

750 Naples Street • San Francisco, CA 94112 • (415) 584-6360 • http://www.pumpkininc.com

GUTS Software Description

HISTORY
 Pumpkin’s GUTS flight software is a heavily modified fork of the KubOS flight software.
Originally, KubOS was chosen for a 12U-Optics Bus project, however, many improvements to the
core of the flight software were made. In addition, many of the services/libraries originally provided
from KubOS were overhauled or replaced to better fit the requirements for both Pumpkin’s
SUPERNOVA Architecture, as well as the 12U-Optics Bus mission requirements. There were
sufficient changes to declare the Pumpkin’s fork of KubOS as a different FSW, hence the new
Pumpkin GUTS flight software
name.

Figure 1 - GUTS FSW Services/Libraries/Software

 Memo

2 Memo

BASIC WORKING PRINCIPLES
 The GUTS flight software includes a `yocto` image, Linux OS base, and a U-Boot bootloader
with flight software services running on top. The Linux operating system uses an EXT4 file system
and supports a default `bash` CLI.

Any given GUTS flight software service represents an independent function of the satellite,
such as an ADCS service to control the satellite’s ADCS, and is written in Rust primarily with
options for Python-based services. The GUTS services use a GraphQL interface to allow querying
information from the satellite and sending commands, known as mutations. Each service binds to
a local TCP/IP port on the Linux OS, and responds to HTTP POST requests. For requests from
the Ground, the Radio Service facilitates receiving encrypted CCSDS packets containing a
GraphQL Request over RF/Ground-Link to make on the behalf of the S/C operator. For
commanding, Pumpkin uses Stored Command Sequences (.scs files) which is a set of GraphQL
requests to make serially. The GUTS FSW Services are user-binaries, allowing updates through
simply copying the new software onto the satellite to replace the existing version.

The GUTS flight software is a highly configurable platform, allowing the user to leverage
only the features needed, and select capabilities required for a given customer’s mission. A large
subset of parameters are settable via text-based configuration files (TOML), allowing for small
(<64k) on-orbit updates to how the bus exports telemetry, behavior of modes and a plethora of
other configurable parameters. In addition, GUTS supports discovery of SUPERNOVA Bus
modules (e.g. EPSM) to automatically reconfigure the available telemetry/commands based off
of SUPERNOVA’s hardware configuration.

Figure 2 - GraphQL Playground

 Memo

Memo

3

COMMUNICATIONS
Application data is sent in CCSDS packets as specified in CCSDS 133.0-B-2. Uplinked

files, commands and payload data are sent in TC Transfer Frame format (CCSDS 232.0-B-3) with
TC Synchronization and Channel Coding (CCSDS 231.0-B-3). Downlinked files, command
responses, and payload data are sent in AOS Transfer Frames (CCSDS 732.0-B-3) with TM
Synchronization and Channel Coding (CCSDS 131.0-B-3).
 Communication from the payload to ground is handled through data ports that allow the user
to send arbitrary CCSDS packets. The payload can connect to a data port, typically port 8887/tcp,
on the bus and send CCSDS packets to be transmitted to the ground. The radio-service marks
the generated 2048-byte AOS frames as real-time or orbital data based on the associated CCSDS
APID and configuration values.

The GUTS FSW supports ground-to-payload communication by forwarding assigned
APIDs to a given IP address and port with frames sent via TCP/IP. The bus will connect to the
payload, stream any CCSDS packets to be sent, and then disconnect. All the streamed CCSDS
packets shall be in the original format they were sent up, the `radio-service` serves as a direct
passthrough of CCSDS packets to/from the payload.

The GUTS flight software supports an IQ Wireless XLINK radio. The `radio-service`
facilitates all communication to and from the IQ Wireless XLINK radio, and validates the radio is
properly configured. Whenever the XLINK radio settings fall out of sync (e.g. on startup or restart
of the radio), the `radio-service` resyncs the proper RF configuration and downlink rate
parameters. The `radio-service` supports reconfiguration of the following on the IQ Wireless
XLINK Radio:

• Data downlink rate (1Mbps -> 55 Mbps on X-band radio)
• TX and RX Frequencies
• TX Output power and attenuation
• TX Output modulation (BPSK, QPSK, 3-8PSK, 4-16PSK, 5-32PSK, 6-64PSK)
• TX Forward Error Correction encoding

Other configuration parameters such as RX Modulation can be requested when ordering IQ
Wireless XLINK Radio.

