are grateful for your excellent
support."

Mark Mayernick
Salvo + MSP430 user
Datex-Ohmeda

www.pumpkininc.com

The Salvo™ RTOS on TI's MSP430
� 12 �

PART II

Example Salvo

Application

www.pumpkininc.com

The Salvo™ RTOS on TI's MSP430
� 13 �

MSP430F149-based Design Example
● Hardware Details:

● P6 shared between:
● USB / transceiver handshake / control interface
● Transceiver isolation
● Analog sampling channels (e.g temp sensors)

● USART1 shared between:
● Serial-to-USB converter
● 2.4GHz spread-spectrum wireless transceiver
● User (off-board)

● Mixed +3.3V / +5V design:
● Level translators & buffers provide isolation, incl. unpowered states
● USB (+5V, bus-poweredxiii) interfaces to MCU at +3.3V via isolator
● Transceiver (+5V) interfaces to MCU via isolators & level-shifters
● MCU controls –OE's on isolators & level-shifters
● MCU controls power to +5V transceiver

● Low-Power:
● Sleep at < 30µA,xiv operate at < 2mA, Tx (occasionally) at > 750mA
● Powered via internal +5V or via USB

www.pumpkininc.com

The Salvo™ RTOS on TI's MSP430
� 14 �

● Block Diagram:

LDOOFF

VCC+5V_USB

+5V

Transceiver

2

+5V_USB

JTAG

MSP430

2

UART0UART1 VREF
h/s

Reset

2

3

2

+5V_SW VCC

USB<->Serial

RS-232
2

+5V_USB +5V

P1 P2 P3 P4 P5 P6

www.pumpkininc.com

The Salvo™ RTOS on TI's MSP430
� 15 �

● Software Requirements:
● USART1:
● Manage isolation & interface to USB / transceiver / user to avoid

contention
● USB:
● Detect when USB I/F is present
● Acquire & release USB interface

● Transceiver:
● Tx / Rx when requested
● Acquire & release transceiver interface, including the control of

transceiver power when Tx'ing / Rx'ing
● P6:
● Sample at a variety of rates via A/D inputs
● Handshake control to USB / transceiver interface

● Other Processes:
● Perform a myriad of other simultaneous operations (e.g. data

processing, system status reporting, storing and retrieving data to /
from external NVRAM, etc.)

● Power Consumption:
● Sleep whenever no activity is warranted

www.pumpkininc.com

The Salvo™ RTOS on TI's MSP430
� 16 �

Task to Read Ambient Temperature
Configure ADC12 and read internal temperature sensor at 1/2Hz

unsigned int ADCresult;
unsigned long int DegC;
…
void TaskMeasureAmbientTemp(void)
{
 /* setup ADC12 to read ch 10, etc. */
 ADC12CTL0 = ADC12ON+REFON+REF2_5V+SHT0_6;
 ADC12CTL1 = SHP;
 ADC12MCTL0 = INCH_10+SREF_1;

 /* wait 10ms for reference startup */
 OS_Delay(1, label);

 /* enable conversions */
 ADC12CTL0 |= ENC;

 for (;;)
 {
 ADC12CTL0 |= ADC12SC; // start conversion
 OS_Delay(200, label); // wait 2s
 ADCresult = ADC12MEM0; // read result
 DegC = ((((long)ADCresult-1615)*704)/4095); // calc. DegC
 }
}

www.pumpkininc.com

The Salvo™ RTOS on TI's MSP430
� 17 �

TaskMeasureAmbientTemp()
● Attributes:

● Runs independently of others, i.e. loosely-coupled.
● Runs at a low priority. Ambient temp sensing is not a high-priority issue in

this system. OK if other, higher-priority tasks prevent it from running
immediately after its 2s delay expires.

● Uses minimal run-time resources. During the 2s period between
successive reads of ADC12MEM0, no CPU cycles are expended on
TaskMeasureAmbientTemp(), and other tasks are free to run.

● No inter-task communications, because it runs alone, accessing global
variables.

● Additional Features:
● Salvo's ability to context-switch at any place in the task allows other tasks

to run while TaskMeasureAmbientTemp() is waiting for 10ms delay
during ADC12 initialization.

www.pumpkininc.com

The Salvo™ RTOS on TI's MSP430
� 18 �

Task to Detect if USB is Connected
Check for USB every 250ms, signal system if present

void TaskDetectUSB(void)
{
 for (;;)
 {
 /* proceed if USB/MHX I/F is not in use */
 OS_WaitBinSem(BINSEM_USB_MHX_AVAIL_P, OSNO_TIMEOUT, label);
 OpenUSBMHXIF(USB);

 if (!FM430status.USBpresent && (P1IN & BIT7))
 {
 FM430status.USBpresent = 1;
 FM430Msg0("DetectUSB: USB connected.");
 }
 else if (FM430status.USBpresent && !(P1IN & BIT7))
 {
 FM430status.USBpresent = 0;
 FM430Msg0("DetectUSB: USB disconnected.");
 }

 /* release USB/MHX I/F */
 CloseUSBMHXIF(USB);
 OSSignalBinSem(BINSEM_USB_MHX_AVAIL_P);

 /* come back in 25 ticks */
 OS_Delay(25, label);
 }
}

www.pumpkininc.com

The Salvo™ RTOS on TI's MSP430
� 19 �

TaskDetectUSB()
● Attributes:

● Runs independently of others, i.e. loosely-coupled.
● Runs at a moderate priority. System should detect USB connections

quickly.
● Uses minimal run-time resources. During the 250ms period between

testing for USB presence, no CPU cycles are expended on
TaskDetectUSB(), and other tasks are free to run.

