PUMPKIN | AN-28

Application Note

750 Naples Street ¢ San Francisco, CA 94112 < (415) 584-6360 < http://www.pumpkininc.com

Building a Salvo Application with
GNU's avr-gcc C Compiler,
WInAVR and AVRStudio

Introduction

Before You Begin

This Application Note explains how to use GNU's avr-gcc C
compiler, WinAVR and with Atmel®'s AVRStudio (al are
available’ through http://www.avrfresksnet/) to create a
multitasking Salvo application on Atmel AVR and MegaAVR
devices.

We will show you how to build the example program located in
[sal vo/ ex/ ex1/ mai n. ¢ for an Atmel AT90S8515 using WinAVR
20030913 and AVRStudio v4.07. For more information on how to
write a Salvo application, please see the Salvo User Manual.

If you have not already done so, install WinAVR and AVRStudio
(WinAVR includes avr-gcc). You will also need abash shell (or a
functionaly identical Linux-like command-line environment) in
order to drive the makefile system. One is included with
WinAVR.?

Related Documents

The following Salvo documents should be used in conjunction
with this Application Note when building Salvo applications with
GNU's avr-gcc C compiler and AVRStudio:

Salvo User Manual
Salvo Compiler Reference Manual RM-GCCAVR

created by Andrew E. Kalman on Oct 19, 2003 updated on Oct 20, 2003
All trademarks mentioned herein are properties of their respective companies.

http://www.avrfreaks.net/

PUMPKIN

Application Note

Toolsets

Additionally, the following documents (available at
http://www.avrfreaks.net/ and other locations) should be also used
in conjunction with this Application Note:

Downloading, Installing and Configuring WinAVR

avr-gcc is a command-line-driven C compiler. WinAVR is a
collection of command-line and Windows-based tools, some of
which serve as a front-end to avr-gcc, etc. AVRStudio is a
Windows graphical IDE.

Since these toolsets can be configured in a multitude of different
ways, this Application Note will focus on configuring the
WinAV R-based makefile system for use with Salvo, and building
applications from the command line.

Creating and Configuring a New Project

The makefile

Select a directory where your project will reside (e.g. c:\t enp).
You will place al of your project-specific files here.

Each Salvo for Atmel AVR and MegaAVR distribution contains
example makefiles for the supplied projects. These makefiles are
derived from those commonly used with other avr-gcc tools, e.g.
WIinAVR. Should you wish to make your own makefile, or want
to use a newer one (e.g. for the latest WinAVR release), you can
easily modify an existing makefile to fully support Salvo.

The makefile should be stored in your project directory, e.g.
c:/temp/ makefile.

Tip It's much easier to start with an existing, "known-good"
makefile than to try to create your own from scratch. Therefore we
recommend that most users build an existing Salvo project first,
verify that it builds successfully, and only then consider editing
other makefiles as part of creating their own Salvo projects.

This section will examine those portions of the project's makefile
that are specific to Salvo.

AN-28 Building a Salvo Application with GNU's avr-gcc C Compiler, WinAVR and AVRStudio

http://www.avrfreaks.net/

SUINY Application Note

Note Each distribution also includes some additional files that are
part of the Salvo makefile system for the avr-gcc C compiler. Their
operation is normally hidden from the user.

Salvo: Project-Specific makefile Symbols

Normally, you need only define or modify six makefile symbolsin
order to successfully build a Salvo application with the avr-gcc
compiler. They are shown in Listing 1, and are normally at the
beginning of the makefile.

Sal vo Options

This section, with its six (6) defined synbols, is all
that a Salvo user will normally need to nodify when
configuring a Salvo project for use with avr-gcc

#

Specify Salvo install directory, eg c:/salvo
SALVO DIR = c:/salvo

Specify Salvo project build type. This nust match
your project's salvocfg.h configuration file.

Nornal options are:

MAKE_ W TH_FREE_LI B

MAKE_ W TH_STD LI B

MAKE_W TH_SOURCE

SALVO BUI LD_TYPE = MAKE W TH_FREE_LI B

Specify any extra Salvo definitions (often used in projects that
are part of the standard distribution)
SALVO EXTRA_DEFS =

Specify any other include paths the project requires
SALVO EXTRA_INCS = c:/tenp

Specify any other source files that the project requires
SALVO_EXTRA_SRCS =

Sal vo Source Code Files (for source code build ONLY, from Salvo Pro).
Add whichever Salvo source code files (e.g. sched, tiner, etc) your
Salvo Pro source-code build requires. Filenane only -- no full paths,
no extensions.