750 Naples Street • San Francisco, CA 94112 • (415) 584-6360 • http://www.pumpkininc.com

Figure 3 - Uplink Packetization for CCSDS Packets from Ground

750 Naples Street • San Francisco, CA 94112 • (415) 584-6360 • http://www.pumpkininc.com

Figure 4 - GraphQL Command Uplink Flow & Processing

 Memo

6 Memo

Figure 5 - CCSDS Downlink Packetization and File Formats

 Memo

Memo

7

SYSTEM SAFETY
 The lifeboat-service can monitor any telemetry value on the bus that can be queried via
GraphQL as well as monitor program output and return codes. The service allows the user to
configure areas of interest to regularly check, such as ensuring ADCS sensors are not frozen and
that communication through the radio is maintained, and an action to take if a check fails. Multiple
stages of recovery can be defined, such as trying
 If the lifeboat-service determines that a subsystem needs to be recovered, it will take the action
outlined by the user for the affected area. Possible actions include program execution, execution
of a stored command sequence, rebooting the operating system, or power cycling the bus.
Information about recoveries, including the number of recoveries attempted, areas affected, and
the exact action taken to recover the bus are logged. The lifeboat-commander, a helper
application for the lifeboat-service, provides an interactive TUI to examine historical recovery
events.

Figure 6 - Lifeboat Event Viewer

 Memo

8 Memo

ENCRYPTION
The encryption-service handles AES256 key negotiation. The cipher used is AES256-

GCM. The service can install new AES256 keys on the satellite, verify the origin of keys against
the ground signing key installed on the spacecraft, query the active AES key bytes, and change
the current encryption key to use. The bus encryption key is a RSA-2048 bit private key stored on
the spacecraft. The ground signing key is to be used by S/C operators to sign a given AES256
key with a SHA-512 digest. The ground signing key and the public key of the bus are both needed
to change the bus encryption key to validate the request as coming from an authenticated ground
user. All communications to the SUPERNOVA Bus must be encrypted.

The GUTS FSW handles encryption for GraphQL requests over RF and file downlinks
from the bus (e.g. telemetry files), using the current encryption key activated by the operator. All
files, command responses and communications directly from the GUTS FSW are encrypted.

The data to/from the Payload is encrypted, and the GUTS FSW works as a pass-through
for CCSDS packets based off APID. The Payload is to query the GUTS FSW Encryption Service
for the current AES256 keys for uplink/downlink, then resolve encryption directly within the
Payload.

Figure 7 - Encryption Data Flow

 Memo

Memo

9

TELEMETRY CAPABILITIES
 The Pumpkin GUTS flight software features a rich telemetry set and configuration system
allowing the user to choose the exact telemetry rate, items and format needed. All GUTS flight
software services can export telemetry via a ̀ telemetry-gather-service` running in the GUTS FSW.
The gather service pushes user-specified GraphQL Queries to the `mosquitto` MQTT broker
running on the bus, allowing for the Payload, Bus `telemetry-service` and ground-testing software
(via script pushing telemetry data from MQTT to InfluxDB and displaying on Grafana).
 The `bus-telemetry-service` allows the operator to export one or more telemetry streams for
on-orbit retrieval. The `bus-telemetry-service` allows the user to set the collection rate (in
seconds), how much telemetry to store in MB, and output format (either JSON or user-definable
Binary format). This service also allows the operator to request the historical telemetry gathered
on the bus, up to a number of days determined by how much historical telemetry to save in MB.

Figure 8 - Grafana Display from Environmental Testing

 Memo

10 Memo

HARDWARE SERVICES AVAILABLE
• The ADCS-service facilitates monitoring and control of the ADCS. It runs two threads,

one to maintain synchronization of time and GPS coordinates and another to carry out
GraphQL requests.