● A binary semaphore is used to control access to a shared resource, the
USB / transceiver interface.

● Additional Features:
● TaskDetectUSB() will be "held off" until the USB / transceiver interface

is available. If the interface is not available (i.e. another task is using it),
TaskDetectUSB() will acquire it when the interface is released and
TaskDetectUSB() is the highest-priority task waiting to use the
interface.

www.pumpkininc.com

The Salvo™ RTOS on TI's MSP430
� 20 �

Task to Enable Transceiver Power During Transmission
When Interface is Available, Turn on Transceiver for 5s

void TaskTalkMHX(void)
{
 for (;;)
 {
 /* proceed if USB/MHX I/F is not in use */
 OS_WaitBinSem(BINSEM_USB_MHX_AVAIL_P, OSNO_TIMEOUT, label);
 OpenUSBMHXIF(MHX);

 /* turn on power to transceiver */
 Enable_5V_to_MHX();

 /* leave it on for 5s (length of transmission) */
 OS_Delay(500, label);

 /* release USB/MHX I/F */
 CloseUSBMHXIF(MHX);
 OSSignalBinSem(BINSEM_USB_MHX_AVAIL_P);
 }
}

www.pumpkininc.com

The Salvo™ RTOS on TI's MSP430
� 21 �

TaskTalkMHX ()
● Attributes:

● Runs independently of others, i.e. loosely-coupled.
● Runs at a moderate priority.
● Uses minimal run-time resources. During the 5s period that transceiver

power is on, no CPU cycles are expended on TaskTalkMHX(), and
other tasks are free to run.

● A binary semaphore is used to control access to a shared resource, the
USB / transceiver interface.

● Additional Features:
● Like TaskDetectUSB(), TaskTalkMHX() must acquire the USB /

transceiver interface before proceeding, etc.
● During the 5s period when TaskTalkMHX() has acquired the USB /

transceiver interface, all other tasks wishing to use the interface must
wait.

● TaskTalkMHX() is incomplete. It would likely be expanded to wait on an
event that signifies that data is ready to be transmitted. After transceiver
power is enabled and the transceiver has completed its power-on
sequence, TaskTalkMHX() could signal another task to begin
transmitting data (packet-wise) over the USB / transceiver interface.
When finished, TaskTalkMHX() would receive a signal to power-down
the transceiver and release the USB / transceiver interface, and resume
waiting for a transmit-data event.

www.pumpkininc.com

The Salvo™ RTOS on TI's MSP430
� 22 �

Entering and Exiting Low-Power Modes
Sleep whenever there are no eligible tasks

void OSIdlingHook (void)
{
 __low_power_mode_1();
}

OSIdlingHook() is called only when no tasks are eligible to run.
Therefore it's the ideal place to sleep the processor, until an event (i.e
an internal or external interrupt) occurs.

Exit LPM after each interrupt that calls a Salvo service

#pragma vector=TIMERA0_VECTOR
__interrupt void Timer_A (void)
{
 CCR0 += 10000;
 OSTimer();
 __low_power_mode_off_on_exit();
}

Don't re-enter LPM until Salvo's scheduler has processed event(s). ISRs
that are independent of Salvo can resume LPM on exit.

www.pumpkininc.com

The Salvo™ RTOS on TI's MSP430
� 23 �

Putting it All Together
Initialize, create tasks and events, begin multitasking

void main (void)
{
 /* user init */
 Init();

 /* Salvo init */
 OSInit();

 /* several interrupts are used */
 __enable_interrupt();

 /* create tasks */
 OSCreateTask(TaskStatusMonitor, OSTCBP(1), 3);
 OSCreateTask(TaskDetectUSB, OSTCBP(2), 8);
 OSCreateTask(TaskTalkUSB, OSTCBP(3), 5);
 OSCreateTask(TaskTalkMHX, OSTCBP(4), 7);
 OSCreateTask(TaskMeasureAmbientTemp, OSTCBP(5), 11);
 …
 /* create events */
 OSCreateBinSem(BINSEM_USB_MHX_AVAIL_P, 1);

 /* go */
 for (;;)
 {
 OSSched();
 }
}

www.pumpkininc.com

The Salvo™ RTOS on TI's MSP430
� 24 �

Completing the Application
● Use additional binary semaphores and task priorities to manage

access to resources:
● Analog sampling tasks wait for P6 (shared with USB / transceiver

interface) to be available before proceeding
● User USART1 task waits for USART1 (used by TaskTalkUSB() and

