

RM-ICCAVR
Reference Manual

750 Naples Street • San Francisco, CA 94112 • (415) 584-6360 • http://www.pumpkininc.com

© Copyright 2003 Pumpkin, Inc. last updated on Jun 5, 2008
All trademarks mentioned herein are properties of their respective companies.

Salvo Compiler Reference Manual
– ImageCraft ICCAVR

 Reference Manual

2 RM-ICCAVR Salvo Compiler Reference Manual – ImageCraft ICCAVR

Introduction
This manual is intended for Salvo 4 users who are targeting Atmel
(http://www.atmel.com/) AVR® and MegaAVR™
microcontrollers1 with ImageCraft's (http://www.imagecraft.com/)
ICCAVR C compiler v7.14 or later.

Note Users of ICCAVR v6 and earlier should use Salvo v3.x,
which is now deprecated.

Related Documents
The following Salvo documents should be used in conjunction
with this manual when building Salvo applications with
ImageCraft's ICCAVR C compiler:

• Salvo User Manual

Example Projects
Example Salvo projects for use with ImageCraft's ICCAVR C
compiler and the ImageCraft IDE can be found in the:

\Pumpkin\Salvo\Example\AVR\

directories of every Salvo for Atmel AVR and MegaAVR
distribution.

Tip These example projects can be easily modified for any AVR
or MegaAVR device.

Features
Table 1 illustrates important features of Salvo's port to
ImageCraft's ICCAVR C compiler.

http://www.atmel.com/
http://www.imagecraft.com/

 Reference Manual

RM-ICCAVR Salvo Compiler Reference Manual – ImageCraft ICCAVR

3

General
Abbreviated as ICCAVR

Available distributions Salvo Lite, LE & Pro
for Atmel AVR and MegaAVR

Supported targets entire AVR and MegaAVR family
Header file(s) salvoporticcavr.h

Other target-specific file(s)
salvoporticcavr.s,

salvoporticcatmega.s,
salvoporticcatm256.s

salvocfg.h
Compiler auto-detected? yes2
Include target-specific header file

in salvocfg.h? yes
libraries

Located in Lib\ICCAVR-v7
(for v7.x compilers)

Context Switching
Method function-based via

OSDispatch() & OSCtxSw()
Labels required? no
Size of auto variables and

function parameters in tasks
total size must not exceed 254 8-bit

bytes
Memory & Registers

Internal and external RAM
supported?

yes, via
-bsalvoram:0xstart.0xend

R20..R23 used? no
Interrupts

Interrupt latency in context
switcher 0 cycles

Interrupts in critical sections
controlled via user hooks

Default behavior in critical
sections see example user hooks

Debugging
Source-level debugging with Pro

library builds? yes

Compiler
Bitfield packing support? no
printf() / %p support? yes / yes
va_arg() support? yes

Table 1: Features of Salvo port to ImageCraft's ICCAVR
C compiler

Libraries

Nomenclature
The Salvo libraries for ImageCraft's ICCAVR C compiler follow
the naming convention shown in Figure 1.

 Reference Manual

4 RM-ICCAVR Salvo Compiler Reference Manual – ImageCraft ICCAVR

Salvo library

libsalvoficcavr-a.a

type
f: freeware
l: standard

ImageCraft
C Compiler

configuration
a: multitasking with delays and events
d: multitasking with delays
e: multitasking with events
m: multitasking only
s: Salvo SE library
t: multitasking with delays and events,

tasks can wait with timeo

option
-: no option
i: library includes debugging information

y: Salvo tiny library

target
avr: AVR
atmega: MegaAVR

Figure 1: Salvo Library Nomenclature – ImageCraft's
ICCAVR C Compiler

Type
Salvo Lite distributions contain freeware libraries. All other Salvo
distributions contain standard libraries. See the Libraries chapter of
the Salvo User Manual for more information on library types.

Target
Each library is intended for one or more specific processors. Table
2 lists the correct library for each AVR and MegaAVR processor.

 Reference Manual

RM-ICCAVR Salvo Compiler Reference Manual – ImageCraft ICCAVR

5

Target Code Processor(s)

avr:

AVR and megaAVR devices with
8KB or less program memory

(e.g. AT90S8515). These libraries
use the basic AVR instruction set.

atmega:

AVR and megaAVR devices with
more than 8KB and less than 256KB

of program memory (e.g.
ATmega16). These libraries use the

megaAVR instruction set.

atm128:

AVR and megaAVR devices with
more than 8KB and less than 256KB

of program memory (e.g.
ATmega1280). These libraries use
the enhanced AVR instruction set.

atm256:

megaAVR devices with 256KB or
more of program memory

(e.g. ATmega2561). These libraries
use the extended AVR instruction

set.

