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Part I 

 
 

Why Use Interrupts? 
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Synchronous applications 
* Embedded applications that do not use interrupts are inherently synchronous 

and deterministic. Program flow is very tightly-coupled. Outputs are 
controlled via highly sequential code. Inputs are explicitly sampled at defined 
times, therefore polling is required. 

* State machines, jump tables, etc. are often used to control program flow. 
* Performance is often characterized by an overall processing rate – e.g. all 

functionality (input-to-output) is repeated at 100Hz. 
* All of an application’s code operates in a single layer. 
* Example: 1200bps serial-to-AX.25 amateur packet-radio link-layer protocol 

converter (implemented on a PIC12). 
* Benefits: Easy to write, understand and analyze. Often used in situations 

where application functionality is narrowly defined. 
* Disadvantages: Inefficient use of processor power, poor responsiveness, not 

well-suited to low-power (/sleep) applications, applications are not easily 
expanded. 
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Asynchronous applications 
* The real world is inherently asynchronous – i.e. you usually cannot predict 

when an external event will occur. 
* An application must respond quickly to events or else they may be lost. The 

more efficient the response (in terms of CPU cycles, etc.), the higher the 
number / frequency of events that the application can handle. 

* Since asynchronous events are unpredictable, interrupt capabilities were 
added to µC designs in order to efficiently handle asynchronous events.  

* When using interrupts, an application’s code operates in two layers:  
background / main() code and foreground / ISR code.  

* Code can be very tightly coupled (e.g. synchronous main loop, which samples 
outputs from ISRs) or more loosely coupled (e.g. most processing performed 
in individual ISRs). 

* Example: Solar-powered low-earth-orbit CubeSat Kit picosatellite. Operates at 
low power levels (including sleep) until it receives commands from ground 
station, whereupon it wakes up and begins transmitting data. 

* Benefits: Rapid response to asynchronous events, more efficient use of 
processor power because no polling is required, well-suited to low-power / 
sleep modes, efficient coding possible. 

* Disadvantages: Much more difficult to analyze because application behavior is 
a function of external events. Requires more RAM (for stack). 
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A simple example: 1200 baud RS-232 reception on GPIO pin  
* Without interrupts, code must sample1 the Rx signal on the GPIO pin every 

1/(1200 x 2) = 416µs, and begin assembling incoming data into a received 
character via a state machine once the start bit is detected. The programmer 
must ensure the application always samples the GPIO pin every 416µs 
regardless of the state of the receiver state machine and any other parts of 
the application. Careful hand-coding and cycle-counting is often required. 
Any other application functionality must be carefully “time-sliced” into the 
416µs window of available processing time. This very tightly-coupled code is 
often non-trivial to write. 

* With interrupts, an interrupt is made to occur every 416µs, e.g. via a simple 
timer interrupt. Inside the ISR, the state machine receives the start, data and 
stop bits to assemble a received character. The only requirement on the rest 
of the application is that interrupts not be disabled for more than 416µs, else 
Rx data might be lost. The rest of the application is very loosely-coupled. 

* In both cases, assuming 1µs/instruction cycle and 80 instruction cycles for the 
Rx state machine + overhead,2 (80 inst x 2400 /s) / (1,000,000 inst/s) = 20% of 
CPU power is spent on RS-232 reception. 



Slide 6    
 

Another example: 1200 baud RS-232 reception via built-in USART 
* The addition of a real USART reduces the load on the processor even further. 

Assuming 1 start bit, 8 data bits and one stop bit, the USART receives a new 
character every 1/(1200 bps / 10 bits) = 8.33ms. 

* Without using interrupts, the code must read the incoming Rx data every 
8.33ms or faster. The code’s main() must ensure that this rate is always met, 
regardless of any other processing (e.g. library calls, long delays, etc.). 

* By using interrupts, the main() is interrupted every 8.33ms with the arrival of a 
new character. The only requirement on the rest of the application is that 
interrupts not be disabled for more than 8.33ms, else Rx data might be lost. 
Again, the rest of the application is very loosely-coupled, and can tolerate 
library calls, long delays, etc. 

* The USART has the additional advantage that the CPU need not poll the start 
bit. Assuming 20 instruction cycles to move the Rx data to the main 
application, the worst-case load drops by a factor of 80 to (20 inst x 120 /s) / 
(1,000,000 inst/s) = 0.24%.3 
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We use interrupts because … 
* It’s much more efficient to handle asynchronous / unpredictable events via 

interrupts. Interrupts remove the need for polling. Polling for changes on 
inputs is a waste of cycles when no changes occur. 