• The radio-service handles the XLINK interface and packetization/parsing of
CCSDS/AOS/TC packets. The radio-service-daemon executable runs on the ground
station and handles multiplexing GraphQL and file requests through a simulated XLINK
radio. Additionally, a lower-level fake-xlink-radio binary is available for the user to directly
send TC frames or receive AOS frames via TCP/IP.

• The GPS-service facilitates monitoring and telemetry gathering of the NovAtel GPS.
The GPS NMEA strings are mirrored directly to the gpsd binary running on the GUTS
flight software.

• The MCU-service interfaces with all Pumpkin SupMCU modules. It allows sending of
commands to specific modules, such as enabling power ports, and querying module
telemetry. It also regularly kicks the watchdog timer on the EPSM.

• The thruster-service facilitates monitoring and control of the thruster. It can write
parameters, read telemetry, toggle whether the thruster is enabled, and command the
thruster to fire.

• The beacon-service beacons state-of-health packets through Simplex. All beacon rates
can be specified via configuration from the user.

• The articulation-service facilitates articulation of solar arrays. Features include:
o Query the current state of the DASA unit,
o Home the solar array automatically.
o Articulation modules include:

§ Hold a specific degree position
§ Track the MEEUS sun vector continuously based off of current S/C

orientation
§ Follow a series of discrete steps
§ Turn off automatic articulation and allow manual commands.

o The flowchart below outlines the control loop for the articulation service.

 Memo

Memo

11

Figure 9 - DASA Articulation Logic

 Memo

12 Memo

SOFTWARE SERVICES AVAILABLE
• The system-service accesses environment variables, resource allocation, and system

status. It also executes arbitrary executables and scripts on the bus and schedules
execution of commands and stored command sequence lists.

• The lifeboat-service performs safety checks and automatic restoration of services and
hardware. For more information, refer to the section on system safety.

• The encryption-service handles AES256 key negotiation on the satellite. For more
information, refer to the section on encryption.

• The file-service uplinks and downlinks arbitrary files. It features retransmission of files
based on File ID, a GraphQL endpoint for starting uplink and downlink of files,
compression and decompression of files via zLib, usage of the BLAKE2s hash for file
verification, and usage of encryption parameters.

• The CONOPS-service defines the spacecraft modes and transitions between them. The
currently supported modes are Deploy, Idle, Science, Downlink, and Safe.

• The telemetry-service aggregates and packages telemetry. Telemetry can come from
the GUTS Telemetry Database or from a dummy source for testing purposes and be
packaged as JSON data, binary data structured according to the service configuration,
or raw output printed for testing purposes.

• The telemetry-gather-service gathers telemetry from various sources and pushes it to
the MQTT broker.

• The update-service updates the OS image and root file system. It can also return
information about the current version of the operating system and list available update
files.

 Memo

Memo

13

CONFIGURABILITY ON ORBIT/GROUND
 Much of the operation of GUTS can be customized via configuration files. All configuration files
are stored in one directory in the GUTS file system, the `/etc/guts.d`. All configuration files are
stored in TOML format, and the GUTS FSW configuration can be edited via:

• Editing file via text-editor then uploading replacement configuration file over existing
configuration on the bus

• Dedicated queries to GUTS flight software services (e.g. setting TX frequency of XLINK
radio via `setTxFrequency` GraphQL Mutation).

• Dedicated configuration CLI arguments to service executables (e.g. setting XLINK
product key via `radio-service configure set product-key`).

Examples of configuration include:
• The telemetry-service allows the user to choose which telemetry items are gathered and

the rate at which they are gathered.
• The lifeboat-service includes functionality for users to define areas to monitor, the

checks to perform for each area, and the recovery actions to take if needed.
• Startup commands to initialize the peripherals of the SUPERNOVA bus (e.g. configuring

OEM719 for LEO orbit)
• The radio-service allows the operator to set XLINK radio transmit frequency, modulation,

data rate, forward error correction encoding.

Figure 10 - GUTS Configuration File Examples