Table 2: Processors for Salvo libraries – ImageCraft's
ICCAVR C compiler

Note The target code for an unlisted processor will match that
used by ImageCraft's ICCAVR C compiler for standard libraries,
etc.

Option
Salvo Pro users can select between two sets of libraries – standard
libraries, and standard libraries incorporating source-level
debugging information. The latter have been built with
ImageCraft's ICCAVR C compiler's +g command-line option. This
adds source-level debugging information to the libraries, making
them ideal for source-level debugging and stepping in the
ICCAVR debugger. To use these libraries, simply select one that
includes the debugging information (e.g. libsalvoliccavrit.a)
instead of one without (e.g. libsalvoliccavr-t.a) in your
ICCAVR project.

Configuration
Different library configurations are provided for different Salvo
distributions and to enable the user to minimize the Salvo kernel's
footprint. See the Libraries chapter of the Salvo User Manual for
more information on library configurations.

 Reference Manual

6 RM-ICCAVR Salvo Compiler Reference Manual – ImageCraft ICCAVR

Build Settings
Salvo's libraries for ImageCraft's ICCAVR C compiler are built
using the default settings outlined in the Libraries chapter of the
Salvo User Manual. Target-specific settings and overrides are
listed in Table 3.

Target-specific Settings
Delay sizes 8 bits

Idling hook dummy,
can be overridden

Interrupt hook disables then restores GIE bit,
can be overridden

Watchdog hook clears WDT without other changes,
can be overridden

System tick counter available, 32 bits
Task priorities enabled

Table 3: Build settings and overrides for Salvo libraries
for ImageCraft's ICCAVR C compiler

Note Salvo Lite libraries have precompiled limits for the number
of supported tasks, events, etc. Salvo LE and Pro libraries have no
such limits. See the Libraries chapter of the Salvo User Manual for
more information.

Available Libraries
There are a total of 44 Salvo libraries for ImageCraft's ICCAVR C
compiler. Each Salvo for Atmel AVR and MegaAVR distribution
contains the Salvo libraries of the lesser distributions beneath it.

Target-Specific Salvo Source Files
Depending on the target AVR, one of three different context-
switcher files is required for Salvo Pro source-code builds, as
shown in Table 4:

Context-switcher Filename Application

salvoporticcavr.s
AVRs with 8KB or less program
memory. Uses IJMP and RJMP

instructions.

salvoporticcatmega.s
AVRs with more than 8KB and up to
128KB program memory. Uses IJMP

and JMP instructions.

salvoporticcatm256.s
AVRs with 256KB and more program
memory. Uses EIJMP, JMP and LPM

instructions.3

 Reference Manual

RM-ICCAVR Salvo Compiler Reference Manual – ImageCraft ICCAVR

7

Table 4: Target-specific context-switcher files for
ImageCraft's ICCAVR C compiler

salvocfg.h Examples
Below are examples of salvocfg.h project configuration files for
different Salvo for Atmel AVR and MegaAVR distributions
targeting a variety of AVR targets.

Salvo Lite Library Build
#define OSUSE_LIBRARY TRUE
#define OSLIBRARY_TYPE OSF
#define OSLIBRARY_CONFIG OST
#define OSTASKS 2
#define OSEVENTS 4
#define OSEVENT_FLAGS 0
#define OSMESSAGE_QUEUES 1

Listing 1: Example salvocfg.h for library build using
libsalvoficcavr-t.a

Salvo LE & Pro Library Build
#define OSUSE_LIBRARY TRUE
#define OSLIBRARY_TYPE OSL
#define OSLIBRARY_CONFIG OST
#define OSTASKS 7
#define OSEVENTS 13
#define OSEVENT_FLAGS 3
#define OSMESSAGE_QUEUES 2

Listing 2: Example salvocfg.h for library build using
libsalvoliccatmega-t.a or libsalvoliccatm256.a

Salvo Pro Source-Code Build
#define OSENABLE_IDLING_HOOK TRUE
#define OSENABLE_SEMAPHORES TRUE
#define OSTASKS 9
#define OSEVENTS 17
#define OSEVENT_FLAGS 2
#define OSMESSAGE_QUEUES 4

Listing 3: Example salvocfg.h for source-code build

 Reference Manual

8 RM-ICCAVR Salvo Compiler Reference Manual – ImageCraft ICCAVR

Interrupt Latencies
Since Salvo's context switcher for ImageCraft's ICCAVR C
compiler does not need to control interrupts, Salvo applications can
easily be created with zero total interrupt latency for interrupts of
interest.

In a properly-configured application, only those interrupts that call
Salvo services will (by necessity) experience interrupt latency from
Salvo's operations. Users must ensure that these interrupt sources
are disabled (and re-enabled) via the user interrupt hooks.

Disabling and re-enabling interrupts globally in the user interrupt
hooks (i.e., the default user interrupt hook behavior) is of course
permitted, but will result in non-zero interrupt latencies for all
interrupt sources, even those that do not call Salvo services. See
the target-specific source files of this distribution for examples.