* Code in main() is much simpler to write – no major time constraints are 
imposed upon it. No need to “schedule” event polling. Code can be written 
without regard for the ISRs as long as a few basic requirements are met. 
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Part II 

 
 

Using Interrupts in Embedded 
Systems 
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When using interrupts: 
* We must ensure that interrupts are never disabled for longer than the critical 

period of the fastest ISR. Interrupt latency must be kept to a minimum. Missed 
interrupts = lost data. 

* ISR overhead should be kept to a minimum. Unnecessary overhead = wasted 
CPU cycles = reduced performance. 

 
Interrupts can come from internal and/or external sources 

* Internal interrupts: timers, DMA, Tx communications, etc. 
* External interrupts: captures, change-on-pin, Rx communications, etc. 

 
Interrupts often have priorities and/or vectors associated with them 

* PIC18: two separate programmable priority levels (2 vectors) 
* MSP430: multiple interrupt vectors, fixed priority scheme 

 
Proper use and control of interrupts is often one of the hardest 

skills for embedded programmers to master. 
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Interrupt control 
* µC’s usually have a global interrupt enable bit (GIE). 
* µC peripherals usually have individual interrupt enable bits (pIE). 
* For a particular ISR to be active, both the GIE and the associated pIE(s) must 

be enabled. 
* Applications normally run with global interrupts enabled. 
* When accessing a global variable shared between main() and ISR code, 

access to the variable from main() must occur with interrupts disabled, else 
corruption may occur. 
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Example: MSP430 USART transmit routines 
* User calls MSP430PutcharTx0(char) from main(). Data is added to the outgoing / 

Tx user ring buffer via tx0InP (not shared). After data is added to buffer, 
interrupts are disabled while Tx interrupt enable bit is set and txCount 
(shared) is incremented. Note that global interrupts are disabled for a very 
short time (3 instructions). 

 

* On the MSP430, the act of enabling Tx interrupts causes a Tx interrupt to 
occur (USART’s Tx buffer is empty and ready to accept a new character). 
Therefore Tx0 ISR calls MSP430SendcharTx0(), which pulls a char out of the 
ring buffer via tx0OutP (not shared), sends it out via the USART, decrements 
txCount and disables further interrupts if the ring buffer is now empty. Note 
that no interrupt control around txCount is required, because interrupts are 
already disabled inside of an ISR. 
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Example: MSP430 USART transmit routines 
unsigned char MSP430PutcharTx0(unsigned char data) 

{ 

 if (tx0Count < TX0_BUFF_SIZE)  /* room in buffer?   */ 

 { 

     tx0Buff[tx0InP++] = data;  /* yes, add to buffer  */ 

 

     if (tx0InP > TX0_BUFF_SIZE-1)  /* wrap ptr if req’d  */ 

         tx0InP = 0; 

 

     _DINT();     /* shared access to  */   

     IE1 |= UTXIE0;    /*  global vars   */ 

     tx0Count++;    /*  “”    */ 

     _EINT();     /*  “”    */ 

 

     return TRUE; 

 } 

 else 

 { 

     return FALSE;    /* buffer full   */ 

 } 

} 
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Example: MSP430 USART transmit routines (cont’d) 
void MSP430SendcharTx0(void)  /* call from ISR  */ 

{  

    TXBUF0 = tx0Buff[tx0OutP++];  /* send data out  */ 

     

    if (tx0OutP > TX0_BUFF_SIZE-1) /* wrap ptr if req’d */ 

        tx0OutP = 0; 

     

    tx0Count--;     /* that char is gone */ 

     

    if (tx0Count == 0)    /* no need for more ints */ 

     IE1 &= ~UTXIE0;   /*  if no more chars */ 
}
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Part III 

 
 

How Other People’s Code 
Affects Interrupts in your 

Application 
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When you control interrupts 
* You know (or at least you can analyze) how long interrupts are disabled in 

your own code. 

 
What happens when you add these “black boxes” to your 
application? 

* Standard libraries (e.g. floating-point math) 
* Other “canned” code (e.g. peripheral libraries / routines) 
* Multitasking kernels / RTOSes 

 
Interrupt latency, response and recovery times become critical 
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Interrupt control may be beyond your control 
* To be fully reentrant, a function may only operate on data on the stack. Often 

due to architectural limitations, libraries may include non-reentrant functions 
that must be protected against reentrancy via interrupt control. This occurs 
because of the need for temporary global variables to hold intermediate 
results. Examples include software multiply (e.g. for array element lookup) 
and 32x32 bit multiply on an 8-bit PICmicro®.  