N.B. Do not add mem-- it's already included in every Salvo build.
SALVO SRCS = binsemevent init inittask qins sched

Listing 1: Salvo makefile Preamble with User-
configurable Definitions

SALVO_DIR

SALVO DI R tells the makefile system where Salvo is installed
(usually c: / sal vo).

SALVO_BUILD_TYPE

SALVO BUI LD _TYPE tells the makefile system what kind of build
thisis. The alowable values for the various Salvo distributions are
listed below:

AN-28 Building a Salvo Application with GNU's avr-gcc C Compiler, WinAVR and AVRStudio 3

PUMPKIN

Application Note

SALVO_BUILD TYPE
Salvo Lite MAKE W TH_FREE_LI B

Salvo LE MAKE_W TH_FREE_LI B,
alvo MAKE W TH STD LI B
MAKE_ W TH_FREE LI B,
Salvo Pro MAKE W TH_STD LI B,
MAKE_W TH_SOURCE

Table 1: SALVO_BUILD_TYPE Allowable Values

MAKE_W TH_FREE_LI B tells the makefile system to link to one of
Salvo's freeware libraries when building the application.
MAKE W TH FREE_LI B tells it to use a standard library. And
MAKE_W TH_SOURCE tells it to build the application directly from
the Salvo source files.

SALVO_EXTRA_DEFS

SALVO_EXTRA_INCS

You can define extra, project-specific symbols via the
SALVO_EXTRA_DEFS symbol.

You can specify additional directories to be searched (e.g. for
header files) viathe SALVO EXTRA | NCS symbol.

SALVO_EXTRA_SRCS

SALVO_SRCS

You can specify additiona source files to be added to the project
viathe SALVO_EXTRA_SRCS symbol.

When doing a Salvo source-code build with Salvo Pro, you must
define SALVO SRCs to be all of the Salvo source files (without
pathnames or extensions) required for the project.

Note salvo/tut/tu6/sysy/ makefile illustrates the use of
SALVO EXTRA_DEFS, SALVO EXTRA | NCS, SALVO EXTRA_SRCS and
SALVO_SRCS.

Salvo: Additional makefile Paths and Settings

Salvo variables must be integrated into the existing makefile
variables, as shown below in Listing 2. CFLAGS and ASFLAGS are
assumed to be the names of the makefile variables that hold the

AN-28 Building a Salvo Application with GNU's avr-gcc C Compiler, WinAVR and AVRStudio

SUINY Application Note

flags to add to the compiler and assembler command line. If the
makefile you are using doesn’t use this convention, you must make
the necessary changes.

Brings Salvo code together
N.B. Nornally, there is no need to make changes to
this area!

Sal vo include directory
SALVO DIR_INC = $(SALVO DIR)/inc

Sal vo source directory
SALVO DI R_SRC = $(SALVO DIR)/src

Salvo library directory
SALVO DIR_LIB = $(SALVO DI R)/1i b/ gccavr

SYSY is the GNU GCC AVR Conpil er -- used by Salvo projects
supplied in the distribution.
SALVO_SYS = SYSY

Conmand- | i ne additional synbols and include paths for Salvo
and user source files
SALVO ADDS = -D $(SALVO_SYS) \

-D $(SALVO BUI LD TYPE) =1 \

$(patsubst % -D % $(SALVO_EXTRA_DEFS)) \

$(patsubst % -1 % $(SALVO_EXTRA_INCS)) \

-1 $(SALVO DI R_I NO)

Add in other (user) source files for this project
SRC += $(patsubst % % $(SALVO_EXTRA_SRCS))

Salvo's nemc nust be conpiled with every Sal vo project
SRC += $(SALVO DI R_SRC)/ mem ¢

If we're doing a Salvo Pro source-code build, then add in
the Salvo source files the user has specified, as well

as portgccavr.S.