Memory Usage

Example Application4 Program
Memory Usage5

Data Memory
Usage6

\AVR\AT90S8515\…\tut5lite 3206 57
\AVR\AT90S8515\…\tut5le 3148 57
\AVR\AT90S8515\…\tut5pro 2962 56

Table 5: ROM and RAM requirements for Salvo
applications built with ImageCraft's ICCAVR C compiler

User Hooks

Overriding Default Hooks
In library builds, users can define new hook functions in their
projects and the linker will choose the user function(s) over the
default function(s) contained in the Salvo library.

In source-code builds, users can remove the default hook file(s)
from the project and substitute their own hook functions.

Idling
The default idling hook in salvohook_idle.c is a dummy
function, as shown below.

 Reference Manual

RM-ICCAVR Salvo Compiler Reference Manual – ImageCraft ICCAVR

9

void OSIdlingHook (void)
{
 ;
}

Listing 4: Default Salvo idling hook for ImageCraft's
ICCAVR C compiler

Users can replace it (e.g. with a directive to put the AVR to sleep)
by building their own version with their application.

Interrupt
The default interrupt hooks in salvohook_interrupt.c are
shown below.7

static unsigned char sreg;

void OSDisableHook(void)
{
 unsigned char sreg_local;

 sreg_local = SREG;
 _CLI();
 sreg = sreg_local;
}

void OSEnableHook(void)
{
 SREG = sreg;
}

Listing 5: Default Salvo interrupt hooks for ImageCraft's
ICCAVR C compiler

These functions clear the GIE bit (i.e. disable global interrupts)
across Salvo's critical section, and restore the bit to its previous
value thereafter. These hooks are suitable for all applications.
These hooks work very well within Salvo services called from
interrupts, as the GIE bit is automatically cleared upon entry to an
interrupt. Therefore interrupts are not re-enabled at the end of a
Salvo service that is called in an ISR. This avoids unnecessary
interrupt nesting. The use of the auto variable sreg_local avoids
issues that would affect the shared global sreg when a Salvo
service is called from within an ISR.

Note Not disabling all source of interrupts that call Salvo services
during critical sections will cause the Salvo application to fail.

 Reference Manual

10 RM-ICCAVR Salvo Compiler Reference Manual – ImageCraft ICCAVR

Watchdog
The default watchdog hook in salvohook_wdt.c is shown below.8

void OSClrWDTHook (void)
{
 _WDR();
}

Listing 6: Default Salvo watchdog hook for ImageCraft's
ICCAVR C compiler

Users can replace it (e.g. with a dummy function – this would stop
Salvo from clearing the watchdog timer and allow the user to clear
it elsewhere) by building their own version with their application.

Compiler Issues

Runtime Models and Compatible Libraries
The runtime models used by ImageCraft's ICCAVR C compiler
have evolved over the years. When building an application with
Salvo libraries, it's necessary to link to the libraries compatible
with the version of ImageCraft's ICCAVR C compiler that you are
using. Table 6 lists the locations of Salvo libraries as a function of
the ImageCraft's ICCAVR C compiler version.

ICCAVR Version Salvo Library Location
7.x Lib\ICCAVR-v7

Table 6: Compiler versions, runtime models and Salvo
library locations for ImageCraft's ICCAVR C compiler

Incompatible Optimizations
There are no known incompatibilities between ImageCraft's
ICCAVR C compiler’s optimizations (e.g. -O8, -O16, -O24) and
Salvo.

Special Considerations

ATmega2560/2561 (256KB and greater program memory)
In order to support the larger-than-16-bit program memory space
of the ATmega2560/2561 and similar megaAVRs, Salvo uses 4

 Reference Manual

RM-ICCAVR Salvo Compiler Reference Manual – ImageCraft ICCAVR

11

bytes per function pointer instead of two.9 This allows Salvo tasks
to be located anywhere in program memory.

Salvo for AVR and megaAVR automatically detects whether you
are building for the ATmega2560 or ATmega2561, and configures
Salvo’s function pointer type accordingly. If you are using a chip
other than the ATmega2560 or ATmega2561, define the symbol
OSAVR_256K for every Salvo source module (including
salvomem.c in Salvo library builds). This can be done by passing

–DOSAVR_256K

 to the compiler (e.g. in the AVR Studio IDE), or by including

#define OAVR_256K 1

in the project’s salvocfg.h.

Stack Issues
ImageCraft's ICCAVR C compiler uses two separate stacks – one
for return addresses (the hardware stack, which uses SP) and one
for parameter passing and local storage (the software stack, which
uses Y).