 

* Similarly, RTOSes usually disable interrupts to protect shared RTOS objects, 
the stack, etc. 
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Solving the reentrancy problem 
* Reentrancy can be avoided simply by ensuring that there is only a single call 

tree for any function(s) that are not reentrant. This usually means that these 
functions can only be called from main() or a single, non-nested ISR. 
Satisfying this requirement may require changes to your code. 

* A brute-force solution to the reentrancy problem is to duplicate the required 
function and use separate instances for main() and interrupt-level code. 

* Another solution is for the compiler to automatically protect shared globals as 
part of interrupt save / restore. 

* Non-reentrant functions can prevent reentrancy via interrupt control inside the 
functions themselves (critical sections). 

 
Interrupt control 

* Library functions that include global interrupt control (e.g. for EEPROM writes) 
must be analyzed for their impact on interrupts. If they disable interrupts for 
too long, they need to be re-coded or avoided altogether.  
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Multitasking and interrupt control 
* Broadly speaking, multitasking requires some sort of context switching as the 

scheduler switches program execution from one task to another. Context 
switching involves the stack and changes to the stack pointer (SP). Context 
switchers are often written in assembly. Since the SP is a shared resource, it 
is likely that interrupts must be disabled globally during context switches.4 
Hopefully, the kernel / RTOS you are using disables interrupts globally for a 
minimum number of instruction cycles.  

 

RTOSes and critical sections 
* RTOSes also have objects (e.g. task control blocks) that are global in nature. 

RTOS services that access these objects are not normally reentrant. Access 
to these objects must be protected to avoid corruption when RTOS functions 
are called from the interrupt level. By default, most RTOSes protect critical 
sections by disabling interrupts globally. Note, however, that all that is 
required is that the critical sections be protected against reentrancy caused 
by those interrupt sources that call RTOS services. 

* Figure 1 shows the number of instruction cycles for which (global) interrupts 
are disabled by kernel services in the popular µC/OS RTOS. Figures for other 
RTOSes are likely to be similar. 
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Figure 1: For µC/OS 



Slide 20    
 

 
The effect of critical sections 

* The µC/OS kernel services in Figure 1 show a maximum of 500 instruction 
cycles during which global interrupts are disabled during a critical section 
(t_int_disabled). Therefore this application using this RTOS cannot support any 
interrupts whose critical period is shorter than 500 instruction cycles. 

 
Interrupt control in critical sections 

* Most RTOSes are compiled with global interrupt control in critical sections, 
e.g. 

 
#define OSEnterCritical  _DINT() /* disable interrupts globally  */ 

#define OSExitCritical   _EINT() /* enable interrupts globally  */ 

 
  These definitions guarantee that regardless of which interrupts involve calls to 

the RTOS services, no corruption of the shared RTOS objects is possible. I.e. 
they prevent reentrancy through any ISR. The disadvantage of this approach 
is that all interrupt sources are affected by the RTOS’s maximum t_int_disabled 
time. 
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Tailoring interrupt control to your application 
* If instead we redefine the critical section code to be e.g.5 

 
#define OSEnterCritical  (TMR0IE = 0) /* disable Timer0 interrupts */ 

#define OSExitCritical   (TMR0IE = 1) /* enable Timer0 interrupts */ 

 
  Now the RTOS no longer affects interrupts globally in its critical sections. 

t_int_disabled is effectively 0 (!) for all interrupts other than Timer0’s interrupt. 
Therefore high-rate interrupts can coexist with the RTOS on all interrupt 
sources other than Timer0. With this specific critical section code, RTOS 
services (e.g. OSTimer()) can only be called from those interrupts that are 
disabled during critical sections – e.g. from the Timer0 ISR. 

* Interrupt control in critical sections can be expanded to handle more than just 
a single interrupt enable. 

* Access to the RTOS source code is required to implement changes to the 
critical section macros. 



Slide 22    
 

Example: Salvo RTOS + I2C on 4MHz PIC18 PICmicro® MCU 
* The default clock speed for I2C is 100kHz. An interrupt is generated (SSPIF) 

every time a 9-bit I2C packet is received, i.e. every 90µs. At 4MHz, the PIC’s 
instruction cycle is 1µs. Therefore I2C interrupts must be serviced every 90 
instruction cycles to avoid errors. 

* Salvo’s context switcher for the PIC18 (using HI-TECH PICC-18 compiler) does 
not involve the stack, etc. The standard critical-section protection is used. 