Pro source-code builds don't use Salvo libraries -- all

others do. Library name is found in an included makefile
listed in the targets area

ifeq ($(SALVO BU LD_TYPE), MAKE W TH_SOURCE)

SRC += $(patsubst % $(SALVO DI R_SRC)/ % c, $(SALVO_SRCS))
ASRC += $(SALVO DI R_SRC)/ portgccavr.S

SALVO_USELIBS = fal se

el se

SALVO_USELIBS = true
SALVO_ADDS += -L $(SALVO DI R LI B)

endi f

Conpiler and Assenbl er get sane extra flags
CFLAGS += $(SALVO_ADDS)
ASFLAGS += $(SALVO_ADDS)

Listing 2: Additional Salvo Makefile Paths and Settings

Salvo: Automatically Determining the Correct Library

The Salvo makefile system is extended via an additional makefile
in order to automatically specify the correct Salvo library when
doing a library build. The get sal vol i brary target will figure out
what the library the user has selected in the project's sal vocfg. h
file. The code to do this is shown in Listing 3, and should be
included in sometime after the al | target.

Automatically figures out what Salvo library to include

This file sets two variables: one is SALVO LIB which will
have the add to the LDFLAGS variable, such as -Isfgccavr-d

AN-28 Building a Salvo Application with GNU's avr-gcc C Compiler, WinAVR and AVRStudio 5

PUMPKIN

Application Note

and al so adds to LDFLAGS the proper nanme (essentially adds
SALVO LI B to LDFLAGS). If you are nmissing this file for

some reason either download it fromthe Punpkin Inc website
or manually add the proper library nanme to LDFLAGS

N.B. Nornally, there is no need to neke changes to

this area!

i ncl ude $(SALVO DI R_SRC)/ make/ makefile_autolibs

Listing 3: Including makefile_autolibs

Salvo: Providing Feedback on the Build Process
(Optional)

The next step is purely optional, as it is used to provide user
feedback. It reports which library has been auto-detected for use in
Salvo, and Listing 4 should be included as a makefile target
sometime after the previous target.

Note: the @cho lines have tabs before them, not just four or five
gpaces. Only use tabs for lines that are supposed to be executed in
makefiles.

Display Salvo options back to use to nmake sure they got them
right...
N.B. Nornally, there is no need to nmeke changes to
this area!
sal voecho :
@cho ""
@cho ""
@cho "***** Salvo options set up in this Makefile *x***"
ifeq ($(SALVO BU LD_TYPE), MAKE_W TH_SOURCE)
@cho "Building from source"
el se

@cho "Library to be included is $(subst -1,lib, $(SALVO LIB)).a"
endi f

@CRO " * %Kk kKKK kR KKKk kR KKKk R KKKk R KKKk Rk KKKk Rk k!

@cho ""
Listing 4: Optional Build-Time Feedback

Salvo: Modifying the Targets

The final step is to make sure the makefile knows about these new
targets. First, modify the al | target to include your new targets.
For example if previoudly the al | target looks like Listing 5, then
after modifying it might look like Listing 6. The targets
get sal vol i brary and sal voecho are added. If you did not
include the code in Listing 4 then do not include the sal voecho
target.

Default target.

all: begin gccversion sizebefore \

$(TARCGET) . el f $(TARGET) . hex $(TARGET).eep \
$(TARGET) .| ss sizeafter finished end

Listing 5: all Target before Modification

Default target.

al | : begin gccversion sizebefore getsalvolibrary sal voecho\
$(TARCGET) . el f $(TARGET) . hex $(TARGET).eep \
$(TARCET) . | ss sizeafter finished end

Listing 6: all Target after Modification

6 AN-28 Building a Salvo Application with GNU's avr-gcc C Compiler, WinAVR and AVRStudio

SUINY Application Note

Finally, go to the end of the makefile where you will find a
. PHONY listing, these are targets that don’t affect the build process.
If you have included the sal voecho target (Listing 4) then list it
here, as shown in Listing 7.

Listing of phony targets.

.PHONY : all begin finish end sizebefore sizeafter gccversion \
cof f extcoff clean clean_|list program sal voecho

Listing 7: .PHONY Target after Modification

Other Makefile Settings

At this point you should have added all of the requisite Salvo-
centric symbols, rules, etc. to the project's makefile. Any other
settings (e.g. the $(TARGET) symbol) are not specific to Salvo per
se, and follow the usua rules for makefiles. Please consult the
WIinAVR guide, etc. for more information on using makefiles with
the avr-gcc compiler.