Compared to a non-Salvo, non-multitasking application with
similar call trees, the corresponding Salvo application will require
an additional two return addresses (i.e. 4 bytes for typical AVRs
and megaAVRs) in the hardware stack.10

The size of the hardware stack can be set in the ICCAVR IDE via
Project → Options → Target → Advanced → Return Stack
Size or on the iccavr linker command line, e.g.:

iccavr … -dhwstk_size:20 …

Applications using nested interrupts, floating points or longs will
require a hardware stack larger than the default size – see ICCAVR
Help for more information.

External SRAM
Salvo's global objects11 can be placed in internal or external RAM.
In ImageCraft's ICCAVR IDE, the placement of objects (e.g.
variables) in the data program area is controlled via Project →
Options → Target → Device Configuration (Internal SRAM),

 Reference Manual

12 RM-ICCAVR Salvo Compiler Reference Manual – ImageCraft ICCAVR

etc. On the iccavr linker command line, placement of these
objects is specified via –bdata:start.end, e.g.:

iccavr … -bdata:0x260.0xffff …

specifies that the data program area start at 0x260 (the end of
internal SRAM) and extend to 0xFFFF (the 64K boundary).

Salvo's global objects can be placed – as a group – anywhere in
RAM (internal or external) by specifying the start and end
addresses of the salvoram program area. This applies to source-
code and library builds. For example, to place all of Salvo's global
objects in a 256-byte block of external RAM just beneath the 32K
boundary, use

iccavr … -bsalvoram:0x7F00.0x7FFF …

when linking your application.12

Note If you do not use the –b linker command-line argument, the
salvoram program area will be located immediately after the bss
program area in the data program area. Therefore it is only
required if you wish to locate Salvo's global objects separately
from your program's variables, etc. You can override the order of
the program areas by using the .area assembler directive.

Data Segments
The RAMPD register is normally used to access the entire data space
on processors with more than 64K bytes data space. There are no
provisions for accessing Salvo's global objects outside of the
current data segment of 64K bytes.

Code Compressor
Salvo is compatible with ImageCraft's ICCAVR Code
Compressor13 in both library- and source-code builds.

Indirect Function Calls
Salvo handles indirect function calls directly through IJMP and
EIJMP instructions, and not through Code Compressor’s xicall.
This is transparent to the user.

 Reference Manual

RM-ICCAVR Salvo Compiler Reference Manual – ImageCraft ICCAVR

13

Registers R20..R23
ICCAVR can be instructed to not use registers R20..R23. In
practice, this has little effect on the Salvo code – it may result in a
small speedup and smaller ROM size.

The Salvo libraries are built without using R20..R23 so that control
of these registers is left to the programmer.14

Salvo Pro users can control the use of these registers in a source-
code build.

1 tinyAVR devices are not supported because of their lack of RAM.
2 This is done automatically through the __IMAGECRAFT__ and _AVR symbols

defined by the compiler.
3 ICCAVR v7 places 3-byte address of function pointers into a literal table

located within the first 64K of program memory. Therefore LPM is used (ELPM
is not required).

4 Salvo 4.1.2-rc0 with v7.15 compiler.
5 In bytes. Entire application, including func_lit, text and vector areas.
6 In bytes. Entire application, including bss area. Does not include RAM

reserved for the return address (hardware, SP) stack, nor for the parameter
passing and local storage (software, Y) stack.

7 This hook is valid for all AVR and MegaAVR targets because the register and
GIE bit locations are the same for all targets.

8 This hook is valid for all AVR and MegaAVR targets because the watchdog
control register is the same for all targets.

9 Bits 16 through 21 are defined for the AVR architecture on these parts. Salvo
does not use the uppermost / most-significant byte – it remains 0.

10 Salvo Pro application can reduce this by one return address by inlining
OSSched().

11 E.g. task control blocks, queue pointers, counters, etc.
12 Failure to allocate enough RAM for the salvoram program area will result in

an area 'salvoram' not large enough linker error.
13 Code Compressor is included in ICCAVR Professional.
14 The ICCAVR libraries that do not use R20..R23 have the –gr (“global

register”) suffix.

	Salvo Compiler Reference Manual – ImageCraft ICCAVR
	Introduction
	Related Documents
	Example Projects
	Features
	Libraries
	Nomenclature
	Type
	Target
	Option
	Configuration
	Build Settings
	Available Libraries

	Target-Specific Salvo Source Files
	salvocfg.h Examples
	Salvo Lite Library Build
	Salvo LE & Pro Library Build
	Salvo Pro Source-Code Build
	Interrupt Latencies
	Memory Usage

	User Hooks
	Overriding Default Hooks
	Idling
	Interrupt
	Watchdog

	Compiler Issues
	Runtime Models and Compatible Libraries
	Incompatible Optimizations

	Special Considerations
	ATmega2560/2561 (256KB and greater program memory)
	Stack Issues
	External SRAM
	Data Segments
	Code Compressor
	Indirect Function Calls

	Registers R20..R23