* Many of Salvo’s critical sections (e.g. priority queue resolution, etc.) will take 
longer than 90 instructions. Therefore the default Salvo configuration for 
protecting critical sections: 

 
#define OSDi()  do { GIEH = 0; GIEL = 0; } while (0) 

#define OSEi()  do { GIEH = 1; GIEL = 1; } while (0) 

 
    is inadequate in this situation, because all interrupts (GIE/GIEH and 

PEIE/GIEL) are disabled globally during context switching and critical 
sections. The interrupt latency for the I2C interrupt will exceed 90 instruction 
cycles due to interrupt control by the RTOS. 
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* The solution is to configure the PIC18 for mixed-priority interrupts, elevate the 
I2C subsystem to high-priority interrupts, and configure Salvo to only disable 
low-priority interrupts in critical sections. 

 
RCON:IPEN   = 1; /* enable priority levels on interrupts */ 

PIE1:SSPIE  = 1; /* enable MSSP (I2C) interrupts   */ 

IPR1:SSPIP  = 1; /* MSSP interrupt priority = high  */ 

INTCON:GIEL = 1; /* enable low-priority interrupts  */ 

INTCON:GIEH = 1; /* enable high-priority interrupts  */ 

… 

#define OSDi()  do { GIEL = 0; } while (0) 

#define OSEi()  do { GIEL = 1; } while (0) 

 
* With this configuration, your application can be in the middle of a Salvo critical 

section with low-priority interrupts disabled, and an I2C interrupt will be 
serviced immediately. 

* If you use more than one high-priority ISR, high-priority interrupt response 
times will be based solely on PIC hardware and software-induced priorities.6 
I.e. they are not affected by the RTOS control of critical sections. 

* With Salvo disabling low-priority interrupts in its critical sections, Salvo 
services (e.g. OSTimer()) can be called from any low-priority ISR. Calling 
Salvo services from a high-priority ISR in this configuration will result in data 
corruption sooner or later. 
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* The careful reader will wonder “How do I pass information from a high-priority 
ISR up to the RTOS, if I can’t call RTOS services from the high-priority ISR?” 
A common solution is to use a semaphore with explicit interrupt control to 
avoid corruption, e.g. 

 
while (1) 

{ 

  if (HighPrioISRDataReady == 1)  /* simple user semaphore */ 

  { 

    GIEH = 0; 

    HighPrioISRDataReady = 0; 

    GIEH = 1; 

    OSSignalBinSem(HIGH_PRIO_ISR_DATA_READY_P);  /* wake task */ 

  } 

  OSSched();  /* run highest-priority eligible task */ 

} 

 
    The length of time that global interrupts are disabled should be minimized 

when using this approach.7 Additionally, the ISR should be coded to reduce 
the load on the main application as much as possible. E.g. signal a task only 
when a complete multi-byte packet has arrived, etc. 



Slide 25    
 

 
Part IV 

 
 

Conclusion 
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By handling asynchronous events in embedded systems via 
interrupt handlers, we make most efficient use of CPU cycles. 

 
Data will be lost if interrupt latency for high-rate ISRs is too high. 
 
Interrupt control is often a combination of global and peripheral-

specific enable/disable mechanisms. 
 
Global shared variables require protection against corruption from 

interrupts and unwanted reentrancy. 
 
Complex programs – including multitasking schedulers – control 

interrupts to protect global shared variables. 
 
By explicitly controlling individual interrupt sources, interrupt 

latency can be minimized or even eliminated on a per-interrupt-
source basis. 
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End Notes 
                                                 
1  2x oversampling is employed. 3x oversampling would be more robust. 
2  In the case of the non-interrupt-based code, overhead would include synchronization code. For the interrupt-based code, overhead would 

include interrupt context save and restore. 
3  Assumes a constant stream of incoming Rx data. 
4  This is especially true when the native data size of the embedded processor is much smaller than the native stack pointer size. E.g. an 8-

bit processor with a 16-bit SP must disable interrupts while redefining the SP or else SP corruption will occur should an interrupt be 
serviced while the SP is being redefined over the course of several instructions. 

5  For Microchip PIC18, e.g. PIC18F452. 
6  Since the PIC18 has only a single high-priority interrupt vector, it’s up to the programmer to implement a priority scheme in software. 
7  In those cases where an instruction set provides the means to e.g. clear a single bit of information with a single, atomic instruction, 

disabling and re-enabling interrupts around access to the semaphore may be superfluous. Interrupt control is shown for the general case.   