Adding Salvo-specific Files to the Project

Now it's time to add any additional Salvo files your project needs.
Salvo applications can be built by linking to precompiled Salvo
libraries, or with the Salvo source code files as nodes in your
project.

Adding a Library

For a library build, Salvo's makefile system automatically figures
out the appropriate Salvo library. Therefore there is no need to
explicitly identify alibrary for your project.

You can find more information on Salvo libraries in the Salvo
User Manual and in the Salvo Compiler Reference Manual RM-
GCCAVR.

The salvocfg.h Header File

You will also need a sal vocf g. h file for this project. To use a
typical library (e.g. 1i bsfgccavr-a. a), your sal vocf g. h should

contain only:
#def i ne OSUSE_LI BRARY TRUE
#defi ne OSLI BRARY_TYPE OSF
#def i ne OSLI BRARY_CONFI G CsA

Listing 8: salvocfg.h for a Library Build

AN-28 Building a Salvo Application with GNU's avr-gcc C Compiler, WinAVR and AVRStudio 7

PUMPKIN

Application Note

Create this file and save it in your project directory, e.g.
c:/tenmp/ sal vocf g. h.

Proceed to Building the Project, below.

Adding Salvo Source Files

If you have Salvo Pro, you can do a source code build instead of a
library build. The application in /sal vo/ ex/ ex1/ mai n. ¢ contains
callsto the following Salvo user services:

OS_Del ay() Oslnit()

OS Wi t Bi nSem() GSSi gnal Bi nSem()
OSCr eat eBi nSemn() OSSched()

OSCr eat eTask() OSTi ner ()

CSEi ()

You must add the Salvo source files that contain these user
services, as well as those that contain internal Salvo services, to
your project. The Reference chapter of the Salvo User Manual lists
the source file for each user service. Internal services are in other
Salvo source files. For this project, the completelistis:

bi nsem c inittask.c
del ay. c mem c
event.c gins.c
idle.c sched. ¢
init.c tinmer.c

Salvo's mrem ¢ module is automatically added to every project via
the makefile system. Therefore you must edit the SALVO SRCS
symbol in the project's makefile to read:

SALVO SRCS = binsemdelay event idle init inittask gins sched tinmer

Listing 9: Salvo Source Files for a Source Code Build

The salvocfg.h Header File

You will aso need a salvocfg.h file for this project.
Configuration files for source code builds are quite different from
those for library builds (see Listing 8, above). For a source code
build, the sal vocf g. h for this project contains only:

#def i ne OSBYTES OF DELAYS 1
#def i ne OSENABLE_| DLI NG_HOOK TRUE
#def i ne OSENABLE_BI NARY_SEMAPHORES TRUE
#def i ne OSEVENTS 1
#def i ne OSTASKS 3

Listing 10: salvocfg.h for a Source Code Build

AN-28 Building a Salvo Application with GNU's avr-gcc C Compiler, WinAVR and AVRStudio

PUMPKIN Application Note

Create this file and save it in your project directory, e.g.
c:/tenmp/ sal vocf g. h.

Building the Project

With everything in place, you can now build the project by
invoking the makefile from the project's directory:

user @omai n /cygdrive/c/tenp
$ make

Listing 11: Building the Project (Default Target)

The st dout window will reflect the avr-gcc command lines:

AN-28 Building a Salvo Application with GNU's avr-gcc C Compiler, WinAVR and AVRStudio 9