TaskTalkMHX() to be available before proceeding

● Run additional periodic tasks at multiples of system tick period

● Use messages and message queues for intertask
communications:
● Multiple, asynchronous sampling tasks pass data to a single task that

logs captured data to NVRAM
● Highest-priority tasks wait on critical events

● Use free-running system timer for timestamps

● Handle lost events via wait-with-timeout

www.pumpkininc.com

The Salvo™ RTOS on TI's MSP430
� 25 �

Example Application Results
● Application Configured For / Uses:

● 10ms system tick period ● Multiple interrupt sources
● LPM1 ● MCLK, SMCLK
● sprintf(), 16-bit multiply & divide
● Subsystems:
● Timer_A, USART0, USART1, ADC12, WDT, Digital I/O

● Salvo Configured For:
● 16-bit delays ● Priority-based multitasking
● Binary semaphores ● 15 tasks
● 32-bit system timer ● 1 event

● Salvo's Memory Requirementsxv on MSP430F149 for this
Application:
● 1132 bytes ROM (1.8%) for Salvo services
● 171 bytes RAM (8.3%) for Salvo's global objects
● Default of 90 bytes RAM (4.4%) for stack is more than sufficient

● Application's Power Consumption:
● Over 97% of the time in LPM

www.pumpkininc.com

The Salvo™ RTOS on TI's MSP430
� 26 �

Example Application Runtime Behavior
USART0 sending debug information via RS-232:
…
FM430-Tx0 0000005451 $ TalkUSB: Acquired USB/MHX I/F for USB.
FM430-Tx0 0000005458 $ TalkUSB: Sending to USB.
FM430-Tx0 0000005459 $ TalkUSB: Released USB/MHX I/F.
FM430-Tx0 0000005535 $ DetectUSB: USB disconnected.
FM430-Tx0 0000005860 $ DetectUSB: USB connected.
FM430-Tx0 0000005923 $ TalkUSB: Acquired USB/MHX I/F for USB.
FM430-Tx0 0000005930 $ TalkUSB: Sending to USB.
FM430-Tx0 0000005931 $ TalkUSB: Released USB/MHX I/F.
FM430-Tx0 0000005982 $ TalkMHX: Acquired USB/MHX I/F for MHX.
FM430-Tx0 0000005983 $ TalkMHX: +5V_SW is ON.
FM430-Tx0 0000006482 $ TalkMHX: +5V_SW is OFF.
FM430-Tx0 0000006483 $ TalkMHX: Released USB/MHX I/F.
…

USART1 sending ambient temp information via USB:
…
FM430-Tx1 0000004587 $ Ambient temp: 19 C
FM430-Tx1 0000004687 $ Ambient temp: 19 C
FM430-Tx1 0000004787 $ Ambient temp: 19 C
FM430-Tx1 0000004887 $ Ambient temp: 20 C
FM430-Tx1 0000005452 $ Ambient temp: 20 C
[USB disconnected]
…
[USB re-connected]
FM430-Tx1 0000005924 $ Ambient temp: 20 C
…

www.pumpkininc.com

The Salvo™ RTOS on TI's MSP430
� 27 �

Thank you for your
interest in

www.pumpkininc.com

The Salvo™ RTOS on TI's MSP430
� 28 �

750 Naples Street
San Francisco, CA 94112
USA
tel: (415) 584-6360
fax: (415) 585-7948
web: http://www.pumpkininc.com/
email: info@pumpkininc.com

www.pumpkininc.com

The Salvo™ RTOS on TI's MSP430
� 29 �

Speaker Information
Dr. Kalman is Pumpkin's president and chief software architect. He entered the

embedded programming world in the mid-1980's. After co-founding a successful
Silicon Valley high-tech startup, he founded Pumpkin with an emphasis on
software quality. He has also been involved in a variety of other hardware and
software projects.

Copyright Notice
© 2003 Pumpkin, Inc. All rights reserved. Pumpkin and the Pumpkin logo, Salvo and

the Salvo logo, and The RTOS that runs in tiny places are all trademarks of
Pumpkin, Inc. All other trademarks and logos are the property of their respective
owners. No endorsements of or by third parties listed are implied.

i Local / auto variables are not preserved across context switches. Note that the use of using static variables in

tasks does not impact overall RAM requirements when compared to a typical preemptive or cooperative RTOS.
ii Disabling timeouts reduces tcb size to 10 bytes. Optional tcb extensions (Salvo Pro only) require additional RAM

per tcb.
iii Can be reduced to 4 bytes by disabling event types.
iv Salvo v3.2.0-b with IAR MSP430 C v1.26B.
v In bytes. Does not include interrupt vectors.
vi In bytes. Does not include RAM allocated to the stack.
vii Includes 2 bytes from the CDATA0 section.
viii Includes 2 bytes on the IDATA0 section.
ix Includes 2 bytes from the CDATA0 section.
x Includes 2 bytes on the IDATA0 section.
xi As measured with tu4lite.
xii Salvo Pro only.
xiii A bus-powered USB device is one that gets its power from the USB host (i.e. over the USB cable).
xiv This is the total system sleep current, and includes the quiescent current of voltage regulators, leakage across

power-control and level-shifting FETs, etc.
xv IAR MSP430 C v2.10A