SUINY Application Note

set -e; avr-gcc - MM -mmtu=at 90s8515 -1. -g -Gs -funsigned-char
-funsigned-bitfields -fpack-struct -fshort-enuns -Wall
-Wstrict-prototypes -Wa, -ahl ms=c:/salvo/src/memlst -D SYSY -D
MAKE_ W TH FREE LIB=1 -1 c:/tenp -1 c:/salvo/inc -L
c:/salvo/lib/gccavr c:/salvo/src/memc \

| sed "s,\(.*\)\.o[:]1*,\1.o\1.d: ,g" > c:/salvo/src/memd; \
[-s c:/salvo/src/memd] || rm-f c:/salvo/src/memd

set -e; avr-gcc - MM -mmtu=at 90s8515 -1. -g -Gs -funsigned-char
-funsigned-bitfields -fpack-struct -fshort-enunms -Wall
-Wstrict-prototypes -W, -ahl ns=main.lst -D SYSY -D
MAKE W TH FREE LIB=1 -1l c:/tenmp -1 c:/salvo/inc -L
c:/salvo/lib/gccavr main.c \

| sed "s,\(.*\)\.o[:]1*,\1.o\1l.d: ,g" > nmain.d; \

[-s min.d] || rm-f main.d

-------- begin --------

avr-gcc --version

avr-gcc.exe (GCC) 3.3 20030421 (prerel ease)

Copyright (C 2002 Free Software Foundation, Inc.

This is free software; see the source for copying conditions.
There is NO

warranty; not even for MERCHANTABI LI TY or FI TNESS FOR A
PARTI CULAR PURPCSE.

rm-rf c:/salvo/src/ make/ sal vofindlib.o

avr-gcc -c -w c:/salvo/src/ make/sal vofindlib.c -1 . -D SYSY -D
MAKE W TH FREE LIB=1 -1l c:/tenmp -1 c:/salvo/inc -L
c:/salvol/lib/gccavr -0 c:/salvo/src/nmake/sal vofindlib.o

***** Salvo options set up in this Makefile *****
Library to be included is |ibsfgccavr-a.a

khkkhkkhkkhkkhkkhkkhkhkhkhkhkhhhkhhhkkk*kkkk*x*x*%

avr-gcc -c -mrcu=at 90s8515 -1. -g -GCs -funsigned-char
-funsigned-bitfields -fpack-struct -fshort-enuns -Wall
-Wstrict-prototypes -Wa, -ahl ns=nain.lst -D SYSY -D

MAKE WTH FREE LIB=1 ~-I| c:/temp -1 c:/salvo/inc -L
c:/salvo/lib/gccavr main.c -0 main.o
avr-gcc -c -mrcu=at 90s8515 -1. -g -Gs -funsi gned-char

-funsi gned-bitfields -fpack-struct -fshort-enuns -Wall
-Wstrict-prototypes -W, -ahl ns=c:/salvo/src/memlst -D SYSY -D

MAKE W TH FREE LIB=1 -1l c:/tenmp -1 c:/salvo/inc -L
c:/salvol/libl/gccavr c:/salvo/src/memc -o c:/salvo/src/nemo
avr-gcc -mmru=at 90s8515 -1. -g -G -funsigned-char

-funsi gned-bitfields -fpack-struct -fshort-enuns -Wall
-Wstrict-prototypes -Wa, -ahl nse=main.o -D SYSY -D

MAKE W TH FREE LIB=1 -1l c:/tenmp -1 c:/salvo/inc -L
c:/salvol/lib/gccavr main.o c:/salvo/src/nemo - -out put
main.elf -W,-Map=nai n.map, --cref -Im-Isfgccavr-a

avr-obj copy -Oihex -R .eeprom main.elf nain. hex

avr-obj copy -j .eeprom--set-section-flags=.eepron¥"all oc, | oad"
\

--change-section-1ma .eepronr0 -O i hex nmain.elf nain.eep
avr-objdunp -h -S main.elf > nmain.lss

Si ze after

mai n. el f

section si ze addr
.text 1554 0
.data 0 8388704
. bss 45 8388704
.noinit 0 8388749
. eeprom 0 8454144
.stab 2760 0
.stabstr 4040 0
Tot al 8399

Errors: none
-------- end --------

Listing 12: Build Results for A Successful Library Build

10 AN-28 Building a Salvo Application with GNU's avr-gcc C Compiler, WinAVR and AVRStudio

PUMPKIN Application Note

The build directory can be "cleaned" prior to a build using:

user @omai n /cygdrive/c/tenp
$ make cl ean

Listing 13: Cleaning the Project Directory

This is especially useful when switching between library and
source-code builds.

Testing the Application

You can test and debug this application with full source code
integration in AVRStudio. But first, after making the application,
you must generate an appropriately debug-enabled output file, via:

user @omai n /cygdrive/c/tenp
$ make extcoff

Listing 14: Building for Symbol Debugging with
AVRstudio v4.07

Thiswill generate an extended COFF-format file for AVRStudio.

Launch AVRStudio. When prompted, open the COFF (. cof) file
you just created:

Open SaveFile or ObjectFile 2
Lookin: |3 temp B =4

2] main.cof
=] rrain hex
[rmain_hex aps

File narme: Imam.cof Dpen |
Files of type IPrDject Files, Ohject Files (”‘.aps,*.hex*.dﬁﬂ;*.aﬂﬂj Cancel |
A

Figure 1. Opening the COFF File for Symbolic
Debugging

Click Open. Under Debug Platform select AVR Simulator, and
under Device select AT90S8515:

AN-28 Building a Salvo Application with GNU's avr-gcc C Compiler, WinAVR and AVRStudio 11

PUMPKIN Application Note

‘Welcome to AVR Studio 4

—Select debug platform and device
Debug Platform: Device
ICE200 ATmegad 1
AWE Simulator
ICES0 ATtiny22
ICE40 ATmegalll
JTAGICE ATmegal28
ATEERFA01
ATmegadl
ATmegads1s
ATI0S52313
ATINSZ343
ATmegalbd
ATmegal1 =
Help | <o Eaek | alext>> | Finish | Cancel |

Figure 2: Selecting the ToolSuite in the Project Wizard

Click Finish. AVR Studio will load the . cof object file and
position the runtime / debugging cursor at the start of the project's
mai n() . You can then step through each source-code module in the

. AVRStdio - [c:\temp/main.c] =[Ol x]
= Ele Poject Edt Yiew Tools Debug Window Help P x
IDSHPO BRSecMEE®R BASEHREE o m iBIEBRREFOED e[
i[acdebed . Cl% X [T EIE L « 1t M e em
rheps S 0SCreateTask(Taskz, TASKZ_F, 7); =
Name |\/alue |E|ts |Add\ 0OSCreateTask (Task3, TASK3_P, 14);

B) Register 0-15 S

" ~* initialize binary semaphore to 0.
Fiegister 16-31 08CreateBinSem (BINSEMI_P. 07 =
Processor

/0 AT9058515 /% enable interrupts.
D ANALOG_COMPARATOR QSEi():
e 8 crPU
i SREG 0282 mOOCOCOmO F g* 51;51‘1): multitasking.
|89 SPH 0x02 OooooomO 3E er L .
- OseL 0x5F OmCEEmEE 0 ED} 0SSched () ;
=BMoucR b ooooooon 35 | _>l_|
= Froject Rl 10| @ 1o | = ciitempimain.c ‘
& Loaded plugin STKE00 &]|| * rzZe= 0xB4 A ¥ Name |Va|ue | Type
2 Loaded partiile: C\Program FilesiAtmenavR Tac, ||| L B27- 0=z00 ‘[O%tchirea [...] struct[3] =
g AVR: Sirulator Please waitwhile configuring simule f Rz8= 0xSF § [d] {...} struct
£| AVR Simulator ATSDSE51E Canfigured OK 2 gg? gxgi B [1] [} struct.
- b= . = >4
Loaded objectile: main.cof - RI1- 0200 [2] {...} struct b
| Messages A Fi|4 _>|'| ZI [*\wvateh 1 £3Watch 2 Watch 3 Wvatch 4

ATA058515 AYR Simulator Auto Stopped @ Lng9, Call AP MU SCRL A

Figure 3: Source-Level Debugging in AVRStudio's
Simulator

For example, to measure a delay period in the ssmulator, expand
the Processor tab in the Workspace window so that the Stop
Watch feature is visible. After a successful build, open the
project's main.c (i.e. /tenp/ main.c), set a breakpoint on the
PORTB ~= 0x08; line of Task3(), and select Debug — Run.
After a while, program execution will stop at the breakpoint in
Task3() . Now zero the stopwatch in the Stop Watch window by
double-clicking on it, and right-click to select Stop Watch: show
as milliseconds. Select Debug — Run again, and wait until
execution stops. The Stopwatch window now displays an elapsed
time of 400ms (40 times 10ms, the Ti mer 0-driven system tick rate
in this application for a4MHz clock).

12 AN-28 Building a Salvo Application with GNU's avr-gcc C Compiler, WinAVR and AVRStudio

PUMPKIN

Application Note

S[=] e
-8 x

AYRStudio - [c:\temp/main.c]
= Ble Project Edi ¥ew Tools Debug Window Help

DS BREGo MOEFH AT R = e m BN GPRORO R R
i [Trace disablea =] = % of [T =] E & « & 0 o "2

Workspace s I ZI
Name | “alue | Bits |Add\ ¥
oI Registsr 0-15
o)) Register 16-31 <% Task3 delays itself for 400ms, then signals bing
.8 Processor /% semaphore #1 and toggles hit3 on PORT.

~# Program Counter 00042 void Task3(veid)

- @ Stack Poirter 0x025A { fer i1y 1

-# Cycle Count 3195679 or [::

Gyoi Counter 05 Delay(40, Task3a):
- rregister 0x0076 s)
025 b PORT = 0x08;

- ¥ rregister ! 082ignalBinSem (BINSEM1_P);

~ @ Z-register 0x0042 1

-# Fragquency 4.0000 MHz 1

- % StopWatch 389.37 ms -
= B8 1/0 AT30S8515 4 »
= project | GR 10 [o | = ettempimain.c ‘Ed‘\sa\vn\srd\mt(‘Ed‘\sa\vn\srd\mttask(|
* [Loaded plugin STKE00 & | * ROO= Ox42 <l * Name | value | Twps
; Loaded partfile: C:yProgram ;7 RO1= 0=z00 * [+ 0OStcharea [...] struct[3]
5 AWR Simulator Please waity & RO2= Dz00 § — 05cTchP Ox0084 struct *
S | AVR Simulator ATA0S8515 ¢ @ RO3= Dz00 g s PR struct

Loaded abjectile: maincaf | | g R04= Dx00

% ROS5= Dx00

il : “Watch 1 {WWatch 2 WWalch 3 »Walch 4
AT90S851! AVR Simi Aut Stopp = Ln65, Col 1 €A NU SCF

RO6= Oxz00 I

| » [Build »Mess{l 4 3

Figure 4: Measuring 400ms of Task Delay in the
Simulator via a Breakpoint

Note The 630 microseconds (i.e. 400.00ms — 399.37ms) that are
"short" in the Stop Watch window of Figure 4 are due to the way
the hardware timer was initialized in this application — the actual
timer period is 1/(4.000MHz/1024/(38+1)) = 9.984ms, and 40 *
9.984ms = 399.36ms. See the Salvo User Manual for more
information on the system timer.

Stepping Through Salvo Source Code

If you have Salvo Pro and are doing a full source-code build, or a
debug-enabled library build, you can aso trace program execution
through the Salvo source code. Select Debug — Reset, Debug
— Remove Breakpoints, and set a breakpoint at the first call to
OSCr eat eTask() in main.c. Select Debug — Run. Execution
will stop in mai n. ¢ at the call to osCr eat eTask(). Now choose
Debug — Step Into. The /sal vo/ src/inittask. ¢ file window
will open, and you can step through and observe the operation of

OSCr eat eTask() .

AN-28 Building a Salvo Application with GNU's avr-gcc C Compiler, WinAVR and AVRStudio 13

PUMPKIN

Application Note

Troubleshooting

' AVRStudio - [d-\salvo\src/inittask c] (O] =]
= Ble Project Edi Wew Tools Debug Window Help & x

DEH@G L RS cOEEH AR ES T m BN e BRGNS R
: [Frace deabled 7] % 3 o [TE] S0 v 5ol e S

Workspace R 0StypeErr OSCreateTask(OStypeTFP tFP, ZI
Name [value [Bits [Addi ggtype;{c}lp tchP,)
= vpePrio prio
- Register 1631 . 0SMONTTOR_KEYWORD_POST
=8 Processor { e
i - Program Counter 0x0174 Z% punt if tebP is eclearly bad.
| .® StackPointer 0x025D #1f OSENABLE_BOUNDS_CHECEING
-# Cycle Counter 362 if ((tebP < OSTCBP (1)) || (tebP > OSTCBP (OSTI
-9 Mregister 0x008D OSWarnRtn ("05CreateTask".,
-% “register 0x025F OZMakeltr ("task %d nonexistent or inval:
-9 Z-register Ox0620 ; 08eID(echP)). (0StypeErr) OSERR_BAD_P
i e Frequency 4.0000 MHz
| P Sopiach D09ms | s e RS B _»rl
= ot BRI | @ 1o | Beittenpiman.c |3 disabolsrefint [disabvalsroinitiask.c
* [Loaded pes]|| * R20= 0z03 R21=- 000 A% Hame | valug | Twp=
* | AvRSimul || 1 R22= 0z76 R23= 0z00 ' [+ oOStcharea [...] struct[3]
AVR Sirmul & Rz4= 0229 R25= 0=00 H

neing

% RZfi= OxED R27= 0z00 ES

Loaded ok &
= R28= 0xz5F R29= 0z02 J

Loaded ok’

ol B

R30= 0z20 R31= 0=06

4 :RWa|ch1 Watch 2 »Wyatch 3 A \Watch 4

ATI0S8515 AR Simulstor Aute Stopped (=) Lnsl, Col L CAP MUM SCRL g

Figure 5: Stepping Through Salvo Source Code

Errors Reported by make

Example Projects

The Salvo makefile system for avr-gcc requires only a properly
defined sal vocf g. h (see the Salvo Compiler Reference Manual
RM-GCCAVR for more information) and the additions to the
WinAVR-style makefile outlined above, in addition to a properly
installed Salvo for Atmel AVR and MegaAVR distribution.

When reviewing make's output in case of a build error, ensure that:

» the Salvo path is set correctly (i.e. the—I and -L
command-line arguments to avr-gcc point to avalid
Salvo installation)

* the symbol sysy isdefined (i.e. -D SYSY)

* thereisaMAKE_W TH_XYZ symbol defined

» for Salvo Pro source-code builds, all of the necessary
Salvo source modules are listed in the
$(SALVO_SRcCS) makefile symbol

Tip All of these will be in place if you start with a makefile from
an existing Salvo SYsY project.

Example projects for GNU's avr-gcc C compiler can be found in
the sal vo/ ex/ ex1/ sysy and sal vo/tut/tul-6/sysy

14 AN-28 Building a Salvo Application with GNU's avr-gcc C Compiler, WinAVR and AVRStudio

SUINY Application Note

directories. A single makefile handles Salvo Lite, Savo LE and
Salvo Pro builds. Each makefile (and hence, each project) defines
the SYSY symbol.

Credits & Acknowledgements

Colin O'Flynn wrote the Salvo context switcher in port gccavr. S,
created the Salvo project makefile system, and wrote much of the
documentation surrounding the Salvo port to GNU's avr-gcc
compiler. Calin is active in the AVR community and is the author
of various AVR-centric material to be found at the popular AVR
Freaks (http://www.avrfreaks.net/) website.

1 Additionally, WinAVR is available at http://winavr.sourceforge.net/.
2 Another shell is the Cygwin (http://www.cygwin.comV) bash shell for
Windows, and is the one used here.

AN-28 Building a Salvo Application with GNU's avr-gcc C Compiler, WinAVR and AVRStudio 15

http://www.avrfreaks.net/

	Building a Salvo Application with GNU's avr-gcc C Compiler, WinAVR and AVRStudio
	Introduction
	Before You Begin
	Related Documents
	Toolsets
	Creating and Configuring a New Project
	The makefile
	Salvo: Project-Specific makefile Symbols
	SALVO_DIR
	SALVO_BUILD_TYPE
	SALVO_EXTRA_DEFS
	SALVO_EXTRA_INCS
	SALVO_EXTRA_SRCS
	SALVO_SRCS

	Salvo: Additional makefile Paths and Settings
	Salvo: Automatically Determining the Correct Library
	Salvo: Providing Feedback on the Build Process (Optional)
	Salvo: Modifying the Targets
	Other Makefile Settings

	Adding Salvo-specific Files to the Project
	Adding a Library
	The salvocfg.h Header File
	Adding Salvo Source Files
	The salvocfg.h Header File

	Building the Project
	Testing the Application
	Stepping Through Salvo Source Code

	Troubleshooting
	Errors Reported by make

	Example Projects
	Credits & Acknowledgements

